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ASYMPTOTIC DELSARTE CLIQUES IN DISTANCE-REGULAR
GRAPHS

LASZLO BABAI AND JOHN WILMES

ABSTRACT. We give a new bound on the parameter A\ (number of common
neighbors of a pair of adjacent vertices) in a distance-regular graph G, improv-
ing and generalizing bounds for strongly regular graphs by Spielman (1996)
and Pyber (2014). The new bound is one of the ingredients of recent progress
on the complexity of testing isomorphism of strongly regular graphs (Babali,
Chen, Sun, Teng, Wilmes 2013). The proof is based on a clique geometry
found by Metsch (1991) under certain constraints on the parameters. We also
give a simplified proof of the following asymptotic consequence of Metsch’s
result: if ku = o(A\?) then each edge of G belongs to a unique maximal clique
of size asymptotically equal to A, and all other cliques have size o(\). Here
k denotes the degree and p the number of common neighbors of a pair of
vertices at distance 2. We point out that Metsch’s cliques are “asymptoti-
cally Delsarte” when ku = o(\2), so families of distance-regular graphs with
parameters satisfying ku = o(A\?) are “asymptotically Delsarte-geometric.”

1. INTRODUCTION

A graph is called amply regular with parameters (n, k, A, ) if it is k-regular on n
vertices, any two adjacent vertices have exactly A common neighbors, and any two
vertices at distance two from each other have exactly ;1 common neighbors. Amply
regular graphs have been well-studied, as they generalize distance-regular graphs
while preserving many of their properties [6l Section 1.1]. Our first result gives a
new bound on .

In fact, our bound applies more generally to “sub-amply regular” graphs. We
say a graph is sub-amply regular when it satisfies the weaker condition that any
two vertices at distance two from each other have at most y common neighbors.

Theorem 1.1. Let G be a sub-amply regular graph with parameters (n,k, A, )
which is not a disjoint union of cliques. Then

6
1 A+ 1 < max<q4v2n, —/k —1}.
o {avan = VR
Even in the very special case of strongly regular graphs, this result considerably
improves the previously known bounds for A (Spielman [16] and Pyber [15]) in
some ranges of the parameters. (See Sec. ) for a detailed comparison.) The new
bound was used in [2] to improve Spielman’s exp(O(n'/?)) bound on the complexity

of testing isomorphism of strongly regular graphs to exp(O(n'/%)) where the O
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notation hides polylogarithmic ((logn)®) factors. This application was the key
motivation of the present paper (see Sec. [G]).

1.1. Clique geometry. We say that a collection C of cliques of a graph is a clique
geometry if (i) all cliques in C are maximal and (ii) every pair of adjacent vertices
of GG belongs to a unique member of C. We shall refer to the members of C as special
cliques.

Our result relies on the remarkable clique geometry appearing in sub-amply reg-
ular graphs under certain constraints on the parameters, discovered by Metsch [12]
(Theorem [[2]). We observe in particular that Metsch’s constraints are met when
ku/A? is small; furthermore, in this case, the special cliques have nearly uniform
order. (The order of a clique is the number of its vertices.)

Sub-amply regular graphs G with g < 1 trivially have a (unique) clique geometry.
When i = 0, G is a disjoint union of cliques of order A+ 2 =1+ k. When y =1,
the common neighbors of two adjacent vertices form a clique. When p = 2 and
k < (1/2)A(A+3), Brouwer and Neumaier showed that again the common neighbors
of any pair of adjacent vertices form a clique [7]. In such graphs, every edge lies in a
unique maximal clique, and every maximal clique has order exactly A+ 2. A clique
geometry exists under much more general conditions, as proved by Metsch [12].

Theorem 1.2 (Metsch [I3] Result 2.1]). Let G be a sub-amply regular graph with
parameters (n,k,\, 1), and let t be an integer such that

A>(2t—1)(u—1)—1, and
k< (t+ 1) +1)— %t(H—l)(u—l).

Then the mazimal cliques of order at least A+ 2 — (t — 1)(u — 1) form a clique
geometry, and each verter belongs to at most t special cliques.

