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Statistical γ -decay properties of 64Ni and deduced (n,γ ) cross section of the s-process
branch-point nucleus 63Ni
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Particle-γ coincidence data have been analyzed to obtain the nuclear level density and the γ -strength function
of 64Ni by means of the Oslo method. The level density found in this work is in very good agreement with known
energy levels at low excitation energies as well as with data deduced from particle-evaporation measurements
at excitation energies above Ex ≈ 5.5 MeV. The experimental γ -strength function presents an enhancement at
γ energies below Eγ ≈ 3 MeV and possibly a resonancelike structure centered at Eγ ≈ 9.2 MeV. The obtained
nuclear level density and γ -strength function have been used to estimate the (n,γ ) cross section for the s-process
branch-point nucleus 63Ni, of particular interest for astrophysical calculations of elemental abundances.
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I. INTRODUCTION

The nuclear level density and the γ -strength function1 are
two average nuclear quantities that govern the statistical γ de-
cay of nuclei. These quantities have been studied for decades,
revealing nuclear processes such as breaking of nucleon pairs
[2–4] or γ resonances2 [1,5,6]. However, as of today, many
questions about these processes remain unanswered, including
those regarding the origin of γ resonances or the theoretical
description of nuclear level densities.

The nuclear physics group at the University of Oslo has
contributed to increase the experimental data on nuclear
level densities and γ -strength functions with the so-called
Oslo method [7–10], which allows for the simultaneous
extraction of these two properties from particle-γ coincidence
measurements. One of the most surprising features observed in
the γ -strength function is the increased probability of γ decay
with γ energies below 2–4 MeV, first seen in 56,57Fe in 2004
[11]. Since then, this low-energy enhancement or upbend has
been measured for several nuclei from Sc to Sm [11–19] and
confirmed with an independent method for 95Mo [20].

The physical mechanisms underlying this enhancement are
still not clarified. There is currently no consensus on whether
its character is mostly of E1 or M1 nature and so far only
for 60Ni are there strong indications of the M1 character
of this upbend [21]. In the last years, two main theories
have been proposed. Calculations based on the quasiparticle
random phase approximation (QRPA) predict an increase
in the E1 strength at low γ energies in 94,96,98Mo [22].
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However, shell-model calculations indicate an M1 origin of
this low-energy enhancement [23,24]. It must be noted that no
shell-model calculations of E1 transitions are available in the
literature at present, neither are there M1 strength calculations
for the upbend within a QRPA approach. Further theoretical
and experimental studies are therefore vital to clarify the
origin of this low-energy enhancement of the γ strength.
Moreover, there is currently very limited knowledge regarding
the systematic evolution of the upbend with nuclear features
such as mass, deformation, or number of nucleons away from
closed shells. Therefore, additional experimental data on the
low-energy γ strength of nuclei in the Fe-Sm region would be
of great value.

The impact of the upbend and γ resonances is especially
significant for nuclear astrophysics, where neutron-capture
cross sections play a major role in heavy-element nucleosyn-
thesis calculations and determination of elemental abundances.
The nuclear level density and the γ -strength function can be
used to estimate (n,γ ) cross sections, which can be highly
increased by the presence of γ resonances and the low-energy
enhancement of the γ strength [25,26]. This becomes of partic-
ular interest in the cases where neutron capture cross-section
data are either not available or limited to a narrow energy range,
as it is often the case for s-process branch-point nuclei [27]. In
this respect, the study of 64Ni is especially interesting, because
in this case two recent direct measurements of the (n,γ ) cross
section exist [28,29]. These direct measurements can therefore
be compared to the estimates based on the nuclear level density
and the γ -strength functions obtained with the Oslo method,
providing an excellent benchmark for our approach.

In this work, the γ -strength function and level density of
64Ni will be presented, obtained through the Oslo method
from the study of the 64Ni(p,p′γ )64Ni reaction. Special
attention will be paid to the γ -strength function, in particular
the upbend and the possible presence of a resonancelike
structure at ≈9.2 MeV. In addition, the results will be used
to estimate the neutron capture cross section and reaction rate
in 63Ni, an s-process branch-point nucleus relevant in nuclear

2469-9985/2016/94(4)/044321(11) 044321-1 ©2016 American Physical Society

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/78476272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevC.94.044321


L. CRESPO CAMPO et al. PHYSICAL REVIEW C 94, 044321 (2016)

2 4 6 8 10

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

0

2

4

6

8

10

(a)

-ray energy (MeV)γ
2 4 6 8 10

(b)

2 4 6 8 10

# 
of

 c
ou

nt
s

-110

1

10

210

310

# 
of

 c
ou

nt
s

-110

1

10

210

310

(c)

FIG. 1. Original (a), unfolded (b), and first-generation (c) coincidence matrices for 64Ni from the 64Ni(p,p′γ )64Ni reaction. The x axis
represents the γ energy, while the y axis gives the excitation energy of 64Ni. The number of counts is represented by the color scale.

astrophysics [30]. Finally, the results will be discussed and
compared to theoretical calculations and experimental data.

This article is organized as follows. In Sec. II the experi-
mental details and data analysis are summarized. In Sec. III
the normalization procedure of the level density and γ -strength
function is discussed. Further, in Sec. IV the obtained results
are used to estimate the 63Ni(n,γ )64Ni cross section and
reaction rate with the code TALYS [31] and compared with
other experimental data and models. Finally, a summary and
outlook are given in Sec. V.

II. EXPERIMENTAL DETAILS AND DATA ANALYSIS

The experiment was performed at the Oslo Cyclotron
Laboratory (OCL) using a 99% enriched 64Ni self-supporting
target of 1 mg/cm2 thickness. A 16-MeV proton beam was
used to study the 64Ni(p,p′γ )64Ni reaction, running for 5 days
with typical beam currents of 0.2–0.4 nA.

Particle-γ coincidences were measured with the silicon
ring (SiRi) particle-detector system [32] and the CACTUS
γ -detection array [33]. The SiRi system consists of eight
telescope �E-E silicon detectors, each of them formed by
a 130-μm thin layer located in front of a 1550-μm-thick
back detector. Each of the thin detectors is divided into eight
strips, where one strip has an angular resolution of �θ = 2◦.
In total, the SiRi system contains 64 individual detectors, with

TABLE I. γ -ray transitions used to measure the response func-
tions of CACTUS detectors.

