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Abbreviations 

 

ACP amorphous calcium phosphate  

CCTOP Constrained Consensus Topology prediction  

CSF cerebrospinal fluid  

ER endoplasmic reticulum  

Fam20 Family with sequence similarity 20  

Fj Four-jointed  

FGF23 Fibroblast growth factor 23  

GO gene onthology  

HILIC hydrophilic interaction liquid chromatography  

HMGB1 high mobility group box 1 protein  

IMAC immobilized metal affinity chromatography  

OPN  osteopontin 

PTM post-translational modification 

SCX strong cation exchange chromatography  

SIBLING small integrin-binding ligand N-linked glycoprotein  

TMT  Tandem Mass Tag 

VLK vertebrate lonesome kinase  
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Summary 

 

The very existence of extracellular phosphorylation has been questioned for a long time, although casein 

phosphorylation was discovered a century ago. In addition, several modification sites localized on 

secreted proteins or on extracellular or lumenal domains of transmembrane proteins have been 

catalogued in large scale phosphorylation analyses, though in most such studies this aspect of cellular 

localization was not considered. Our review presents examples when additional analyses were performed 

on already public datasets that revealed a wealth of information about this "neglected side" of the 

modification. We also sum up accumulated knowledge about extracellular phosphorylation, including the 

discovery of Golgi-residing kinases and the special difficulties encountered in targeted analyses. We hope 

future phosphorylation studies will not ignore the existence of phosphorylation outside of the cell, and 

further discoveries will shed more light on its biological role.  
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Phosphorylation is the main regulatory modification of intracellular proteins and is involved in the majority 

of cellular processes. The existence of this modification extracellularly has long been disputed despite the 

fact that caseins abundant in milk were the first phosphoproteins discovered in the late 1800s [1]. 

Gradually, other secreted proteins and peptide hormons were reported to contain this modification. 

Recently (as of November 3, 2015) the UniProt database [2] yielded 131 proteins once the entries were 

filtered using the following criteria: species - homo sapiens; subcellular localization – secreted; post-

translational modification (PTM) – phospho*; and all of these were ’reviewed’ (Supplemental Table 1). 

Approximately, ¾ of these proteins are indeed in vivo modified on an amino acid side-chain that normally 

is localized ’outside’ of the cell. The lumenal side of the endoplasmic reticulum (ER) or the Golgi are also 

considered as such. The accumulating evidence slowly changed the old dogma that restricted 

phosphorylation to the intracellular milieu, yet, our understanding of the regulation and the exact role of 

the modification on extracellular proteins is still very limited.  

 

Are these proteins secreted phosphorylated or modified extracellularly? 

In the classical secretion pathway a short signal sequence directs the protein to the ER, then the protein 

travels through the Golgi network and is finally released to the extracellular space. During this transport 

the protein may undergo post-translational modifications. Specific kinase activity distinct from cytoplasmic 

kinases was detected in the Golgi apparatus isolated from lactating mammary gland, liver, spleen and 

other organs [3,4]. This kinase was shown to phosphorylate proteins on an S-x-E/pS motif; resist inhibitors 

of other protein kinases; use Mn
2+

 as activator instead of Mg
2+

; and ATP but not GTP as the phosphate 

donor [4]. However, this kinase escaped identification for a long time. The first Golgi-residing kinase Four-

jointed (Fj) was identified in Drosophila [5]. Fj was shown to phosphorylate cadherin domains of the 

transmembrane proteins Fat and Dachsous, yet with different site specificity. PSI-BLAST (Position-

Specific Iterated Basic Local Alignment Search Tool) search performed with the human orthologue of Fj, 

Fjx1 identified Family with sequence similarity 20 (Fam20) and 198 (Fam198) members as other potential 

Golgi kinases [6]. Eventually, protein Fam20C was identified as ‘the real casein kinase’ featuring all the 

characteristics described decades earlier, as listed above. It resides in the Golgi but it can also be found in 

an N-terminally truncated, secreted form [6,7]. Phosphorylation of the substrate proteins occurs 



6 
 

intracellularly [7,8], yet Fam20C may exert its activity also extracellularly. Fam20C was demonstrated to 

phosphorylate a wide array of secreted proteins involved in biomineralization, lipid homeostasis, wound 

healing, cell adhesion and migration [7]. 