Remark 1.3. We note that special cliques of Theorem [[.2] can be easily recognized
by the degree of the vertices in the common neighborhood of a pair of adjacent
vertices. In particular, if v and v are two adjacent vertices of GG, then a common
neighbor w of u and v lies in the special clique containing u and v iff in the subgraph
of G induced on the common neighborhood of u and v, the degree of w is at least
A—(t—1)(p—1)—1.

Corollary 1.4. Let G be a sub-amply regular graph with parameters (n,k, A, )
such that

(2) A+1)2> Bk +A+1)(u—1).
Then the mazimal cliques of order at least X +2 — ([(3/2)k/(A+1)] — 1)(n — 1)

form a clique geometry.

The corollary is obtained from Theorem [[.2] by setting t = [3k/(2(A+1))]. O

The starting point of our work was Spielman’s 1996 paper [16] in which he de-
rived asymptotic consequences of Neumaier’s 1979 classification of strongly regular
graphs [I4], including a bound on the parameter A\. Our bound () applies more
generally to sub-amply regular graphs (and hence does not require Neumaier’s clas-
sification), and improves Spielman’s bound for k > n®/8.

We prove the bound () in Section2l In Section[5] we compare Spielman’s bound
and Pyber’s bound to our own. Then, in Section [6] we explain the connection to
graph isomorphism testing in some detail.
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The asymptotic viewpoint makes the results considerably more transparent. In
Section [3] we give a short self-contained proof of Theorem (below), an asymp-
totic corollary to Metsch’s theorem.

To interpret asymptotic statements such as “Let G be an amply regular graph
with ku = o(\?),” we think of our graph G as belonging to some infinite family
for which the asymptotic relation holds. All hidden constants are absolute, and all
limits are uniform as the number of vertices n — co. We use common notation for
asymptotic relations, including writing f ~ ¢ (asymptotic equality) for functions
f and g for which lim, ,(f(n)/g(n)) = 1. We write f(n) = g(n) if f(n) ~
max{ f(n), g(n)}.

Theorem 1.5. Let G be a sub-amply regular graph with parameters (n,k, A, )
such that kp = o(\?). Then (for n sufficiently large) every pair of adjacent vertices
belongs to a unique mazximal clique of order ~ A, and all other mazimal cliques in
G have order o(\).

So the large maximal cliques form a clique geometry.

The key lemma used in the proof, Lemma [3.2] is used in the recent character-
ization of primitive coherent configurations with more than exp(n'/3+¢) automor-
phisms by Sun and Wilmes [17].

1.2. Asymptotic Delsarte geometry. Let s denote the least eigenvalue of (the
adjacency matrix of) the graph G (so s < 0). The following bound on the order of
cliques in distance-regular graphs was established by Delsarte.

Lemma 1.6 (Delsarte [8]). If G is a distance-regular graph then no clique in G
has order greater than 1+ k/|s|.

Any clique achieving this order is called a Delsarte clique [9].

We call a graph G Delsarte-geometric if G is distance-regular and it has a clique
geometry in which all special cliques are Delsarte. This concept was introduced by
Godsil [I0] who called such graphs “geometric.” Johnson and Hamming graphs are
examples of Delsarte-geometric graphs.

Godsil [10] gave the following sufficient condition for a distance-regular graph to
be Delsarte-geometric.

An m-claw in a graph is an induced K ,, subgraph.

Theorem 1.7 (Godsil [I0]). Let G be a distance-regular graph with least eigenvalue
s. If there are no m-claws in G with m > |s| and

(3) A+ 1> (2fs]=1D(p-1)
then G is Delsarte-geometric.

It would seem desirable to replace the structural assumption (bound on claw
size) in Godsil’s theorem by a reasonable assumption involving the parameters of
the graph only since this would allow broader applicability of the result. Bang
and Koolen make a step in this direction, removing the structural assumption but
strengthening the constraint on the parameters.