Eγ (keV) Ex (keV) Nucleus

847 847 56Fe
1238 2085 56Fe
1779 1779 28Si
2839 4618 28Si
3089 3089 13C
4497 6276 28Si
6130 6130 16O
9925 9929 28Si

a solid-angle coverage of ≈6%. For this experiment, the SiRi
detector system was placed in backward angles with respect
to the beam direction, covering scattering angles from 126◦ to
140◦ in the laboratory frame.

The CACTUS array consists of 26 collimated 5 × 5-inch
NaI(Tl) crystals. The total efficiency of CACTUS is 14.1(1)%
at Eγ = 1332.5 keV. The charged ejectiles and the γ rays were
measured in coincidence event by event, with a time resolution
(full width at half maximum) of ≈15 ns.

By measuring the energy deposited by the ejected particles
in the thin (�E) and thick (E) detectors, �E-E curves
were obtained allowing for the identification of the different
charged-particle species. In this case the gate was set on the
ejected protons to select the (p,p′γ ) reaction channel. From
reaction kinematics, the measured energies of the ejected
particles were used to obtain the corresponding excitation
energy of the residual nucleus.

As a result, the excitation energy of 64Ni vs coincident
γ rays (the coincidence matrix) was obtained, as shown
in Fig. 1(a). The γ -ray spectra were then unfolded for
each excitation-energy bin (corrected for the response of the
detectors in CACTUS), as described in Ref. [7]. The applied
response functions and detector efficiencies were obtained
in 2012 from in-beam γ lines listed in Table I. The (p,p′)
reaction was used in all cases except for 13C, for which the
stripping reaction 12C(d,p)13C was utilized [13]. With this
unfolding method, no artificial fluctuations are introduced
and the experimental statistical uncertainties are preserved.
Figure 1(b) shows the unfolded matrix for 64Ni, in which
several discrete peaks at Ex � 4 MeV are clearly visible.

From the unfolded γ spectra, the distribution of first-
generation (primary) γ rays3 for each excitation-energy bin
was extracted via an iterative subtraction technique [8]. The
basic assumption of this method is that the decay routes
are the same regardless of whether the initial states were
populated directly via the nuclear reaction or from γ decay
from above-lying states. For a more detailed discussion of the

3The first γ ray emitted in the decay cascade.
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possible errors and uncertainties of this method, see Ref. [10].
The first-generation matrix for 64Ni can be seen in Fig. 1(c).

From the first-generation matrix, the functional form of the
level density and the γ -transmission coefficient was obtained
with an iterative subtraction method described in Ref. [9].
In this procedure, one assumes that the reaction leads to a
compound nucleus which decays independently of how it was
formed, i.e., a statistical decay process [34]. One can then
assume that the relation

P (Eγ ,Ex) ∝ ρ(Ef )T (Eγ ) (1)

holds, where P (Eγ ,Ex) is the experimental first-generation
matrix as a function of the γ energy Eγ and the initial
excitation energy of the nucleus Ex , ρ(Ef ) is the level density
at the final excitation energy Ef , with Ef = Ex − Eγ , and
T (Eγ ) is the γ -transmission coefficient. With every point of
the ρ and T functions as an independent variable, the least-χ2

fit of ρT is calculated, reaching a global minimum within
10–20 iterations. It is important to note that no additional
assumptions are made for the functional form of ρ and T in
the least-χ2 fit.

As seen in Eq. (1), the γ -transmission coefficient T is a
function of Eγ only. This is based on the generalized Brink
hypothesis [35], which states that any collective decay mode
has the same properties whether it is built on the ground state
or on excited states. The Brink hypothesis has been proven
incorrect for nuclear reactions involving high temperatures
and/or spins [36]. However, in the present work the reached
spin range and temperature are rather low, so it is reasonable
to assume that the Brink hypothesis holds, as demonstrated in
Refs. [11,15,37].

To ensure that the decay from compound-nucleus states
is dominant and the hypothesis of statistical decay holds, a
section of the first-generation coincidence matrix must be
selected. In the present work, a minimum excitation energy
Ex,low = 5.82 MeV was chosen together with a lower limit in
the γ energy of Eγ,low = 1.98 MeV. In addition, to exclude data
corresponding to the γ decay of 63Ni, one has to ensure that the
neutron emission channel in 64Ni is not included. Therefore,
an upper limit in the excitation energy Ex,up = 9.66 MeV was
employed, below the sum of the neutron separation energy in
64Ni, Sn = 9.658 MeV, and the energy of the first excited state
in 63Ni at 0.087 MeV [38].

The result of the least-χ2 fit is the functional form of ρ and
T . In particular, if ρ(Ex − Eγ ) and T (Eγ ) are the solutions
of a fit to a given set of experimental data, it can be proven [9]
that the transformations ρ̃(Ex − Eγ ) and T̃ (Eγ ) would give
identical fits, where

ρ̃(Ex − Eγ ) = A exp[α(Ex − Eγ )] ρ(Ex − Eγ ), (2)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (3)

Therefore, to get the physical solution, the transformation
parameters A , α, and B were determined from exper-
imental data in a normalization procedure. Finally, once
the γ -transmission coefficient T (Eγ ) was determined, the
γ -strength function fL(Eγ ) was obtained with the relation

[39,40],

fL(Eγ ) = T (Eγ )

2πE2L+1
γ

, (4)

where L is the multipolarity of the transition. Generally, it is
seen that the main contribution to the experimental T (Eγ ) is
from dipole radiation (L = 1) [13,40].

