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1 Introduction

We are concerned with the regularity of a class of degenerate elliptic equations:

Lu = uxx + |x|2σuyy + ux + |x|luy − u = f (x, y) ∈ Ω, (1.1)

where l and σ are nonnegative numbers and Ω is a bounded domain in R2 with (0, 0) ∈ Ω.
The investigation of degenerate elliptic equations began in the last century. The paper of

Hörmander [5] studied the operators like

L =
n

∑
i=1

X2
i + X0 + c, (1.2)

where X0, X1, . . . , Xn are smooth vector fields in Ω and satisfy Hörmander’s condition that
is the vector fields together with their commutators of some finite order span the tangent
space at any point. In that paper, Hörmander stated that the operator L satisfies the following
subelliptic estimate

‖u‖Hε(K) ≤ C
(
‖Lu‖L2(Ω) + ‖u‖L2(Ω)

)
, (1.3)

for compact subsets K of Ω. As a consequence L is hypoelliptic. After that a long series
of papers considered many related researches to (1.2), see e.g., [1, 8, 11, 12, 15]. After these,
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some authors have studied the conditions that the vector fields are not smooth. For instance,
Wang [10] considered the following equation

uxx + |x|2σuyy = f ,

where σ is an arbitrary positive real number. In this case the vector fields X = {∂x, |x|σ∂y}
are Hölder continuous and do not satisfy Hörmander’s condition.

Moreover, Hong and Wang [6] studied the regularity of a class of degenerate elliptic
Monge–Ampère equation

det(uij) = K(x, y) f (x, y, u, Du)

in Ω ⊂ R2 with u = 0 on ∂Ω. By Legendre transformation the equation can be rewritten as a
degenerate elliptic equation which can be simplified to

uxx + xmuyy + ux + xm−1uy + f = 0 (x, y) ∈ Ω ⊂ R2
+, (1.4)

where m > 1 is an integer. Obviously, when m = 2, the equation is in the form of (1.2) by
taking X = {∂x, x∂y}.

In this paper, we study the local Hölder estimates of (1.1) which is a general form of
(1.4). The equation is generated by the vector fields X = {∂x, |x|σ∂y}. When σ is a positive
integer and l = σ, the vector fields are smooth and L belongs to the Hörmander’s operator.
If σ is a positive integer and l = 2σ − 1, L is in the form of (1.4). We assume that σ is
an arbitrary nonnegative number, so the vector fields X may not be smooth. We note that∣∣|x|luy

∣∣ ≤ ∣∣|x|σuy
∣∣ in the case l ≥ σ and |x| < 1. That means the lower order terms {ux, |x|luy}

can be controlled by the vector fields X. So we can easily have the energy estimate of (1.1).
However, in the case l < σ, the lower order terms {ux, |x|luy} can not be controlled by the
vector fields X. Our interest lies in the regularity of the weak solutions of (1.1) in the case that
l is an arbitrary nonnegative numbers. The important thing is that if we consider the natural
scaling from:

ur(x, y) = u(rx, r1+σy),

then we have that the order of the terms uxx and |x|2σuyy is 2, and that of the term |x|luy is
1 + σ− l. So |x|luy is still a lower order term with respect to |x|2σuyy when σ < 1 + l. In this
case, the main result is as follows.

Theorem 1.1. Let l and σ be nonnegative numbers and l > σ− 1. Then, there exists a constant ᾱ > 0,
such that if f ∈ Cα

∗(Ω) and u is a weak solution of (1.1) in Ω, then u ∈ C2,α
∗ (Ω′), for 0 < α < ᾱ.

Moreover,
‖u‖C2,α

∗ (Ω′) ≤ C
(
‖u‖L∞(Ω) + ‖ f ‖Cα

∗ (Ω)

)
,

where Ω is a bounded domain in R2 with (0, 0) ∈ Ω and Ω′ ⊂⊂ Ω.