Theorem 1.8 (Bang, Koolen [11]). If A > |s|?u for a distance-reqular graph G
with least eigenvalue s then G is Delsarte-geometric.
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Note that for large |s|, the Bang—Koolen constraint s?; < ) requires essentially
a factor of |s|/2 larger A than does Godsil’s constraint (B which for large |s| and p
requires 2|s|pu < A

We point out that already an increase by a factor that goes to infinity arbitrar-
ily slowly compared to Godsil’s contraint, |s|uz = o()\), suffices for an asymptotic
Delsarte geometry, i.e., a clique geometry where the order of the special cliques is

Theorem 1.9. Let G be a distance-reqular graph satisfying |s|p = o(N\). Then G
is asymptotically Delsarte-geometric.

Theorem is proved in Section Ml

Acknowledgements. The authors wish to acknowledge the inspiration from their
joint work with Xi Chen, Xiaorui Sun, and Shang-Hua Teng on the isomorphism
problem for strongly regular graphs.

2. BOUNDING A IN SUB-AMPLY REGULAR GRAPHS

In this section, we derive our bound on A (Theorem [LL1]) from Corollary [[.4

Lemma 2.1. Let C be a geometric collection of cliques in a graph G on n vertices
such that every vertezr is in at least 7 > 2 and at most R cliques, and each clique
has order at least £. Then

R
(< ———/n.
r(r—1)
Proof. Let m = |C| and let N be the number of vertex—clique incidences. Then

fm < N < nR. Let T be the number of triples (v, C1,C2) where Cy,Cs € C and
veCiNCy. Then T =), deg(v)(deg(v) —1) > nr(r —1) (where V is the set of
vertices). On the other hand, by the intersection assumption, 7' < m(m — 1) < m?.
Comparing,

2
nr(r—1) <m? < (nTZR) . O

Proof of Theorem [l Case 1. Suppose (3k + X+ 1)(u — 1) < (A + 1)2. Then
by Corollary [[L4] every edge lies in a special clique of order at least £ := X\ + 2 —
(3/2)k(p—1)/(A+1) > (1/2)(A+ 1). The number of special cliques containing a
given vertex is at most R := 2k/(A+1), and at least k/(A+1). Let r = [k/(A+1)].
Since G is not a disjoint union of cliques, A+ 1 < k, so r > 2. Applying Lemma [ZT]
gives £ < (R/+/r(r — 1))v/n < (R/r)v/2n. Hence, A + 1 < 4v/2n.

Case 2. Otherwise, (A +1)2 < (3k + A+ 1)(u — 1). Set § = (V13 —1)/6.

Case 2a. Suppose p— 1> (A +1). Then

(1) A+ 1< (1/8)(u— 1) < (1/8) /R = 1),
Case 2b. Otherwise, p — 1 < (A + 1), and we have
(1 =8N +1)? < 3k(u—1),

which is equivalent to Eq. (@) by our choice of §. The Theorem follows by combining
Eq. @) with Case 1. O
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3. PROOF OF CLIQUE STRUCTURE

We now give a simple proof of Theorem The core of the proof is the Clique
Partition Lemma below; the lemma is a consequence of Metsch’s [12, Theorem
1.2]. The simplification results from our use of the following lemma, implicit in
Spielman [16, Lemma 17].

If u is a vertex of a graph G, we write N(u) for the neighborhood of w, i.e., the
set of vertices adjacent to u, and write N (u) = N(u) U {u}.

Lemma 3.1 (Spielman). Let G be a graph on k vertices which is reqular of degree
A and such that any pair of nonadjacent vertices has at most y — 1 common neigh-
bors. Then for any vertex u, there are at most (k — A — 1)(p — 1) ordered pairs of
nonadjacent vertices in N(u).

Proof. Let X be the number of ordered pairs of nonadjacent vertices in N (u), and
let K be the number of ordered pairs of adjacent vertices in N(u), so K + X =
A(A—1). Let P be the number of ordered pairs (x,y) of vertices such that (u,z,y)
induces a path of length two (u and y are not adjacent, and x is adjacent to both).
For every neighbor x of u, and every neighbor y # u of x, the pair (z,y) is counted
in either K or P, so K + P = A(A—1) and so P = X. On the other hand, there
are k — A — 1 vertices not adjacent to u, each of which has at most ;4 — 1 common
neighbors with u, and so X = P < (k — A —1)(up — 1). O

Lemma 3.2 (Clique Partition Lemma (Metsch)). Let G be a graph on k vertices
which is regular of degree A and such that any pair of nonadjacent vertices has at
most 1 — 1 common neighbors. Suppose that ku = o(\?). Then there is a partition
of V(G) into mazimal cliques of order ~ X, and all other mazimal cliques of G
have order o(\).