III. NORMALIZATION OF THE LEVEL DENSITY AND
THE γ -STRENGTH FUNCTION

A. Level density

To normalize the nuclear level density, discrete energy
levels [38] were used at low excitation energies together with
an estimated value of the level density at the neutron separation
energy, ρ(Sn). Because the level scheme for 64Ni is regarded
to be complete up to 4.762 MeV [41], the normalization was
performed requiring a good agreement with discrete energy
levels below Ex ≈ 4.76 MeV. For the estimation of ρ(Sn), an
expression is usually applied [39],

ρ(Sn)

= 2σ 2

D0

1

(It + 1) exp[−(It + 1)2/2σ 2] + It exp
[−I 2

t /2σ 2
] ,

(5)

where D0 is the level spacing of s-wave resonances, σ is the
spin cutoff parameter, and It is the ground-state spin of the
target nucleus in the (n,γ ) reaction (1/2− for 63Ni). Notice
that Eq. (5) is obtained when the following spin distribution
g(Ex,I ) is assumed [2,3],

g(Ex,I ) � 2I + 1

2σ 2
exp[−(I + 1/2)2/2σ 2], (6)

for a specific excitation energy Ex , spin I , and a spin cutoff
parameter σ . Because no tabulated values of D0 were available
for 64Ni, its ρ(Sn) was obtained from systematics of the Ni
isotopes for which a D0 value was available [41,42]. The
value of σ was found for each of the Ni isotopes and used
together with its tabulated D0 value to estimate ρ(Sn) by
means of Eq. (5). The resulting ρ(Sn) values were then fitted
to an exponential function by means of a χ2-minimization
routine, leading to the estimation of ρ(Sn) for 64Ni together
with its uncertainty. From the resulting value of ρ(Sn), the
corresponding D0 value was then obtained by means of Eq. (5).

In this work, two different models for the spin cutoff
parameter have been applied. First, the ρ(Sn) values for the Ni
isotopes were obtained with σ given by the backshifted Fermi
gas (BSFG) model from global systematics of Ref. [43],

σ 2(Ex) = 0.391A0.675(Ex − 0.5 Pa′)0.312, (7)

where A is the mass number of the nucleus and Pa′ is
the deuteron pairing energy. As a result, a value ρ§(Sn) =
2620(890) MeV−1 was obtained for the level density of 64Ni,
with Sn = 9.658 MeV. In addition, the procedure was repeated
using the values of σ given by the rigid moment of inertia
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TABLE II. Parameters used for the calculation of ρ(Sn) for 64Ni (see text).

Nucleus Iπ
t D0 Sn aa E1

a σ a (Sn) ρa (Sn) ab E1
b σ b (Sn) ρb (Sn)

(103 eV) (MeV) (MeV−1) (MeV) (103 MeV−1) (MeV−1) (MeV) (103 MeV−1)

59Ni 0+ 13.4(9) 8.999 5.76 −0.14 3.47 1.87(13) 6.11 −0.26 4.14 2.64(18)
60Ni 3/2− 2.0(7) 11.388 6.16 1.19 3.56 3.80(130) 6.57 1.12 4.22 5.09(180)
61Ni 0+ 13.8(9) 7.82 6.64 −0.22 3.44 1.79(12) 6.97 −0.38 4.00 2.39(16)
62Ni 3/2− 2.10(15) 10.60 6.95 1.22 3.55 3.61(26) 7.32 1.13 4.08 4.55(33)
63Ni 0+ 16.0(30) 6.838 7.40 −0.17 3.4 1.51(28) 7.68 −0.38 3.89 1.95(37)
65Ni 0+ 23.6(30) 6.098 8.00 −0.11 3.37 1.01(13) 8.24 −0.39 3.82 1.28(16)

aSystematics and σ model based on Egidy and Bucurescu [43].
bSystematics and σ model based on Egidy and Bucurescu [44].

(RMI) model from Ref. [44],

σ 2(Ex) = 0.0146A5/3 1 + √
1 + 4a(Ex − E1)

2a
, (8)

were a and E1 are the level density and shift parameters in the
BSFG model obtained from global systematics of Ref. [44].
A new value ρ‡(Sn) = 3470(1180) MeV−1 was then obtained.
A summary of the values used to estimate ρ(Sn) for 64Ni is
shown in Table II. The resulting values of ρ(Sn) and D0 for
64Ni are included in Table III.

With the Oslo method, the nuclear level density is extracted
only up to Ex ≈ Sn − Eγ,low. To normalize to the value of the
level density at the neutron separation energy, an interpolation
between our data and ρ(Sn) was applied using the constant-
temperature model (CTM), which expresses the nuclear level
density as [2,45]

ρ(Ex) = 1

T
exp

Ex − E0

T
, (9)

where E0 is the energy backshift and T is the nuclear
temperature parameter. A summary of the parameters used
for the normalization of the level density and the resulting
values of ρ(Sn) is shown in Table III. The parameters E0 and
T were chosen so as to achieve a good agreement between the
level density obtained in this work at Ex ≈ 4.76 MeV and the
estimated value of ρ(Sn). The normalization procedure was
performed using the two different models of the spin cutoff
parameter given by Eqs. (7) and (8), taking into account the
estimated uncertainties for ρ(Sn) in each case.

The normalized level densities for 64Ni are depicted in Fig. 2
for both the value of σ obtained from Eq. (7) (normalization
1) and the value obtained from Eq. (8) (normalization 2). In
addition, estimates of the upper and lower limits for the level
density have been included, corresponding to the maximum
and minimum values of ρ(Sn) given by ρ‡(Sn) and ρ§(Sn)
plus/minus their respective uncertainties. The resulting level

densities from normalizations 1 and 2 are very similar, with
the estimated values of ρ(Sn) and the temperature parameter
T in good agreement, as seen in Table III. The experimental
data for the level density reproduce satisfactorily the discrete
energy levels at low excitation energy, where both the ground
state and the first excited 2+ state at 1.345 MeV are clearly
seen [38]. As seen in Fig. 1(c), the strong diagonal going
through Ex = Eγ + 1.345 MeV indicates that the 2+ state is
strongly populated in γ decays following the inelastic proton
scattering studied in this work. This results in the bigger area of
the peak for the 2+ first excited state with respect to the ground
state shown in Fig. 2. At excitation energies above Ex ≈ 4.5
MeV a saturation of known energy levels is observed. Above
Ex ≈ 5 MeV the level density seems to be well described by
the CTM [2,45], as previously seen for other nuclei such as
50,51V [17] or 97Mo [46].

As a final remark in this section, it must be noted that in
Eq. (5) it is assumed that both parities contribute equally to
the level density at Sn (see Refs. [9,10]). This is in agreement
with the experimental observations for nuclei such as 58Ni,
for which the effect of parity asymmetry in the level density
is seen to be small at the neutron separation energy (Sn =
12.216 MeV) and down to excitation energies of Eγ ≈ 8.5
MeV [47]. However, one can try to estimate the effect of the
parity distribution in 64Ni by including the parity asymmetry
coefficient ζ in our expressions, given by [48]

ζ = ρ+ − ρ−
ρ+ + ρ−

, (10)

where ρ+ and ρ− are the positive- and negative-parity level
densities. The level density can then be expressed as a function
of energy, spin, and parity [49] as

ρα(Ex,I,π ) = ρ(Ex)g(Ex,I )P(Ex,π ), (11)

where ρ(Ex) is the total level density at the excitation energy
Ex , g(Ex,I ) is the spin distribution, and P(Ex,π ) is the parity

TABLE III. Parameters used to normalize the level density of 64Ni (see text).