Another newly identified kinase: vertebrate lonesome kinase (VLK) - which shows preference for Tyr 

residues - also localizes in the secretory pathway [9,10]. High expression level of VLK was detected in 

platelets, and upon stimulation by the thrombin receptor activating peptide (TRAP) VLK was rapidly and 

quantitatively released from platelets. Besides phosphorylating substrate proteins in the secretory 

pathway, secreted VLK was found to modify targets in the extracellular environment. Though numerous 

substrates of VLK were identified, no consensus motif could be determined [10]. 

Other kinases have also been observed in the releasate of activated platelets that can perform 

phosphorylation of extracellular proteins if sufficient ATP is available. Platelet secreted casein kinase(s) 

were shown to phosphorylate protein S and this phosphorylation enhanced its activated protein C cofactor 

activity thereby affecting its anticoagulant property [11]. Upon stimulation by thrombin a cAMP-dependent 

protein kinase (PKA) was released from platelets which phosphorylated vitronectin [12]. Several protein 

kinase C isozymes were also found secreted upon thrombin stimulation from platelets [13]. 

Proteins lacking a signal peptide and thus not entering the classical ER/Golgi secretion pathway may be 

released to the extracellular space by unconventional means of protein export, either via direct membrane 

translocation or secretion in various vesicules [14]. In the secretome analysis of MCF7 human breast 

cancer cell line it was found that only half of the detected proteins were secreted via the classical ER/Golgi 

pathway or shed by plasma membrane, the other half of the proteins used unconventional secretion [15]. 

Intracellular phosphorylation of these proteins may precede their export. Actually, in certain cases it was 

demonstrated that phosphorylation is a prerequisite for the transport. Fibroblast growth factor 2 (FGF2) is 

secreted by direct translocation across plasma membranes and its phosphorylation at Tyr-82 by Tec 

kinase is required for the secretion [16]. Heat stress-induced translocation of annexin 2 is dependent on 

Tyr-23 phosphorylation [17]. The high mobility group box 1 protein (HMGB1) is a DNA chaperone that acts 

also extracellularly in the regulation of inflammation. Phosphorylation of HMGB1 in its nuclear localization 

signal (NLS) regions results in the relocation of the protein from the nucleus to the cytoplasm with 
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consecutive secretion [18]. However, it should be noted that detection of phosphoproteins or kinase 

activities outside the cell may also be an artifact from broken cells and thus, not physiologically relevant. 

 

Large scale MS analyses significantly contribute to extracellular phosphorylation data accumulation 

Most information on the phosphorylation of extracellular proteins may be retrieved from mass 

spectrometric data. Large scale analyses of tissues or whole cells are a major source of such data. 

Interestingly, the resulting huge datasets practically are never interrogated for the subcellular localization 

of the modification, and the extracellular phosphorylation sites detected are not reported separately. That 

is a pity, since such information has been available for years and has been mostly ignored. For a few 

datasets we performed this analysis with the following notices: i) we accepted the reported 

phosphorylation data at face value, ii) we somewhat trusted the UniProt cellular localization labels, iii) 

proteins secreted via alternative pathways were kept, iv) proteins that localize to the ER/Golgi were 

subjected to topology prediction using the Constrained Consensus Topology prediction method (CCTOP, 

http://cctop.enzim.ttk.mta.hu) [19] and only proteins with lumenal modification sites were kept. 

Many plasma proteins are synthesized in hepatocytes, therefore, the in-depth phosphoproteome analysis 

of a liver homogenate performed by Bian et al. proved to be a rich source of extracellular phosphorylation 

data [20]. Their workflow of „enzyme-assisted” two dimensional reversed phase chromatography 

supplemented with phosphopeptide enrichment using Ti(IV)-immobilized metal affinity chromatography 

(IMAC) resulted in phosphosite mapping of 54 secreted and 51 ER- or Golgi-localized proteins with 

lumenal phosphorylation sites (Supplemental Table 2). Similarly, large amount of extracellular 

phosphorylation data could be retrieved from the analysis of breast cancer xenograft (human on mouse) 

and human ovarian tumor samples performed by Mertins et al. [21]. Combined, 489 secreted and 275 

ER/Golgi-residing phosphoproteins were identified in that study using high pH reversed phase 

fractionation followed by Fe(III)-IMAC phosphopeptide enrichment and LC-MS/MS analysis (Supplemental 

Table 3). Strong cation exchange chromatography (SCX) with consecutive TiO2 enrichment performed by 

Sharma et al. in the analysis of a human cancer cell line also yielded extensive phosphoproteome 

coverage [22]. Actually, the authors of this study paid some attention to extracellular phosphorylation. 