Proof. Fix a vertex u and consider the induced subgraph H of G on N (u). Suppose
x and y are distinct non-adjacent vertices of H. They have at most ¢ — 1 common
neighbors in H, so there are at least A — p vertices in H \ {z,y} which are not
common neighbors of x and y. Hence, at least one of x and y has codegree at least
Kk:=(A—p)/2in H (i.e., degree at most A — k). Let D be the set of vertices in H
of codegree at least k, and let C = H \ D. It follows that C is a clique, and clearly
ueC.

Now by Lemma Bl |D|x < (k — A — 1)(n — 1) = 0o(\?), and so |D| = o()).
In particular, C' ~ A, and every element of D has at least one non-neighbor in C.
Hence, C is a maximal clique, and every element not in C, having at least one
non-neighbor in C, has at most p neighbors in C. Thus, any maximal clique which
contains u as well as a vertex not in C has order at most |D| + 1 = o()). O

Theorem then follows immediately by applying Lemma to the graphs
induced by G on N(u) for u e V. O

4. ASYMPTOTIC DELSARTE CLIQUES

We finally give a prove of Theorem

Suppose that G is distance-regular with intersection numbers b;, ¢;, where for
any pair u,v of vertices u at distance 7, the number of neighbors of u at distance
i+ 1 from v is b; and the number of neighbors of u at distance ¢ — 1 from v is ¢;
(cf. [6l Chap. 4.1]). (Note that every distance-regular graph is sub-amply regular
with parameters A = bg — b1 — 1 and g = ¢o.)
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Lemma 4.1. Let G be a distance-reqular graph with least eigenvalue s. Then
kE_ k

A4 - > —.
—|—)\>|S|

Proof. Let {ug,u1,...,uq} be the standard sequence of polynomials for G (see,
e.g., [0 Section 4.1B]). It is well known that ug(z) = 1, u1(z) = z/k, and

(5) cruo(x) + arur (z) + brus(x) = zug ()

(cf. eq. (13) in [6, Section 4.1B]). Furthermore, if 6; is the ith greatest eigenvalue
of G, then the sequence {ug(6;),u1(6;),...,uq(0;)} has exactly i sign changes [6]

Corollary 4.1.2]. In particular, the sequence {ug(s), u1(s),...,uq(s)} is alternating,
and so uz(s) > 0. Hence, from Eq. (),
k k2 k
A—s=—+ —ug(s) > —
—-s  —=s —s

So, if A < k/|s|, then A+k/A > A—s > k/|s|. Thus, in any case, A+k/\ > k/|s|. O

We note that Lemma [£1] is a slight improvement over Lemma 3.2 of [II] which
states A + |s| > k/|s|. The method of proof is virtually identical.

Proof of Theorem[.4. Since |s|u = o()), by Lemma [L.1] we have
k 2
ku < |s|u /\—i—X =o(\° + k).

We therefore have ku = 0(A\?), so by Theorem [[L5, G has a clique geometry C with
special cliques of order ~ A. By Lemma [[L6] we have A < 1+ k/|s|. But since
A 2 k/|s| by Lemma 1] it follows that k/|s| is unbounded and the special cliques
have order ~ k/|s|. O

5. BOUNDING THE PARAMETERS OF STRONGLY REGULAR GRAPHS

A strongly regular graph with parameters (n, k, A, u) is a k-regular graph on n
vertices such that any two adjacent vertices have exactly A common neighbors, and
any two distinct nonadjacent vertices have exactly u common neighbors. Hence,
strongly regular graphs are sub-amply regular, and indeed distance-regular if con-
nected. In the special case of strongly regular graphs, we derive from our bound on
A a bound on the nonprincipal positive eigenvalue r. We compare our bounds on A
and r to those of Spielman and of Pyber for strongly regular graphs.

Throughout this section, every strongly regular graph will have parameters
(n,k, A, u) and eigenvalues k > r > s.