Model for σ σ (Sn) D0 T E0 ρ(Sn) ρζ (Sn)
(103 eV) (MeV) (MeV) (103 MeV−1) (103 MeV−1)

BSFG (2009) 3.52a 5.06+2.64
−1.26 1.13(0.13)a 0.63(0.87)a 2.62(89)a 2.91(98)a

RMI (2006) 4.05a 5.00+2.55
−1.30 1.07(0.11)a 0.86(0.54)a 3.47(118)a 3.85(131)a

aEstimated from systematics.
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FIG. 2. Level density for 64Ni as obtained in two different
normalizations. Normalization 1 (see text) corresponds to a spin cutoff
parameter σ within the model of Ref. [43], while in normalization
2 the model of Ref. [44] has been applied. For both normalizations,
discrete energy levels have been used at low energies and a value of
ρ(Sn) has been obtained corresponding to the considered model for
σ . The constant temperature model has been used for interpolation
between the experimental data and the point ρ(Sn) in each case. The
bin width is 124 keV.

projection factor. Defining these projectors for both positive
and negative parities,

P+ = P(Ex,π+) = ρ+
ρ

= 1 + ζ

2
, (12)

P− = P(Ex,π−) = ρ−
ρ

= 1 − ζ

2
, (13)

and keeping in mind that

P+ + P− = 1, (14)

one can get an expression for the neutron resonance spacing
at Sn, reaching states of parity πf = π (−1)l , where l is the
neutron orbital angular momentum number, while π and πf are
the parities of the target and the resonance state, respectively.
More specifically, for s-wave neutrons, l = 0, leading to [10]

1

D0
= ρ(Sn)P(Sn,π )

[
g

(
Sn,J = It + 1

2

)

+g

(
Sn,J = It − 1

2

)]
. (15)

Equation (15) can be then expressed as

1

D0
= ρ(Sn)

1 ± ζ

2

[
g

(
Sn,I = It + 1

2

)

+g

(
Sn,I = It − 1

2

)]
, (16)

where It is the spin of the target nucleus and the + or − sign
are used depending on the positive or negative parity of the
ground state. Therefore, the final expression obtained for ρ(Sn)
in 64Ni with parity asymmetry is

ρζ (Sn) = 2σ 2

D0(1 − ζ )

1

(It + 1) exp
[− (It+1)2

2σ 2

] + It exp
[− (It )2

2σ 2

] .

(17)

Using the microscopic calculations from Ref. [50], a parity
asymmetry ζ � 0.1 at Ex = Sn was found. Including this
parity asymmetry, new values for the level density at Ex = Sn

were obtained for both models of σ , shown in Table III as
ρζ (Sn). The estimated values of ρζ (Sn) are within the error
bars of ρ(Sn), without parity asymmetry. The inclusion of
parity asymmetry on 64Ni results in a value ρζ (Sn) which
is ≈11% higher than the value of ρ(Sn), for which the
systematic uncertainty is ≈34%. Therefore, the estimated
ρ(Sn) = 2620(890) MeV−1 using σ = 3.52 and assuming
parity symmetry can be considered our lower limit for the
level density at Ex = Sn, while the value with σ = 4.05 and
ζ � 0.1, ρζ = 3850(1310) MeV−1, can be considered our
estimated upper limit. Again, see Ref. [10] for more details
on the systematic errors of the normalization procedure.

B. γ -strength function

In previous works where the Oslo method was applied,
the normalization of the γ -strength function was often done
by using the relationship between the average, total radiative
width at Sn, 〈�γ,0〉, and the γ -transmission coefficient, T (Eγ ),
where the values of 〈�γ,0〉 can be obtained from s-wave neutron
resonances [39].

In our case, no experimental value for the 〈�γ,0〉 parameter
was available for 64Ni. The determination of this parameter
from systematics of other Ni isotopes was difficult, because
the tabulated values for 〈�γ,0〉 had very large uncertainties (up
to 50% in some cases) [41]. Moreover, in the mass region
considered in this work, big differences in the 〈�γ,0〉 values
are often seen between isotopes of similar mass. Therefore, to
normalize the γ -strength function of 64Ni, photoneutron cross-
section measurements were used to extract the γ -strength
function of 60Ni [51] and 66Zn [52] at the giant dipole
resonance (GDR) via the relationship

f (Eγ ) = 1

3π2�2c2

σ (Eγ )

Eγ

, (18)

where σ (Eγ ) is the photoneutron cross section, while the
factor (3π2

�
2c2)−1 = 8.674 × 10−8 mb−1 MeV−2 gives the

conversion to units of MeV−3 [39].
The GDR data were then used to estimate the E1 γ strength

in 64Ni associated with the low-energy tail of the GDR. This
estimation was possible because the GDR strength has been
seen to vary slowly within isotopes and neighboring nuclei
given that the nuclear deformation is similar. This is reflected
in the Thomas-Reiche-Kuhn (TRK) sum rule, which relates the
energy-weighted E1 summed strength to the atomic and mass
numbers of the nucleus [53]. The application of the TRK sum
rule gives values of 896, 945, and 988 mb MeV for 60Ni, 64Ni,
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and 66Zn, respectively, indicating that the summed E1 strength
for 64Ni should be somewhere in between the estimates for 60Ni
and 66Zn, closer to 66Zn. These nuclei should have a similar
deformation [38] and it is therefore reasonable to believe that
the low-energy tail of the GDR for 64Ni should be, at least to
a great extent, very similar to that for 60Ni and 66Zn.