Remark 1.2. The spaces C2,α
∗ (Ω′), Cα

∗(Ω) and the weak solutions are defined in Section 2.

The organization of this paper is as follows. In Section 2, we introduce the definition of
the metric related the vector fields X = {∂x, |x|σ∂y} and the spaces such as Ck+α

∗ (Ω), W1,p
0,σ (Ω).

In Section 3, we give the regularity of the homogeneous equation near the origin. In Section 4,
the regularity of the general equations near the degenerate line is given by using the iteration
method. Consequently, the result of Theorem 1.1 is established.
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2 Preliminaries

In this section we give some function spaces and results associated to the vector fields. Here
we need the intrinsic metric related to the vector fields which is associated with the de-
generate elliptic operator. The construction of the intrinsic metric and the modified Hölder
spaces appropriate for degenerate parabolic equations, were introduced by Daskalopoulos and
Hamilton in [3] for the study of the porous medium equation. A few years later, Feehan and
Pop considered the related results for the boundary-degenerate elliptic equations (see [4]).

Now let us review the intrinsic metric and the spaces introduced by Wang in [10]. The
metric related to the vector fields X = {∂x, |x|σ∂y}, is given by

ds2 = dx2 + |x|−2σdy2.

For any two points P1 = (x1, y1) and P2 = (x2, y2), the equivalent metric is defined by

d(P1, P2) = |x1 − x2|+
|y1 − y2|

|x1|σ + |x2|σ + |y1 − y2|
σ

1+σ

. (2.1)

Define the ball with the center point P as

B(P, r) = {X : d(X, P) < r}.

We denote B(0, r) by Br for simplicity.
The distance and the balls have the following properties:

(1) there exists γ > 1 such that

d(P1, P2) ≤ γ
(
d(P1, P3) + d(P3, P2)

)
; (2.2)

(2) the measures of the balls are controllable,

|B(P, R)| ≤
(

R
r

)2+σ

|B(P, r)|, R ≥ r > 0. (2.3)

In the following, we give some useful function spaces related to the vector fields.
For any 0 < α < 1, we define the Hölder space with respect to the distance defined by

(2.1) as

Cα
∗(Ω) =

{
u ∈ C(Ω) : sup

X1,X2∈Ω

|u(X1)− u(X2)|
d(X1, X2)α

< ∞

}
,

where Ω is a bounded domain in R2. We define the Cα
∗ seminorm and norm as

[u]Cα
∗ (Ω) = sup

X1,X2∈Ω

|u(X1)− u(X2)|
d(X1, X2)α

,

‖u‖Cα
∗ (Ω) = ‖u‖L∞(Ω) + [u]Cα

∗ (Ω).

When the metric is Euclidean metric, Campanato proved that Campanato space is embed-
ding into the usual Hölder space(see[2]). After that, the similar embedding theorems have
been obtained for vector fields of Hörmander’s type or the doubling metric measure space
(see [7,9,10]). For the distance function defined by (2.1) we also have Campanato type spaces.
But here we need a little modification of the usual one.
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We denote by P k
X0

the set of kth order polynomials at X0 = (x0, y0) which have the follow-
ing form

P(x, y) = ∑
0≤i+j≤k

aij(x− x0)
i(y− y0)

j,

and
∑

0≤i+j≤k
|aij||x0|(i+(1+σ)j−(k+α))+ ≤ C.

We remark that if we consider the point on the degenerate line, i.e., Y0 = (0, y0), then some
terms of the second order polynomials at Y0 disappear. More specifically, if α

2 ≤ σ < α then
a02 = 0 and if σ ≥ α then a02 = a11 = 0. Although some terms disappear, we still denote
the second order polynomial as ∑0≤i+j≤2 aijxi(y− y0)j. Now we construct Hölder space by the
polynomial approximation which is attributed to Safanov (see [13, 14]).