5.1. Bound on r. We observe that a bound on A entails a corresponding bound
on 7.
We use the following standard observations (cf. [6l Ch. 1.3]).

Proposition 5.1. Let G be a strongly regular graph.
i) (n—k-—Du=k(k—X—-1)
(il)) —rs=k—pu
(iii) r+s=A—pu
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Corollary 5.2. Let G be a strongly reqular graph. Then

6
r < max< 4v2n, —/k(p —1 + Vk.
(4 VT
Proof. By Proposition 511 (ii), we have r < k/(—s), so if —s > V/k, the inequality
is immediate. Otherwise, —s < vk, and so the inequality follows from Proposi-
tion 511 (iii) and Theorem [I11 O

5.2. Spielman’s bounds for strongly regular graphs. We will state Neu-
maier’s classification of strongly regular graphs [14], along with its asymptotic con-
sequences to the parameters of strongly regular graphs, derived by Spielman [16].

A partial geometry X = (P, L) with parameters (R, K,«a), where R, K > 2,
is a geometric 1-design with parameters R, K with the property that for every
nonincident pair (p, ¢) € P x L, there are exactly « lines containing p that intersect
{. Examples of partial geometries include Steiner 2-designs, which are the partial
geometries with o = K, and transversal designs, which are the partial geometries
with « = K —1. The dual of a partial geometry (P, £) with parameters (R, K, «) is
the incidence structure (£,P). It is a partial geometry with parameters (K, R, «).
The line-graph of a partial geometry is the point-graph of its dual.

Every line-graph (or point-graph) of a partial geometry is strongly regular, and
the geometric strongly regular graphs are point-graphs (hence line-graphs) of partial
geometries. Other examples of strongly regular graphs include disjoint unions of
cliques of equal order and the complements of such graphs (we call these two types
trivial); and conference graphs, which have parameters (n, (n—1)/2, (n—>5)/4), (n—
1)/4). All strongly regular graphs with a non-integral eigenvalue are conference
graphs.

Theorem 5.3 (Neumaier [14]). Any strongly reqular graph G is one of the following
types: (i) trivial; (i1) the line-graph of a Steiner 2-design or the line-graph of a
transversal design; (iii) a conference graph; or (i) G satisfies the inequality

s(s+1D(p+1) 1}

(6) r§max{2(—s—1)(u+1+s)+s, 5

Inequality (@) is called the “claw bound.”
The following consequences of Neumaier’s classification are implicit in Spielman’s
paper on testing isomorphism of strongly regular graphs [16].

Theorem 5.4 (Spielman [16]). Let G be a nontrivial strongly regular graph satis-
fying inequality (@) (the claw bound). Then

(a) r < E*/3(pu+1)V/3;

(b) A < K2/ (u+ 1)1/%;
Assume furthermore that k = o(n). Then

(¢) A= o(k);

(d) p~FK/n.

Spielman explicitly states (c). For the reader’s convenience, we now give an

organized presentation of a proof of the full statement of Theorem 5.4

Proof of Theorem[5.] For any strongly regular graph, s < —1 (see, e.g., [6] Corol-
lary 3.5.4]). Therefore 2(—s — 1)(u+ 1+ s) + s < s%(u + 1), and so, assuming the
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claw bound, we have
(7) r<s2(p+1).
Combining this with k — 1 = —rs from Proposition 1] (ii) gives

k—p 2
r<{——) (u+1),
r
and hence, multiply both sides by 72 and taking the 1/3 power,
r< (k=) (p+ 1),
proving part (a) of the Theorem. But then combining the bound on r above with
Proposition [B.1] (iii) we have
A<r4p< kP (u+1)Y3,

proving part (b) of the Theorem.

Now if k = o(n), then p = o(k) from Proposition B] (i). Then A = o(k) from
part (b) of the Theorem, giving part (c¢). But then part (d) follows directly from
Proposition [B.1] (i). O

5.3. Comparison of bounds. In this section we will compare our bounds on A
and r to those of Spielman, as well as those of Pyber [15], which we now state.

Theorem 5.5 (Pyber). Let G be a nontrivial strongly reqular graph. Then
(a) r < n'/*kV/2;
(b) X < /412 4 p.