The experimental data on 60Ni and 66Zn were used to obtain
an estimate of the GDR parameters and their uncertainties
within a generalized Lorentzian (GLO) model [39]. For this
estimation both data sets were used, with more weight on the
66Zn data for the reasons discussed above. The GLO model
expresses the E1 GDR strength f GLO

E1 as

f GLO
E1 (Eγ ) = σE1�E1

3π2�2c2

[
Eγ �K(

E2
γ − E2

E1

)2 + E2
γ �2

K

+ 0.7
�K,0

E3
E1

]
,

(19)

where σE1, EE1, and �E1 are the peak cross section, energy
centroid, and resonance width parameters, respectively. Here,
�K is a function of the γ energy Eγ and the nuclear temperature
parameter Tf given by

�K (Eγ ,Tf ) = �E1

E2
E1

(
E2

γ + 4π2T 2
f

)
, (20)

where the value of �K (0,Tf ) is expressed as �K,0 in Eq. (19).
For deformed nuclei, the GDR strength is defined as the sum
of two components, each of them given by Eq. (19). Therefore,
the GDR parameters that needed to be determined were Tf ,
EE1,i , �E1,i , and σE1,i , where i = 1,2 indicates whether the
oscillation is parallel or perpendicular to the main symmetry
axis. From the resulting estimates of the GDR strength in
64Ni, the absolute normalization for the γ -strength function
was obtained. Taking into account the uncertainties in the GDR
parameters, upper and lower limits for the γ -strength function
could be estimated.

Figure 3 shows the γ -strength function of 64Ni obtained in
this work (black squares), together with the estimated lower
and upper limits (solid green lines). In addition, the 60Ni and
66Zn GDR data used for normalization have been included.
The estimated GDR strength for 64Ni within a GLO model
(blue line) is depicted for the 64Ni data shown as black squares.
Data on the GDR of 68Ni [54] has also been included in Fig. 3,
showing a good agreement with the upper limit for the γ -
strength function of 64Ni.

As seen from Fig. 3, the experimental data on 64Ni suggest
the presence of additional strength compared to the tail of
the GDR. In particular, the results indicate a low-energy
enhancement below 3 MeV (upbend), which can be reproduced
if an additional term f upb is included in the strength:

f upb = 1

3π2�2c2
CE−η

γ . (21)

In addition, depending on the normalization of the γ
strength, the data suggest an enhancement with respect to the
GLO strength that can be described with a resonancelike term
centered at Eγ ≈ 9.2 MeV. This is the case for the 64Ni data
depicted as black squares in Fig. 3, which cannot be reproduced
solely with the GLO and upbend terms. To account for this
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FIG. 3. The γ -ray-strength function of 64Ni (black squares),
together with its upper and lower limits (solid green lines). The
GDR datasets for 60Ni [51] and 66Zn [52] used for normalization
are also shown. The estimated GDR strength for the 64Ni data
has been included, together with the models used to reproduce the
resonancelike structures. The estimated total strength for the 64Ni
data is depicted as a red dashed line. Data on the GDR for 68Ni are
also shown [54].

possible resonance, a standard Lorentzian curve (SLO) [39]
was fitted to the experimental data and a term f SLO was added
to the estimated GDR strength,

f SLO(Eγ ) = 1

3π2�2c2

σSLOEγ �2
SLO(

E2
γ − E2

SLO

)2 + E2
γ �2

SLO

, (22)

where σSLO, ESLO, and �SLO are the peak cross section, energy
centroid, and resonance width parameters for the SLO.

The set of parameters σSLO, ESLO, �SLO in Eq. (22) and
C and η in Eq. (21) were then obtained from the fitting
to the 64Ni data. The resulting total γ strength, f total =
f GLO

E1 + f SLO + f upb for the 64Ni data is shown as a red dashed
line in Fig. 3. Several fittings were performed for different
normalizations of the γ strength of 64Ni, allowing for the
estimation of the uncertainties in the γ -strength parameters.
The estimated f SLO term is the minimum required to reproduce
our data above Eγ ≈ 7 MeV, to obtain a conservative estimate
of the additional γ strength with respect to the GLO term.
It must be noted that the inclusion of a SLO centered at
Eγ ≈ 9.2 MeV is also necessary to reproduce the estimated
upper limit for the 64Ni γ strength, while the estimated lower
limit can be reproduced without adding a SLO.

The parameters in f total were obtained for γ -strength func-
tions corresponding to the level densities from normalizations
1 and 2, described in Sec. III A. The resulting γ -strength
function from normalization 2 was very similar and within
the error bars of the γ strength from normalization 1 and it has
therefore not been included on Fig. 3. The final parameters for
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TABLE IV. Parameters used for the γ -strength function models of 64Ni.

EE1,1 σE1,1 �E1,1 EE1,2 σE1,2 �E1,2 Tf ESLO σSLO �SLO C η

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (MeV) (MeV−3) (MeV−1)

16.6 ± 0.8 62.4 ± 20.0 4.8 ± 2.0 19.0 ± 0.9 31.2 ± 10.0 6.6 ± 2.6 1.20 ± 0.50 9.2 4.8 ± 4.8 2.7 ± 0.5 1.0 ± 0.7 2.8 ± 0.4

the γ -strength function from normalization 1 are summarized
in Table IV. The parameters for normalization 2 are close in
value to those for normalization 1 and well contained within
their estimated uncertainties. Therefore, from now on the
discussion will be based on the results from normalization 1.

IV. COMPARISON WITH OTHER DATA AND
CALCULATION OF THE 63Ni(n,γ ) CROSS SECTION AND

REACTION RATE

The extracted nuclear level density from Sec. III was
compared to the data deduced from particle-evaporation mea-
surements at Ex > 5.5 MeV [55]. The comparison, presented
in Fig. 4, shows a good agreement between the results from the
present work and the data from Ref. [55] in the overlapping
region. Moreover, the estimated temperature parameter from
this work T = 1.13(13) MeV is in good agreement with the
value from Ref. [55], TRef. = 1.163 MeV. In addition, the
extracted level density presents some steplike structures at
Ex � 3.6 MeV, Ex � 5.8 MeV, and Ex � 6.7 MeV, which
could be related to the breaking of nucleon pairs and/or shell
effects. As the excitation energy increases and more nucleon
pairs are broken, the structures are “smeared out” and the level
density becomes smoother, as seen in the data from Ref. [55]
at Ex > 8.5 MeV.
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FIG. 4. Experimental nuclear level density for 64Ni from the
present work (as obtained in normalization 1) compared to the level
density from Ref. [55].