Definition 2.1. We say u ∈ Ck,α
∗ at X0 if for every r > 0, there is a polynomial P(x, y) of order

k such that
|u(x, y)− P(x, y)| ≤ Crk+α (x, y) ∈ B(X0, r) ∩Ω,

and define

[u]Ck,α
∗ (X0,Ω)

= sup
r>0

inf
P

{
|u(x, y)− P(x, y)|

rk+α
, (x, y) ∈ B(X0, r) ∩Ω

}
,

where P is taking over the set of polynomials at X0 of order k.

We denote [u]Ck,α
∗ (X0,Ω)

by [u]Ck,α
∗ (X0)

, and define

‖P‖Ck,α
∗ (X0)

= ∑
0≤i+j≤k

|aij||x0|(i+(1+σ)j−(k+α))+

to be Ck,α
∗ norm of P at X0 = (x0, y0). Then, Ck,α

∗ norm of u(x, y) in Ω is

sup
X∈Ω

sup
r>0

inf
P∈P k

X0

{
|u(Y)− P(Y)|

rk+α
+ ‖P‖Ck,α

∗ (X)
, Y ∈ B(X, r) ∩Ω

}
.

For any 1 ≤ q < ∞, we define the space Ck,α;q
∗ (Ω).

Definition 2.2. Let Ω be a bounded domain in R2 such that there exist positive constants r0

and c with
|B(X, r) ∩Ω| > c|B(X, r)| for all X ∈ Ω, 0 < r < r0.

A function f ∈ Lq(Ω), 1 ≤ q < ∞, is Ck,α;q
∗ at X0 ∈ Ω if

sup
r>0

inf
P∈P k

X0

{
1

rk+α

(
1

|B(X0, r)|

∫
B(X0,r)∩Ω

| f (x, y)− P(x, y)|qdxdy
) 1

q
}

< ∞.

We denote the left hand side as [ f ]
Ck,α;q
∗ (X0,Ω)

. We say f ∈ Ck,α;q
∗ (Ω) if f ∈ Ck,α;q

∗ (X0, Ω), for
every point X0 ∈ Ω, and define

[ f ]
Ck,α;q
∗ (Ω)

= sup
X0∈Ω

sup
r>0

inf
P∈P k

X0

{
1

rk+α

(
1

|B(X0, r)|

∫
B(X0,r)∩Ω

| f (x, y)− P(x, y)|qdxdy
) 1

q
}

.
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We have the following theorem.

Theorem 2.3. Let 1 ≤ q < ∞. Assume that u ∈ Lq(Ω) and that |B(X, r)| ≤ C1|B(X, r) ∩Ω|, for a
constant C1 > 0. Then u ∈ C2,α

∗ (Ω) if and only if u ∈ C2,α;q
∗ (Ω).

For 1 ≤ p < ∞, we define the function spaces

W1,p
σ (Ω) = {u ∈ Lp(Ω), ux ∈ Lp(Ω), |x|σuy ∈ Lp(Ω)}.

Then, W1,p
σ (Ω) is a Banach space with the norm defined by

‖u‖W1,p
σ (Ω)

= ‖u‖Lp(Ω) + ‖ux‖Lp(Ω) + ‖|x|σuy‖Lp(Ω).

Let W1,p
0,σ (Ω) be the closure of C∞

0 (Ω) in W1,p
σ (Ω). In particular, we denote W1,2

σ (Ω), W1,2
0,σ(Ω)

by H1
σ(Ω), H1

0,σ(Ω).
By Corollary 1 in [10], we have the following lemma.

Lemma 2.4. For any σ > 0, there is a small constant h = h(σ) > 0, such that for any r < R ≤ 2,
there is a constant C depending on σ, r, and R, such that

‖u‖Hh(Br) ≤ C‖u‖H1
σ(BR).