However, only Fam20C phosphorylation was considered within S-x-E/pS motifs and Pro was not permitted 
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in the ’middle’ position. Their search yielded 101 phosphosites on 64 proteins. Unfortunately, modification 

within a 3-amino-acid-constrain does not guarantee the identification of the kinase responsible. The 

authors did not check whether the regions modified ever enter the ER/Golgi system, and thus, the list 

contains numerous cytoplasmic modification sites that were possibly phosphorylated by kinases other 

than Fam20C. For example, Golgin subfamily B member 1 (UniProt Q14789-2) was included in the list 

with phosphorylated Ser-128, 139, 676, 1756, 1758 and 3145. Except, according to the protein’s topology 

all of these sites are located in the cytoplasmic domain (positions: 1-3235). Our re-evaluation which was 

not restricted to Fam20C phosphorylation revealed 71 secreted and an additional 90 ER/Golgi-resident 

phosphoproteins in their study (Supplemental Table 4).  

 

Extracellular phosphorylation analysis from cell culture media 

Though whole cell analyses may contain extensive data on the phosphorylation of secreted proteins more 

specific information can be extracted from targeted analyses that use the culture media of specific cell 

lines. Tagliabracci et al. compared the phosphoproteome of wild type and Fam20C knockout/knockdown 

HepG2 liver cells secreted into the cell culture media [7]. As Fam20C shows high expression level in 

lactating mammary gland and mineralized tissue, their analyses were extended to breast epithelial and 

osteoblast-like cell lines to map modification sites that are linked to the Fam20C kinase activity. Applying 

Fe(III)-IMAC phosphopeptide enrichment, over 100 secreted phosphoproteins were identified in the 

culture media of these cell lines and the majority of the modification sites responded to Fam20C depletion. 

Interestingly, about ⅓ of the phosphosites whose intensity faded upon Fam20C depletion did not match 

the consensus S-x-E/pS sequence. Phosphosite mapping of insulin-like growth factor-binding protein 1 in 

vitro phosphorylated by Fam20C also indicated modifications in non-S-x-E/pS motives. The authors 

speculated that the recognition motif of Fam20C might be significantly broader than originally suspected, 

however, kinase assays performed with synthetic peptides could extend Fam20C activity only to S-x-Q-x-

x-D/E-D/E-D/E sequences present in proline-rich phosphoprotein 1 (PRP1) [7,23]. In addition, one has to 

consider the potential existence of ‘phosphorylation cascades’ in the Golgi where the elimination of a 

kinase affects not only the direct substrates but also all the ‘downstream’ modifications. 
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Cancer cells are known to display differences in intercellular communication or in their cell adhesion and 

migration properties that might partially be due to changes in the phosphorylation pattern of the proteins 

secreted into their microenvironment. In a phosphorylation analysis of the secretome of different luminal 

and basal type breast cancer cell lines over 1700 phosphoproteins were identified altogether combining 

hydrophilic interaction liquid chromatography (HILIC) with TiO2 phosphopeptide enrichment [24]. 

Approximately half of these phosphoproteins were predicted to be extracellular or membrane proteins 

according to gene onthology (GO) annotation and bioinformatics analyses using SignalP (classical 

secretion), SecretomeP (unconventional secretion) and TMHMM (transmembrane domains) algorithms. 

The proteins that showed subtype specific phosphorylation sites were involved among others in cell 

signaling and interaction, antigen presentation or cellular assembly and organisation. 