Regarding the γ -strength function, the first clear observa-
tion is the presence of additional strength with respect to the
tail of the GDR strength. Unfortunately, whether this strength
is of E1 or M1 character could not be determined in the present
work. The most obvious component of this additional strength
is the observed low-energy enhancement which is comparable
to the upbend seen in other light and medium-mass nuclei.
Figure 5 shows the comparison of the results for 64Ni with those
for 56Fe [13], 76Ge [56], and 94Mo [12]. The observed upbend
in 64Ni is similar to the one seen in 56Fe, while the γ -strength
function of 76Ge and 94Mo look different from the results
for 64Ni and more similar to each other. In the case of 60Ni,
the results from Ref. [21] strongly indicate that the upbend
is mainly attributable to M1 transitions. However, 60Ni is a
special case with only positive-parity states below excitation
energies of �4.5 MeV, contributing to the enhancement of
M1 transitions. For the present work, in contrast, even though
64Ni has only positive-parity states below Ex � 3 MeV, the
initial states in the decay chosen for the Oslo method are
at Ex � 5.82–9.66 MeV. At these excitation energies, both
positive- and negative-parity states are present. Therefore, both
E1 and M1 transitions could, in principle, be contributing to
the observed low-energy enhancement in 64Ni.
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FIG. 5. The γ -strength function of 64Ni obtained in the present
work compared to the γ strength of 56Fe [13], 76Ge [56], and 94Mo
[12]. All these nuclei present a low-energy enhancement or upbend
in the γ -strength function. In addition, the upper and lower limits for
the γ -strength function estimated in this work have been depicted as
green solid lines.
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In addition, the data indicate the presence of additional
strength with respect to the GDR which can be reproduced by
the inclusion of a SLO centered at Eγ � 9.2 MeV. Although
the lower limit for the γ -strength function can be reproduced
without such a structure, its inclusion is necessary to reproduce
our estimated γ strength (black squares in Figs. 3 and 5) as well
as the upper limit. If a resonance was truly present at Eγ �
9.2 MeV, it would be of great interest to determine whether it
is of E1 or M1 character. If found to be of E1 character, it
would very probably be the result of a pygmy resonance, often
described as owing to the oscillation of the neutron skin with
respect to a N ≈ Z core [57,58]. If so, the measured resonance
would be in agreement with the observations for 68Ni, which
also presents an E1 pygmy resonance at Eγ � 9.6 MeV that
has been interpreted as a possible neutron-skin oscillation
[54,59]. However, this possible resonance at Eγ � 9.2 MeV
could as well be of M1 character, being in that case probably
owing to M1 spin-flip transitions. This would be in agreement
with the results for 60Ni, which indicate accumulations of
M1 excited spin-1 states near Ex = 8 MeV and Ex = 9 MeV,
identified as isoscalar and isovector M1 resonances dominated
by proton and neutron f7/2 −→ f5/2 spin-flip excitations
[60]. In addition, results from Ref. [61] also indicate the
presence of resonances with a significant M1 component at
Eγ ≈ 9–14 MeV in 58,60,62Ni. Finally, for the case of 64Ni,
with mass in between 58,60,62Ni and 68Ni, one should also
consider the possibility that the observed additional strength
might not be solely of E1 or M1 nature, but a mixture of both.

As a final remark regarding the γ -strength function, the
presence of a sharp structure at Eγ ≈ 3 MeV is noted. This
structure most likely has its origin in leftover secondary
transitions present in the first-generation matrix, which are
seen as a ridge centered at Eγ ≈ 3 MeV in Fig. 1(c). However,
it has no impact on the overall shape of the γ -strength function.

The normalized nuclear level density and γ -strength func-
tion of 64Ni have been used to calculate the 63Ni(n,γ )64Ni
cross section and reaction rate with the code TALYS [31] for
simulation of nuclear reactions. The resulting cross section,
depicted in Fig. 6, has been compared with measurements
from Refs. [28,29]. The figure also shows the estimated upper
and lower limits for the cross section when the uncertainties
in the γ -strength function and the nuclear level density are
included. The highest contribution to the uncertainty in the
obtained cross section is attributable to the high uncertainty in
the absolute normalization of the γ -strength function, while
other systematic errors, such as those related to the parity
asymmetry or the model for the spin cutoff parameter have
a much smaller effect. The parameters applied in the TALYS

calculations are listed in Table V. Notice that the lower limit
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FIG. 6. The 63Ni(n,γ )64Ni cross section from Refs. [29] and [28]
compared to the one calculated with TALYS using the level density and
γ -strength function obtained in this work. The lower and upper limits
for the estimated cross section associated with the systematic errors
are depicted as solid lines. For the cases in which the 64Ni γ strength
presents a resonancelike structure at Eγ ≈ 9.2 MeV, the calculations
have been performed assuming a resonance of purely M1 character
(black) and purely E1 character (red).

for the cross section corresponds to the lower limit for the
γ -strength function of 64Ni, reproduced without the inclusion
of a resonance at Eγ ≈ 9.2 MeV. In contrast, the expected and
upper limits for the cross section correspond to the presence
of a resonancelike structure centered at Eγ ≈ 9.2 MeV. The
TALYS calculations for these cases have been performed con-
sidering the additional strength at Eγ ≈ 9.2 MeV to be purely
of M1 character (black) and purely of E1 character (red).

As seen in Fig. 6, the results from this work are in excellent
agreement with those of Ref. [29]. A good agreement is
also seen with the data from Ref. [28]. Below ≈10 keV the
data from Ref. [28] indicate the presence of strong neutron
resonances, which cannot easily be reproduced with TALYS

simulations based on the Hauser-Feshbach approach [31,62].
The cross sections obtained when additional E1 strength at
Eγ ≈ 9.2 MeV is included are higher than those resulting
from the inclusion of purely M1 strength, leading to a better
agreement with the results from Ref. [29].

TABLE V. Parameters used for the input models in the TALYS calculations. The spin distribution is given by the BSFG model in all cases.