Now we give the definition of the weak solutions of (1.1). For our convenience, we consider
the following equation

L̃u = uxx + |x|2σuyy + b1ux + b2|x|luy + cu = f . (2.4)

Definition 2.5. Let b1, b2 and c are constants. We say u ∈ H1
σ(Ω) is a weak solution of (2.4) if∫

Ω
(ux ϕx + |x|2σuy ϕy + b1uϕx + b2|x|luϕy − cuϕ)dxdy = −

∫
Ω

f ϕdxdy, (2.5)

for every ϕ ∈ C1
0(Ω).

3 Regularity of the homogeneous equation

In this section we investigate the estimate of (1.1) when f equals zero.

Lemma 3.1. Let f = 0 and u be a weak solution of (1.1). Then the following inequality holds∫
B1

(
|ux|2 + |x|2σ|uy|2

)
dxdy ≤ C

∫
B2

|u|2dxdy.

Proof. Let η ∈ C∞
0 (B2). Replacing the test function ϕ by η2u, we have

∫
B2

(
ux(η

2u)x + |x|2σuy(η
2u)y

)
dxdy +

∫
B2

(
u(η2u)x + |x|lu(η2u)y

)
dxdy +

∫
B2

u(η2u)dxdy = 0.
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Thus ∫
B2

(
|ux|2η2 + |x|2σ|uy|2η2)dxdy

= − 2
∫

B2

(
uxηxηu + |x|2σuyηyηu

)
dxdy−

∫
B2

((
u2

2

)
x
+ |x|l

(
u2

2

)
y

)
η2dxdy

−
∫

B2

u2(2ηηx + 2|x|lηηy + η2)dxdy

= − 2
∫

B2

(
uxηxηu + |x|2σuyηyηu

)
dxdy +

∫
B2

(
u2ηηx + |x|lu2ηηy

)
dxdy

−
∫

B2

u2(2ηηx + 2|x|lηηy + η2)dxdy

≤ ε
∫

B2

(
|ux|2η2 + |x|2σ|uy|2η2)dxdy +

1
ε

∫
B2

(
η2

x + |x|2ση2
y
)
u2dxdy

−
∫

B2

u2(ηηx + |x|lηηy + η2)dxdy

≤ ε
∫

B2

(
|ux|2η2 + |x|2σ|uy|2η2)dxdy +

1
ε

∫
B2

(
η2

x + |x|2ση2
y
)
u2dxdy

+
∫

B2

u2
(

2η2 +
1
2

η2
x +

1
2
|x|2lη2

y

)
dxdy.

Taking ε = 1
2 , we find∫

B2

(
|ux|2η2 + |x|2σ|uy|2η2)dxdy ≤ 6

∫
B2

(
η2 + η2

x + |x|2ση2
y + |x|2lη2

y
)
u2dxdy.

Now if we take η such that

0 ≤ η ≤ 1, η = 1 on B1, η = 0 near ∂B2, and |∇η| ≤ C,

then we have the lemma.

Lemma 3.2. Let f = 0 and u be a weak solution of (1.1). Then there is a small constant h > 0 such
that

‖u‖Hh(B1/2)
≤ C‖u‖L2(B2). (3.1)

Proof. By Lemma 3.1, we have∫
B1

(
|ux|2 + |x|2σ|uy|2

)
dxdy ≤ C

∫
B2

|u|2dxdy.

Using Lemma 2.4 and taking r = 1
2 and R = 1, we obtain

‖u‖Hh(B1/2)
≤ C

(
‖ux‖L2(B1) + ‖|x|

σuy‖L2(B1) + ‖u‖L2(B1)

)
.

The lemma follows by combining the above two inequalities.

When f equals zero, (1.1) is translation invariant in y direction. So the operator L is com-
mutative with |∂y|γ, for any γ ∈ R+. Using Lemma 3.2 and the pseudo-differential calculus
and applying the estimate (3.1) to u, |∂y|hu, |∂y|2hu, . . . inductively, we have u is locally smooth
in y direction. Since u is a solution of the homogeneous equation we have u is a solution of

uxx + uyy + ux + |x|luy − u =
(
1− |x|2σ

)
uyy.