 

Analytical challenges in extracellular phosphorylation studies 

While the secretome can be studied from the culture media of different cell lines, phosphorylation analysis 

directly from readily available body fluids has the most potential in the clinic. There is only a limited 

number of such reports yet and the phosphorylation data derived from these studies are far from those 

targeting intracellular phosphorylation. In cerebrospinal fluid (CSF) 25-45 phosphoproteins were identified 

from 60-200 μg starting material combining SCX fractionation with phosphoSer specific molecularly 

imprinted polymers or using TiO2 enrichment [25,26]. Plasma/serum phosphoproteome analyses fared 

even worse in this aspect, 40-100 μl of plasma (~2-5 mg protein) yielded 30-70 phosphoproteins using 

TiO2 enrichment (either alone or in combination with SCX) or Fe(III)-IMAC [27-29]. The largest 

phosphopeptide dataset from plasma was reported by Zawadzka et al. in parallel to the breast cancer cell 

line secretome analysis [24]. On average, 130 phosphoproteins could be identified from 1 ml plasma (~50 

mg protein) of control or breast cancer patients using HILIC fractionation in combination with TiO2 

enrichment. Phosphorylation analysis of saliva also yielded moderate results, a total of 85 

phosphoproteins were identified from ~50 mg protein after SCX fractionation and Fe(III)-IMAC 

phosphopeptide enrichment [30].  

One of the main reasons for the relatively low outcome in the phosphorylation analysis of body fluids is the 

low level of the modification and the complexity and high dynamic range of proteins present in such 
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matrices. Immunodepletion was used in some cases for the removal of up to the fourteen most abundant 

plasma proteins to increase the depth of the analysis [24,25,28]. However, comparison of TiO2 enrichment 

applied to serum with or without depletion of albumin and IgG showed considerable loss of 

phosphopeptides in the depleted fraction [27]. Depletion of the highly abundant proteins was also found 

detrimental in the phosphoproteome analysis of CSF [26]. Indeed, off-target removal was reported using 

albumin-specific and other immunodepletion kits [31-33]. This may be due to the role of albumin as a 

cargo for various compounds or a result of nonspecific binding to the affinity matrix. Additionally, ten of the 

fourteen proteins targeted by the MARS-14 column are actually phosphorylated [29]. Hexapeptide bead 

libraries (Proteominer) provide another means to narrow down the dynamic range, and that was used in 

the saliva phosphoproteome analysis by Stone et al. [30]. This approach, however, may distort the 

quantitative results. 

A highly efficient enrichment pipeline is a prerequisite for successful phosphorylation analysis from such 

complex matrices like serum. Above examples show a repertoire of available tools developed for the 

isolation of phosphopeptides. The most preferred ones are metal affinity techniques: TiO2 and IMAC often 

in combination with other orthogonal separations. Though very powerful, selectivity of these methods in 

CSF or serum is far below that reported for whole cell lysates. In the latter selectivity as high as 90% could 

be achieved [34] whereas in body fluids selectivity is rather around 30-60% [26, 27,29], a consequence of 

the high dynamic range and the overall low extent of the modification. Additionally, TiO2 and recently also 

IMAC was shown to isolate sialylated glycopeptides under certain conditions [35,36,29]. In the HeLa 

phosphopeptide dataset obtained after SCX fractionation and subsequent TiO2 enrichment, discussed 

earlier [22], 12.5% of the MS/MS spectra contained glycan specific oxonium ion (m/z 204.087, HexNAc) 

[37]. N-glycosylation is the most frequent and highly abundant modification on secreted and membrane 

proteins, thus, an even higher glycopeptide contribution is expected when extracellular or membrane 

proteins are probed. Approximately 1/3 of the MS/MS spectra contained glycan specific oxonium ions in 

datasets obtained after Fe(III)-IMAC phosphopeptide enrichment of serum [38,29]. Glycopeptides interfere 

with the phosphorylation analysis at multiple levels. First, glycopeptides affect enrichment efficiency by 

competing for the active sites of the affinity material. Second, co-elution of glycopeptides can lead to 

undersampling of the phosphopeptides in the LC-MS analysis of the enriched fraction. In selected cases 
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this interference of the glycopeptides was taken into account. In the CSF analysis Bahl et al. [26] removed 

N-glycans by peptide N-glycosidase F treatment prior to phosphopeptide enrichment. As deglycosylation 

may have an adverse effect on protein solubility, it should be performed on the digested sample. 