ρ(Sn) T E0 EE1,1 σE1,1 �E1,1 EE1,2 σE1,2 �E1,2 Tf ESLO σSLO �SLO C η

(MeV−1) (MeV) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (MeV) (MeV−3) (MeV−1)

Middle value 2620 1.13 0.63 16.6 62.4 4.8 19.0 31.2 6.6 1.20 9.2 4.8 2.7 1.0 2.8
Lower limit 1730 1.2 0.49 16.6 57.4 5.3 19.0 28.2 7.0 0.94 – – – 0.6 2.9
Upper limit 3510 1.1 1.50 16.6 66.4 4.2 19.0 34.0 6.4 1.62 9.2 7.8 2.7 1.3 2.5
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FIG. 7. MACS obtained with TALYS using the level density and
γ -strength function from this work. The results are presented as a
function of KBT , where T is the temperature and KB is the Boltzmann
constant. Theoretical values from Ref. [63] and estimates based on
measurements from Ref. [30] and [28] are included for comparison.
The lower and upper limits estimated in this work are depicted as
solid lines. For the cases in which the 64Ni γ strength presents a
resonancelike structure at Eγ ≈ 9.2 MeV, the calculations have been
performed assuming a resonance of purely M1 character (black) and
purely E1 character (red).

The TALYS calculations presented in this work correspond
to normalization 1 of the nuclear level density, described in
Sec. III A and results for the γ -strength function shown in
Figs. 3 and 5. The applied spin distribution is therefore given
by the BSFG model in all cases. The calculations were tested
for normalization 2 of the nuclear level density and found to
be within the estimates for normalization 1.

The Maxwellian averaged cross section (MACS) has also
been obtained with TALYS and compared with theoretical calcu-
lations from Ref. [63] and estimates based on measurements
from Refs. [30] and [28]. As seen in Fig. 7, the theoretical
values from Ref. [63] are in agreement with the lower limit
obtained in this work, while the results from Ref. [30] are in
very good agreement with our expected values. The results
from Ref. [28] are well contained within the upper half of our
error band, showing a better agreement with our estimates
for the case in which the possible additional strength at
Eγ ≈ 9.2 MeV is considered of E1 character.

Finally, Fig. 8 shows the 63Ni(n,γ )64Ni reaction rates
obtained in this work together with the theoretical predictions
from Ref. [63] and the estimates based on measurements from
Ref. [28]. An uncertainty of 25% has been included in the
values from Ref. [63] based on their standard uncertainties for
the MACS, while a value of 15% uncertainty has been included
in the data from Ref. [28], based on their uncertainties for the
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FIG. 8. The 63Ni(n,γ )64Ni reaction rate obtained with TALYS as
a function of temperature T , where KB is the Boltzmann constant.
The results from this work have been compared to theoretical values
from Ref. [63] and estimates based on measurements from Ref. [28].
The lower and upper limits from this work are depicted as solid lines.
For the cases in which the 64Ni γ strength presents a resonancelike
structure at Eγ ≈ 9.2 MeV, the calculations have been performed
assuming a resonance of purely M1 character (black) and purely E1
character (red).

(n,γ ) cross section and MACS. The estimates from this work
are higher than those from Ref. [63] by a factor of ≈2–3,
although the lower limit for our result agrees with those from
Ref. [63]. The more recent results from Ref. [28] are again
well contained within the upper half of our estimated error
band, with a better agreement for the calculations in which
the possible resonance at Eγ ≈ 9.2 MeV is considered of E1
character. Assuming M1 character for the possible resonance,
lower rates are obtained, the difference being more obvious at
energies below ≈30 keV.

V. SUMMARY AND OUTLOOK

The level density and γ -ray-strength function of 64Ni have
been extracted from particle-γ coincidence measurements
by means of the Oslo method. The normalization procedure
has been applied using two different spin cutoff parameters,
leading to similar results that are within each other’s systematic
uncertainties. The effect of parity asymmetry has also been
estimated and found to be of less significance with respect
to the systematic errors associated with the normalization
procedure. The level density of 64Ni is in good agreement with
the known levels at low excitation energy as well as with data
deduced from particle-evaporation measurements at excitation
energies above ≈5.5 MeV. In addition, some steplike structures
are seen in the level density, which could be related to the
breaking of nucleon pairs and shell effects.
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The γ -strength function displays additional strength with
respect to the tail of the GDR given by the GLO model. The
data clearly suggest the presence of an enhancement of the
γ strength below 3 MeV. This enhancement or upbend has
also been seen in 60Ni from two-step cascade measurements,
with strong indications of being mainly attributable to M1
transitions. In addition, a resonancelike structure might be
present at Eγ ≈ 9.2 MeV. If such a resonance was present, it
could correspond to spin-flip transitions if found to be mainly
of M1 character. However, if found to be mostly of E1 nature,
it could be a pygmy dipole resonance. Future experiments
to determine the electromagnetic character of the observed
upbend and possible resonance in 64Ni are therefore highly
desirable.

Finally, the extracted nuclear level density and γ strength
of 64Ni have been used as input for the code TALYS to estimate
the 63Ni(n,γ )64Ni cross section and reaction rate. The results

from the present work are in good agreement with available
measurements as well as with the theoretical predictions from
other references.
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[27] F. Käppeler, R. Gallino, S. Bisterzo, and W. Aoki, Rev. Mod.

Phys. 83, 157 (2011).
[28] M. Weigand, T. A. Bredeweg, A. Couture, K. Gobel, T. Heftrich,

M. Jandel, F. Kappeler, C. Lederer, N. Kivel, G. Korschinek, M.
Krticka, J. M. O’Donnell, J. Ostermoller, R. Plag, R. Reifarth,
D. Schumann, J. L. Ullmann, and A. Wallner, Phys. Rev. C 92,
045810 (2015).