The right-hand side of the above equation is Hölder continuous and the left hand side is an
elliptic operator. By the estimates of the elliptic equations we have the following lemma.
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Lemma 3.3. Let f = 0 and u be a weak solution of (1.1) in B2. Then u ∈ C2,ᾱ(B1/4) and

‖u‖C2,ᾱ(B1/4)
≤ C‖u‖L2(B2), (3.2)

where ᾱ is a positive constant depending on σ and l.

To obtain the regularity of the nonhomogeneous equation, we need to modify Lemma 3.3
and get a uniform estimate of (2.4).

Lemma 3.4. Let u be a weak solution of (2.4) in B1 and |b1|, |b2|, |c| ≤ 1. Then there exists a universal
constant C, such that

‖u‖C2,ᾱ(B1/4)
≤ C‖u‖L2(B1). (3.3)

This lemma can be obtained by applying the same method as in the prove of Lemma 3.3.

4 The estimates near the degenerate line

In this section the estimate of (1.1) near x = 0 is given. Sice the equation is translation invariant
in y direction, we only need to consider the estimate near the origin.

Theorem 4.1. Let ᾱ be the same constant as in Lemma 3.3 and α < ᾱ. Assume that f ∈ Cα
∗(B10γ3)

and that u satisfies (1.1) in B10γ3 . Then u ∈ C2,α
∗ (B1), and

‖u‖C2,α
∗ (B1)

≤ C
(
‖u‖L∞(B10γ3 ) + ‖ f ‖Cα

∗ (B10γ3 )

)
.

The main techniques are the energy estimates and the iterations. To obtain the estimates
of the nonhomogeneous equation, we need the following scaling form

ũ(x, y) = u(rx, r1+σy).

Then, ũ(x, y) satisfies

ũxx + |x|2σũyy + rũx + rl+1−σ|x|l ũy − r2ũ = r2 f (rx, r1+σy).

So we need the energy estimate of (2.4) when we do the iterations. Since r is small and
σ < 1 + l, it is reasonable to assume that |b1|, b2| and |c| are less than 1.

We now start proving a series of lemmas that will be used to prove Theorem 4.1.

Lemma 4.2. If u is a weak solution of (2.4) and |b1|, |b2|, |c| ≤ 1, then there is a universal constant
C, such that ∫

B 3
2

(
|ux|2 + |x|2σ|uy|2

)
dxdy ≤ C

∫
B2

(
|u|2 + | f |2

)
dxdy.

This lemma can be obtained by applying the similar methods as in Lemma 3.1, so we omit
the proof.

Lemma 4.3. Assume that |b1|, |b2|, |c| ≤ 1. Then, for every ε > 0, there exists a small constant δ,
such that if u is a weak solution of (2.4) in B2 with

1
|B2|

∫
B2

|u|2dxdy ≤ 1, (4.1)
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1
|B2|

∫
B2

| f |2dxdy ≤ δ2, (4.2)

then
1
|B1|

∫
B1

|u− v|2dxdy ≤ ε2,

where v is a weak solution of
L̃v = 0, (x, y) ∈ B1.

Proof. We prove the lemma by contradiction. Suppose there exists an ε0 > 0, such that for any
positive integer k, there exist u(k) and f (k) satisfying

1
|B2|

∫
B2

∣∣u(k)∣∣2dxdy ≤ 1,

1
|B2|

∫
B2

∣∣ f (k)∣∣2dxdy ≤ 1
k2 ,

and
L̃u(k) = f (k), (4.3)

in the weak sense in B2, but for any v, which is a weak solution of the equation

L̃v = 0 (x, y) ∈ B1,

we have
1
|B1|

∫
B1

|u(k) − v|2dxdy > ε2
0. (4.4)

Since u(k) is a weak solution of (4.3), by Lemma 4.2, we have∫
B 3

2

(
|u(k)

x |2 + |x|2σ|u(k)
y |2

)
dxdy ≤ C

∫
B2

(
|u(k)|2 + | f (k)|2

)
dxdy

≤ C.