We summarize the combination of our bound on r with those of Spielman and
Pyber over the full range of possible degrees k. Let

' N3 12 1\ 3/2 1\ 1/2
g(n, k) = min (ﬁ) ) 373 Max (ﬁ) , (E) )

We assume k < (n — 1)/2 (otherwise we can take the complement of G). Using
the estimate u = O(k?/n) from Proposition[5.1] (i), the following is immediate from
Corollary 5.2l and Theorems [54] (a) and (a).

Theorem 5.6. Let G be a strongly regular graph with parameters (n,k, A\, u) and
eigenvalues k > r > s satisfying Eq. @) (the claw bound). Then

Z — 0(g(n, k)).

n

TABLE 1. Piecewise description of the function g(n, k) giving the
best known bounds on r/n

Value Parameter range Source
(k/n)*/3 k< nb/® Spielman [16]
n~1/2 nd/8 < k < n?/3 this paper
(k/n)3/%  n?3 <k <nd/M this paper

E1/2p—3/4 k> n3/4 Pyber [15]



ASYMPTOTIC DELSARTE CLIQUES IN DISTANCE-REGULAR GRAPHS 9

Note that the function g(n, k) is continuous so up to constant factors the tran-
sition is continuous around the boundaries of the intervals in Table [Tl
‘We now summarize the bounds on \. Let

- (5) s 50 ()Y e[ (5 ()T}

Theorem 5.7. Let G be a strongly reqular graph with parameters (n,k, \, ) sat-
isfying Eq. @) (the claw bound). Then
A
— =0(h(n, k)).
> = O(h(n, k)
TABLE 2. Piecewise description of the function h(n, k) giving the
best known bounds on A/n

Value Parameter range Source
(k/n)*/3 k< nb®® Spielman [16]
n~1/2 nd/8 < k < n2/3 this paper
(k/n)3/2  n?/3 <k <n3/4 this paper
kl/2p=3/4  p3/4 < | < pb/0 Pyber [15]
(k/n)? k> nb/6 Pyber [15]

6. CONNECTION TO GRAPH ISOMORPHISM TESTING

The key motivation for our main result comes from its application to the com-
plexity of graph isomorphism testing (GI). While strong theoretical evidence sug-
gests that this problem is not NP-complete, the worst-case bound of exp(O(y/n)),
established three decades ago [4, [I8] [3], continues to be unchallenged.

Strongly regular graphs have long been recognized as a difficult although prob-
ably not complete class for GI; there has been slightly more progress on the com-
plexity of testing their isomorphism. The first bound for strongly regular graphs
was exp(O(n'/2)) [ (1980), followed by exp(O(n'/3)) [16] (Spielman, 1996) and
exp(O(n*/?)) [2] (2013). The two main components of the recent result are an
exp(n@#toen)) hound and an exp(n®1+A#) bound. While under Neumaier’s
claw bound, the value of p is asymptotically determined by n and k (u ~ k?/n,
see Theorem [5.4] (d)), the value of A can vary widely, thus the significance of an
improved bound on A that contributed to reducing the exponent of the exponent
to 1/5.

7. CONCLUSION AND OPEN PROBLEMS

We have derived a new bound on the parameter A of sub-amply regular graphs,
and hence for distance-regular graphs. In the particular case of strongly regular
graphs, the improved bound contributed to the improved complexity estimate for
testing isomorphism of strongly regular graphs [2]. Our proof relies on Metsch’s
clique geometry when kp = o(\?).

Examples of this clique structure arise in geometric strongly regular graphs, in
particular in point-graphs of partial geometries, including Steiner designs and their
duals.
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We are not aware of infinite families of sub-amply regular graphs satisfying ku =

0(\?) which are not in fact point-graphs of geometric 1-designs. If such families do
not exist, this would considerably strengthen the conclusion of Theorem

In fact, we are not aware of even a single non-geometric sub-amply regular graph

satisfying inequality (2]).

We note that if any examples of non-geometric strongly regular graphs satisfying

inequality (2]) exist, they will be rather large. No example has fewer than 1500
vertices; this was verified by checking all feasible parameters of strongly regular
graphs in the table compiled by Andries Brouwer [5].

12.

13.

14.

15.

16.

17.

18.
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