044321-10

https://doi.org/10.1016/0029-5582(59)90291-3
https://doi.org/10.1016/0029-5582(59)90291-3
https://doi.org/10.1016/0029-5582(59)90291-3
https://doi.org/10.1016/0029-5582(59)90291-3
https://doi.org/10.1016/0029-5582(58)90156-1
https://doi.org/10.1016/0029-5582(58)90156-1
https://doi.org/10.1016/0029-5582(58)90156-1
https://doi.org/10.1016/0029-5582(58)90156-1
https://doi.org/10.1016/0029-5582(58)90355-9
https://doi.org/10.1016/0029-5582(58)90355-9
https://doi.org/10.1016/0029-5582(58)90355-9
https://doi.org/10.1103/PhysRevLett.83.3150
https://doi.org/10.1103/PhysRevLett.83.3150
https://doi.org/10.1103/PhysRevLett.83.3150
https://doi.org/10.1103/PhysRevLett.83.3150
https://doi.org/10.1103/RevModPhys.47.713
https://doi.org/10.1103/RevModPhys.47.713
https://doi.org/10.1103/RevModPhys.47.713
https://doi.org/10.1103/RevModPhys.47.713
https://doi.org/10.1016/j.ppnp.2013.02.003
https://doi.org/10.1016/j.ppnp.2013.02.003
https://doi.org/10.1016/j.ppnp.2013.02.003
https://doi.org/10.1016/j.ppnp.2013.02.003
https://doi.org/10.1016/0168-9002(96)00197-0
https://doi.org/10.1016/0168-9002(96)00197-0
https://doi.org/10.1016/0168-9002(96)00197-0
https://doi.org/10.1016/0168-9002(96)00197-0
https://doi.org/10.1016/0168-9002(87)91221-6
https://doi.org/10.1016/0168-9002(87)91221-6
https://doi.org/10.1016/0168-9002(87)91221-6
https://doi.org/10.1016/0168-9002(87)91221-6
https://doi.org/10.1016/S0168-9002(99)01187-0
https://doi.org/10.1016/S0168-9002(99)01187-0
https://doi.org/10.1016/S0168-9002(99)01187-0
https://doi.org/10.1016/S0168-9002(99)01187-0
https://doi.org/10.1103/PhysRevC.83.034315
https://doi.org/10.1103/PhysRevC.83.034315
https://doi.org/10.1103/PhysRevC.83.034315
https://doi.org/10.1103/PhysRevC.83.034315
https://doi.org/10.1103/PhysRevLett.93.142504
https://doi.org/10.1103/PhysRevLett.93.142504
https://doi.org/10.1103/PhysRevLett.93.142504
https://doi.org/10.1103/PhysRevLett.93.142504
https://doi.org/10.1103/PhysRevC.71.044307
https://doi.org/10.1103/PhysRevC.71.044307
https://doi.org/10.1103/PhysRevC.71.044307
https://doi.org/10.1103/PhysRevC.71.044307
https://doi.org/10.1103/PhysRevLett.111.242504
https://doi.org/10.1103/PhysRevLett.111.242504
https://doi.org/10.1103/PhysRevLett.111.242504
https://doi.org/10.1103/PhysRevLett.111.242504
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.76.044303
https://doi.org/10.1103/PhysRevC.76.044303
https://doi.org/10.1103/PhysRevC.76.044303
https://doi.org/10.1103/PhysRevC.76.044303
https://doi.org/10.1103/PhysRevC.85.064328
https://doi.org/10.1103/PhysRevC.85.064328
https://doi.org/10.1103/PhysRevC.85.064328
https://doi.org/10.1103/PhysRevC.85.064328
https://doi.org/10.1103/PhysRevC.73.064301
https://doi.org/10.1103/PhysRevC.73.064301
https://doi.org/10.1103/PhysRevC.73.064301
https://doi.org/10.1103/PhysRevC.73.064301
https://doi.org/10.1016/j.physletb.2015.03.065
https://doi.org/10.1016/j.physletb.2015.03.065
https://doi.org/10.1016/j.physletb.2015.03.065
https://doi.org/10.1016/j.physletb.2015.03.065
https://doi.org/10.1103/PhysRevC.93.034303
https://doi.org/10.1103/PhysRevC.93.034303
https://doi.org/10.1103/PhysRevC.93.034303
https://doi.org/10.1103/PhysRevC.93.034303
https://doi.org/10.1103/PhysRevLett.108.162503
https://doi.org/10.1103/PhysRevLett.108.162503
https://doi.org/10.1103/PhysRevLett.108.162503
https://doi.org/10.1103/PhysRevLett.108.162503
https://doi.org/10.1103/PhysRevC.81.024319
https://doi.org/10.1103/PhysRevC.81.024319
https://doi.org/10.1103/PhysRevC.81.024319
https://doi.org/10.1103/PhysRevC.81.024319
https://doi.org/10.1103/PhysRevC.88.031302
https://doi.org/10.1103/PhysRevC.88.031302
https://doi.org/10.1103/PhysRevC.88.031302
https://doi.org/10.1103/PhysRevC.88.031302
https://doi.org/10.1103/PhysRevLett.111.232504
https://doi.org/10.1103/PhysRevLett.111.232504
https://doi.org/10.1103/PhysRevLett.111.232504
https://doi.org/10.1103/PhysRevLett.111.232504
https://doi.org/10.1103/PhysRevLett.113.252502
https://doi.org/10.1103/PhysRevLett.113.252502
https://doi.org/10.1103/PhysRevLett.113.252502
https://doi.org/10.1103/PhysRevLett.113.252502
https://doi.org/10.1103/PhysRevC.82.014318
https://doi.org/10.1103/PhysRevC.82.014318
https://doi.org/10.1103/PhysRevC.82.014318
https://doi.org/10.1103/PhysRevC.82.014318
https://doi.org/10.1103/PhysRevC.86.034328
https://doi.org/10.1103/PhysRevC.86.034328
https://doi.org/10.1103/PhysRevC.86.034328
https://doi.org/10.1103/PhysRevC.86.034328
https://doi.org/10.1103/RevModPhys.83.157
https://doi.org/10.1103/RevModPhys.83.157
https://doi.org/10.1103/RevModPhys.83.157
https://doi.org/10.1103/RevModPhys.83.157
https://doi.org/10.1103/PhysRevC.92.045810
https://doi.org/10.1103/PhysRevC.92.045810
https://doi.org/10.1103/PhysRevC.92.045810
https://doi.org/10.1103/PhysRevC.92.045810


STATISTICAL γ -DECAY PROPERTIES OF . . . PHYSICAL REVIEW C 94, 044321 (2016)

[29] C. Lederer et al., Phys. Rev. C 89, 025810 (2014).
[30] C. Lederer et al., Phys. Rev. Lett. 110, 022501 (2013).
[31] A. J. Koning, S. Hilaire, and M. C. Duijvestijn,

TALYS-1.6, software for simulation of nuclear reactions,
http://www.talys.eu/home/; TALYS-1.0, Proceedings of the In-
ternational Conference on Nuclear Data for Science and
Technology-ND2007, April 22–27, 2007, Nice, France, edited
by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S.
Leray (EDP Sciences, Les Ulis, France, 2008), pp. 211–214;
A. J. Koning and D. Rochman, Nucl. Data Sheets 113, 2841
(2012).

[32] M. Guttormsen, A. Bürger, T. E. Hansen, and N. Lietaer,
Nucl. Instrum. Methods Phys. Res. A 648, 168
(2011).
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