Thus, ‖u(k)‖H1
σ(B3/2)

≤ C. By Lemma 2.4 and taking R = 3
2 , r = 1, we have u(k) ∈ Hh(B1). Since

Hh(B1) is compactly embedded in L2(B1), there is a subsequence of u(k), which we still denote
as u(k), such that

u(k) −→ v strongly in L2(B1).

By the L2 boundedness of u(k)
x and |x|σu(k)

y , we have

u(k)
x −→ vx weakly in L2(B1),

|x|σu(k)
y −→ |x|σvy weakly in L2(B1).

Since u(k) is a weak solution, we have∫
B1

(
u(k)

x ϕx + |x|2σu(k)
y ϕy + b1u(k)ϕx + b2|x|lu(k)ϕy − cu(k)ϕ

)
dxdy = −

∫
B1

f (k)ϕdxdy.

Let k→ ∞. Then we have v is a weak solution of equation

L̃v = 0 (x, y) ∈ B1,

which is a contradiction. This finishes the proof.
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Lemma 4.4. Suppose |b1|, |b2|, |c| ≤ 1. Let 0 < α < ᾱ and r0 be a small constant. There exists a small
constant δ such that if u is a weak solution of (2.4) in B2 with (4.1) and (4.2) satisfied, then,

1
|Br0 |

∫
Br0

|u− P|2dxdy ≤ r2(2+α)
0 ,

where P=∑i+j≤2 aijxiyj is a second order polynomial at (0, 0) such that L̃P = 0 and ∑i+j≤2 |aij| ≤ C.

Proof. By Lemma 4.3, there exists a v(x) which is a weak solution of

L̃v = 0 x ∈ B1,

such that
1
|B1|

∫
B1

|u− v|2dxdy ≤ ε2. (4.5)

So

1
|B1|

∫
B1

|v|2dxdy ≤ 2
|B1|

∫
B1

(
|u− v|2 + |u|2

)
dxdy

≤ 2
(
22+σ + ε2).

By Lemma 3.4, v ∈ C2,ᾱ(B1/4), and hence, v ∈ C2,ᾱ
∗ (B1/4). So there exists a second order

polynomial P(x, y) at (0, 0) such that

sup
0<r<1

1
r2+ᾱ

(
1
|Br|

∫
Br

|v− P|2dxdy
) 1

2

≤ C‖v‖L2(B1).

For 0 < r0 < 1
2 , we have∫

Br0

|u− P|2dxdy ≤ 2
∫

Br0

(
|u− v|2 + |v− P|2

)
dxdy

≤ 2ε2|B1|+ 4C
(
22+σ + 1

)
r2(2+ᾱ)

0 |Br0 |

≤ r2(2+α)
0 |Br0 |,

by taking r0 =
(
8C(22+σ + 1)

) 1
2(α−ᾱ) and ε small.

Lemma 4.5. Let 0 < α < ᾱ and u be a weak solution of

uxx + |x|2σuyy + ux + |x|luy − u = f in B1, (4.6)

with
1
|B1|

∫
B1

|u|2dxdy ≤ 1, (4.7)

[ f ]Cα
∗ (0,0) ≤ δ, f (0, 0) = 0. (4.8)

Then there is a second order polynomial P(x, y) ∈ P2
(0,0), such that

sup
0<r<1

1
r2+α

(
1
|Br|

∫
Br

|u− P(x, y)|2dxdy
) 1

2

≤ C, (4.9)

and
∑

i+j≤2
|aij| ≤ C.
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Proof. Let r0 be the same constant as in Lemma 4.4. We claim that there exist second order
polynomials

Pk(x, y) = ∑
i+j≤2

a(k)ij xiyj ∈ P2
(0,0)

such that
1
|Brk

0
|

∫
Brk

0

|u− Pk|2dxdy ≤ r2k(2+α)
0 , (4.10)

and ∣∣a(k)ij − a(k−1)
ij

∣∣ ≤ Cr(k−1)(2+α−(i+(1+σ)j))
0 .