Deglycosylation, however, could be cost-prohibitive especially when large amounts of serum samples are 

processed. Additionally, upon removal of the N-glycans the Asn residues are converted to Asp increasing 

the acidic character of the peptide that can induce nonspecific binding to the affinity material. For IMAC we 

demonstrated that high acetonitrile containing solvents promote glycopeptide binding to the sorbent in a 

mixed mode of metal affinity and hydrophilic interaction [29]. Elimination of this latter component by 

lowering the acetonitrile content or replacing acetonitrile with methanol – a strong solvent in HILIC – 

abolished glycopeptide capture completely. TiO2 enrichment is also performed in solvents with high 

acetonitrile ratio, therefore, a similar mixed mode of metal affinity and hydrophilic interaction is expected in 

the capture of the glycopeptides to this sorbent.  

 

Bioinformatics challenges 

Large scale phosphopeptide datasets are processed in an automated fashion and the database search 

results rarely undergo manual validation. Whether a spectrum contains sufficient information for 

modification site assignment is MS/MS activation and sequence specific. Even if the phosphopeptide is 

identified correctly, reliability of the site assignment can be questionable, especially if multiple Ser/Thr 

residues are in close proximity. In such cases often all sites are reported as modified that calls for some 

caution when handling large scale mass spectrometric data. Development of additional bioinformatic tools 

that calculate probability of site assignments using prior search outputs [39-42] or direct integration of a 

scoring algorithm into the search engine to measure the confidence of the modification site localization 

[43] led to an improvement in this respect. Although, presently only a single search engine, Protein 

Prospector indicates directly when there is no sufficient information for reliable site assignment. 

Additionally, there are recent initiatives to make all mass spectral data available. Despite of these 

initiatives, there are errors in public databases. In PhosphoSitePlus [44] over 1000 phosphoproteins are 

listed that according to UniProt or GO annotation may be considered extracellular or transmembrane 

proteins. Among the modification sites listed for these proteins the ratio of phosphorylated Tyr residues is 



12 
 

unusually high which may be a consequence that a large proportion of the information in this database 

was obtained from affinity enrichments using phosphoTyr antibodies but also reflects the uncertainties of 

site assignments. In addition, human or software fault may introduce errors in curated lists. For example, 

Tyr-225 in osteopontin and Tyr-158 in insulin-like growth factor-binding protein 1 were incorrectly listed as 

Fam20C phosphorylation sites in the UniProt database, although these were originally detected TMT-

modified [7] (Supplemental Table 1). 

Even when the sequence identification as well as the site assignments are correct we may not know 

where the modified protein actually came from. In this aspect we may rely on ’Subcellular localization’ 

information from the UniProt database and/or GO annotations, but the available information varies. For 

certain entries the localization is straightforward, such as „Golgi apparatus membrane; Single-pass type I 

membrane protein”. But more frequently, this information line reads like a complete list of potential cellular 

localizations, including everything from the nucleus to the extracellular space. There are numerous 

proteins where this diverse localization list reflects known translocations. For example, as mentioned 

above HMGB1 indeed may occur in the nucleus as well as in the cytoplasm, and also secreted. However, 

this uncertainty about the ‘origin of the protein’ certainly hinders the characterization of subcellular 

localization-specific modifications. 

Last but not least for the characterization of extracellular phosphorylation the topology of the membrane 

proteins has to be considered. Luckily, such prediction-based information has been available for several 

proteins, and is regularly listed in UniProt. In a previous large scale glycosylation study we found this 

information very reliable, we encountered only 2 examples among hundreds of assignments that indicated 

glycosylation on a predicted cytoplasmic domain [45]. Also, there are several topology prediction servers 

available to assess potential localization of the modification sites, of which CCTOP was used here for 

topology prediction of the ER/Golgi-resident phosphoproteins. 

 

Biological significance of the modification 

Improved analytical methodologies continuously expand the class of secreted phosphoproteins leaving 

clarification of the biological importance of the modification far behind. The most established role of 

extracellular phosphorylation is related to the formation of the mineralized tissue. The structural matrix of 
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bones and teeth is made up of collagen. The different aspects of collagen phosphorylation on processing, 

fibril formation or protein interactions have recently been reviewed [46]. Other non-collagenous 

extracellular matrix proteins are also crucial in bone and tooth formation via the control of hydroxyapatite 

crystallization [47,48]. These secretory calcium-binding phosphoproteins (osteopontin, OPN; dentin matrix 

protein-1, DMP1; bone sialoprotein, BSP; matrix extracellular phosphoglycoprotein, MEPE and dentin 

sialophosphoprotein, DSPP) belong to the small integrin-binding ligand N-linked glycoprotein (SIBLING) 

family and are heavily phosphorylated [49]. Abnormal phosphorylation of these proteins is implicated in 

severe bone or tooth defects [6,50]. OPN is the most extensively studied member of the SIBLING family. 