Let P0 = 0 and P1 be the polynomial P in Lemma 4.4, then the claim holds for k = 1.
Assume that the claim holds for k.

Let

u(k)(x, y) =
(u− Pk)(rk

0x, rk(1+σ)
0 y)

rk(2+α)
0

.

Then
u(k)

xx + |x|2σu(k)
yy + rk

0u(k)
x + rk(l+1−σ)

0 |x|lu(k)
y − r2

0u(k) = f (k) in B1,

where

f (k)(x, y) =
f
(
rk

0x, rk(1+σ)
0 y

)
rkα

0
.

Hence, by (4.10),

1
|B1|

∫
B1

|u(k)|2dxdy =
1
|B1|

∫
B1

∣∣∣∣∣ (u− Pk)(rk
0x, rk(1+σ)

0 y)

rk(2+α)
0

∣∣∣∣∣
2

dxdy

=
1

r2k(2+α)
0

1
|Brk

0
|

∫
Brk

0

|(u− Pk)(x, y)|2dxdy

≤ 1.

By (4.8),
1
|B1|

∫
B1

| f (k)|2dxdy ≤ δ2.

Applying Lemma 4.4 to u(k), we obtain that there is a polynomial

P(x, y) ∈ P2
(0,0)

such that
1
|Br0 |

∫
Br0

|u(k) − P|2dxdy ≤ r2(1+α)
0

and
∑

i+j≤2
|aij| ≤ C.

Now substituting u(k) by u, we have

1
|Br0 |

∫
Br0

∣∣∣∣∣ (u− Pk)(rk
0x, rk(1+σ)

0 y)

rk(2+α)
0

− P(x, y)

∣∣∣∣∣
2

dxdy ≤ r2(2+α)
0 .



Regularity of degenerate elliptic equations 11

Therefore,

1
|Brk+1

0
|

∫
B

rk+1
0

∣∣∣∣u−(Pk(x, y) + rk(2+α)
0 P

(
x
rk

0
,

y

rk(1+σ)
0

))∣∣∣∣2dxdy ≤ r2(k+1)(2+α)
0 .

Let

Pk+1(x, y) = Pk(x, y) + rk(2+α)
0 P

(
x
rk

0
,

y

rk(1+σ)
0

)
.

Then the claim holds. The lemma follows immediately from the claim.

We note here that by the choice of P(x, y), (4.9) also holds for r ≥ 1. Since the equation is
translation invariant in y direction, we can apply Lemma 4.5 in B(Y0, 1) with Y0 = (0, y0).

Now we go back to the proof of Theorem 4.1.

Proof. Let X0 = (x0, y0) ∈ B1 and Y0 = (0, y0). Without lose of generality, we can assume
f (0, y0) = 0. Multiplying a small number to (1.1), we can assume that (4.7) and (4.8) are
satisfied. By Lemma 4.5, there is a second order polynomial

P̂(x, y) ∈ P2
Y0

,

such that
1

|B(Y0, r)|

∫
B(Y0,r)

|u(x, y)− P̂(x, y)|2dxdy ≤ Cr2(2+α).

Thus
1

|B(Y0, 2γ|x0|)|

∫
B(Y0,2γ|x0|)

|u(x, y)− P̂(x, y)|2dxdy ≤ C|x0|2(2+α).

Now we give the estimate at the point X0.
If r < 1

4 |x0|, then, by (2.2), B(X0, r) ⊂ B(Y0, 2γ|x0|). Let

v(x, y) =
(u− P̂)(|x0|x, |x0|1+σy)

|x0|2+α
.