The majority of its Ser residues (37 of 42 in human OPN) and a few Thr residues are reported to be 

phosphorylated, more than half of these being targets of the Fam20C kinase. The phosphorylated 

residues are mainly found in clusters and highly conserved in mammals [51,52]. OPN shows a variety in 

PTMs and processing that is linked to its diverse biological functions. Besides its essential role in inhibiting 

bone mineralization, it is involved in cell attachment and signaling, inflammation or tumorigenesis [52,53].  

Milk caseins are also related to the secretory calcium-binding phosphoproteins [54,55]. Phosphoserine 

clusters within -S-S-S-E-E- sequences (called phosphate centers) present in αs1-, αs2- and β-caseins show 

high affinity for calcium resulting in sequestration of amorphous calcium phosphate (ACP) [56]. The 

formed nanoclusters with a core of ACP surrounded by casein molecules assemble to casein micelles. 

These structures ensure supersaturation of calcium and phosphate in milk without calcification [57,58]. 

Similar sequestration of ACP as calcium phosphate nanoclusters was demonstrated for OPN peptides 

suggesting that such nanoclusters of other secreted phosphoproteins might be involved in the inhibition of 

calcification in soft and mineralized tissues, the extracellular matrix or biofluids [59]. 

Phosphorylation analyses performed on plasma/serum samples revealed the modification predominantly 

on proteins involved in blood coagulation, lipid transport and homeostasis, complement activation, 

proteolysis, cell adhesion and signaling [27-29]. The details, however, how the modification affects these 

processes are largely unknown. Recently, phosphorylation of Fibroblast growth factor 23 (FGF23) at Ser-

180 was demonstrated to inhibit glycosylation at Thr-178 in the subtilisin-like proprotein convertase 

cleavage region thereby affecting secretion of the full length biologically active hormone that regulates 

phosphate retention in the kidney [60,61]. Thus, phosphate level in the circulation is balanced by the 
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cross-talk of glycosylation, phosphorylation and proteolytic processing of FGF23. Previously, 

phosphorylation of factor XI by a platelet derived kinase was shown to increase its susceptibility to 

cleavage by factor XIIa or thrombin [62] suggesting a possible regulation of the coagulation cascade.  

 

Conclusions and perspectives 

Large scale phosphoproteomic analyses predominantly from whole cell lysates or conditioned media led 

to an expansion of extracellular phosphorylation data, although the general public is not aware of it yet. 

Properly cataloguing such data in public databases would facilitate our understanding what functions this 

PTM fulfills outside the cell. Currently, the PhosphoSitePlus database has the largest collection of 

phosphorylation data. This list can be interrogated on the protein level about cellular localization.  

Unfortunately, results from the direct analysis of biofluids are limited due to the extreme dynamic range in 

these matrices that currently limits MS-based phospho-screening of biofluids. However, there are initial 

attempts to find biomarker candidates in plasma or to assess variation in the phosphorylation level of 

plasma phosphoproteins [24,63]. Continuous improvements in MS detection sensitivity will facilitate 

detection of lower abundance phosphoproteins. Yet, it is a question how deep we can dig in this huge 

dynamic range especially when unexpected post-translationally or artificially (due to sample handling) 

modified counterparts of the higher abundance components reach the level of low abundance proteins 

and further increase complexity. In addition, it has also been reported that using a single enrichment 

protocol reveals only a portion of the ‘phosphoproteome’ [64-66]. Perhaps, the combined effort of multiple 

groups could deliver almost comprehensive results. 

Within the cell phosphorylation is a highly regulated process with a concerted action of a plethora of 

kinases and phosphatases affecting the vast majority of intracellular proteins. The lower abundance of 

extracellular phosphorylation and the limited number of kinases and phosphatases detected outside the 

cell doubt such a control extracellularly. However, the wealth of extracellular phosphorylation data and 

also recent targeted analyses anticipate discovery of further secretory pathway kinases [67]. Deciphering 

the actual roles of the modification on extracellular proteins is also urgently needed to clear this puzzling 

picture. 
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