Then v(x, y) satisfies

vxx + |x|2σvyy + |x0|vx + |x0|l+1−σ|x|lvy − |x0|2v = g(x, y), (4.11)

where g(x, y) = 1
|x0|α f (|x0|x, |x0|1+σy).

The corresponding good point of v(x, y) is

X̃0 =
X0

|x0|
=


(

1,
y0

|x0|1+σ

)
, x0 > 0,(

−1,
y0

|x0|1+σ

)
, x0 < 0.

We also have
[g]Cα

∗ (B(X̃0, 1
2 ))
≤ C[ f ]

Cα
∗ (B(X0, |x0 |

2 ))

and
1

|B(Ỹ0, 2)|

∫
B(Ỹ0,2)

|v(x, y)|2dxdy ≤ C,

where Ỹ0 =
(
0, y0
|x0|1+σ

)
.
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If we consider (4.11) in B
(
X̃0, 1

2

)
, then 1

2 < |x| < 3
2 . So the equation is uniformly elliptic.

Since near X̃0 the metric we defined is equivalent to the Euclidean metric, we have

[g]Cα(B(X̃0, 1
2 ))
≤ C[g]Cα

∗ (B(X̃0, 1
2 ))

.

Thus v is C2+α and consequently v is C2+α
∗ at X̃0. So there exists a second order polynomial

P1(x, y) ∈ P2
X̃0

such that

1

|B
(
X̃0, r

|x0|
)
|

∫
B
(

X̃0, r
|x0 |

) |v(x, y)− P1(x, y)|2dxdy ≤ C
( r
|x0|

)2(2+α)
.

Substituting by u, we have

1
|B(X0, r)|

∫
B(X0,r)

|u(x, y)− P(x, y)|2dxdy ≤ Cr2(2+α),

where
P(x, y) = P̂(x, y)− |x0|2+αP1

( x
|x0|

,
y

|x0|1+σ

)
and it is easily to verify that P(x, y) ∈ P2

X0
.

Now we consider r ≥ 1
4 |x0|. By the properties of the distance and the balls, i.e., the in-

equalities (2.2) and (2.3), we obtain

B(X0, r) ⊂ B(Y0, 5γr) ⊂ B(X0, 9γ2r),

and
|B(X0, 9γ2r)|
|B(X0, r)| ≤

(
9γ2)2+σ.

So

1
|B(X0, r)|

∫
B(X0,r)

|u(x, y)− PY0(x, y)|2dxdy

≤ |B(X0, 9γ2r)|
|B(X0, r)|

1
|B(Y0, 5γr)|

∫
B(Y0,5γr)

|u(x, y)− PY0(x, y)|2dxdy

≤ Cr2(2+α).

Thus we have the theorem.

The scaling form of Theorem 4.1 can be stated as the following corollary.

Corollary 4.6. Let Y0 = (0, y0), and let u be a solution of (1.1) in B(Y0, d). Then, for every point
X0 = (x0, y0) ∈ B

(
Y0, d

10γ3

)
, there exists a second order polynomial PX0(x, y) ∈ P2

X0
such that

(
1

|B(X0, r)|

∫
B(X0,r)

|u(x, y)− PX0(x, y)|2dxdy
) 1

2

≤ C
(

d−(2+α)‖u‖L∞(B(Y0,d)) + d−α‖ f ‖L∞(B(Y0,d)) + [ f ]Cα
∗ (B(Y0,d))

)
,

where
PX0(x, y) = ∑

i+j≤2
aij(x− x0)

i(y− y0)
j,
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and

∑
i+j≤2

dτ|aij||x0|(i+(1+σ)j−(2+α))+ ≤ C
(
‖u‖L∞(B(Y0,d)) + d2‖ f ‖L∞(B(Y0,d)) + d2+α[ f ]Cα

∗ (B(Y0,d))

)
,

where τ = (2 + α) ∧ (i + (1 + σ)j).

Theorem 1.1 is an immediate consequence of this corollary and the estimates of the uni-
formly elliptic equations.
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