MULTIPLY UNION FAMILIES IN \mathbb{N}^n

PETER FRANKL, MASASHI SHINOHARA, AND NORIHIDE TOKUSHIGE

ABSTRACT. Let $A \subset \mathbb{N}^n$ be an *r*-wise *s*-union family, that is, a family of sequences with *n* components of non-negative integers such that for any *r* sequences in *A* the total sum of the maximum of each component in those sequences is at most *s*. We determine the maximum size of *A* and its unique extremal configuration provided (i) *n* is sufficiently large for fixed *r* and *s*, or (ii) n = r + 1.

1. INTRODUCTION

Let $\mathbb{N} := \{0, 1, 2, ...\}$ denote the set of non-negative integers, and let $[n] := \{1, 2, ..., n\}$. Intersecting families in $2^{[n]}$ or $\{0, 1\}^n$ are one of the main objects in extremal set theory. The equivalent dual form of an intersecting family is a union family, which is the subject of this paper. In [2] Frankl and Tokushige proposed to consider such problems not only in $\{0, 1\}^n$ but also in $[q]^n$. They determined the maximum size of 2-wise s-union families (i) in $[q]^n$ for $n > n_0(q, s)$, and (ii) in \mathbb{N}^3 for all s (the definitions will be given shortly). In this paper we extend their results and determine the maximum size and structure of r-wise s-union families in \mathbb{N}^n for the following two cases: (i) $n \ge n_0(r, s)$, and (ii) n = r + 1.

For a vector $\mathbf{x} \in \mathbb{R}^n$, we write x_i or $(\mathbf{x})_i$ for the *i*th component, so $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Define the weight of $\mathbf{a} \in \mathbb{N}^n$ by

$$|\mathbf{a}| := \sum_{i=1}^{n} a_i.$$

For a finite number of vectors $\mathbf{a}, \mathbf{b}, \dots, \mathbf{z} \in \mathbb{N}^n$ define the join $\mathbf{a} \lor \mathbf{b} \lor \dots \lor \mathbf{z}$ by

$$(\mathbf{a} \lor \mathbf{b} \lor \cdots \lor \mathbf{z})_i := \max\{a_i, b_i, \dots, z_i\},\$$

and we say that $A \subset \mathbb{N}^n$ is r-wise s-union if

$$|\mathbf{a}_1 \lor \mathbf{a}_2 \lor \cdots \lor \mathbf{a}_r| \leq s \text{ for all } \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \in A.$$

The width of $A \subset \mathbb{N}^n$ is defined to be the maximum s such that A is s-union. In this paper we address the following problem.

Problem. For given n, r and s, determine the maximum size |A| of r-wise s-union families $A \subset \mathbb{N}^n$.

To describe candidates A that give the maximum size to the above problem, we need some more definitions. Let us introduce a partial order \prec in \mathbb{R}^n . For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ we let $\mathbf{a} \prec \mathbf{b}$ iff $a_i \leq b_i$ for all $1 \leq i \leq n$. Then we define a down set for $\mathbf{a} \in \mathbb{N}^n$ by

$$\mathcal{D}(\mathbf{a}) := \{ \mathbf{c} \in \mathbb{N}^n : \mathbf{c} \prec \mathbf{a} \},\$$

Date: October 23, 2015.

The third author was supported by JSPS KAKENHI 25287031.

and for $A \subset \mathbb{N}^n$ let

$$\mathcal{D}(A) := \bigcup_{\mathbf{a} \in A} \mathcal{D}(\mathbf{a}).$$

Similarly, we define an *up* set at distance d from $\mathbf{a} \in \mathbb{N}^n$ by

$$\mathcal{U}(\mathbf{a},d) := \{\mathbf{a} + \boldsymbol{\epsilon} \in \mathbb{N}^n : \boldsymbol{\epsilon} \in \mathbb{N}^n, \, |\boldsymbol{\epsilon}| = d\}.$$

We say that $\mathbf{a} \in \mathbb{N}^n$ is an equitable partition, if all a_i 's are as close to each other as possible, more precisely, $|a_i - a_j| \leq 1$ for all i, j. Let $\mathbf{1} := (1, 1, \dots, 1) \in \mathbb{N}^n$.

For $r, n \in \mathbb{N}$ and $\mathbf{a} \in \mathbb{N}^n$ define a family K by

$$K = K(r, n, \mathbf{a}, d) := \bigcup_{i=0}^{\lfloor \frac{d}{u} \rfloor} \mathcal{D}(\mathcal{U}(\mathbf{a} + i\mathbf{1}, d - ui)),$$

where u = n - r + 1. We will show that this is an *r*-wise *s*-union family, see Claim 3 in the next section.

Conjecture. If $A \subset \mathbb{N}^n$ is r-wise s-union, then

$$|A| \le \max_{0 \le d \le \lfloor \frac{s}{r} \rfloor} |K(r, n, \mathbf{a}, d)|,$$

where $\mathbf{a} \in \mathbb{N}^n$ is an equitable partition with $|\mathbf{a}| = s - rd$. Moreover if equality holds, then $A = K(r, n, \mathbf{a}, d)$ for some $0 \le d \le \lfloor \frac{s}{r} \rfloor$.

We first verify the conjecture when n is sufficiently large for fixed r, s. Let \mathbf{e}_i be the *i*-th standard base of \mathbb{R}^n , that is, $(\mathbf{e}_i)_j = \delta_{ij}$. Let $\tilde{\mathbf{e}}_0 = \mathbf{0}$, and $\tilde{\mathbf{e}}_i = \sum_{j=1}^i \mathbf{e}_i$ for $1 \leq i \leq n$, e.g., $\tilde{\mathbf{e}}_n = \mathbf{1}$.

Theorem 1. Let r and s be fixed positive integers. Write s = dr + p where d and p are non-negative integers with $0 \le p < r$. Then there exists $n_0(r, s)$ such that if $n > n_0(r, s)$ and $A \subset \mathbb{N}^n$ is r-wise s-union, then

$$|A| \le |\mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p, d))|.$$

Moreover if equality holds, then A is isomorphic to $\mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p, d)) = K(r, n, \tilde{\mathbf{e}}_p, d).$

We mention that the case $A \subset \{0,1\}^n$ of Theorem 1 is settled in [?], and the case r = 2 of Theorem 1 is proved in [2] in slightly stronger form. We also notice that if $A \subset \{0,1\}^n$ is 2-wise (2d + p)-union, then the Katona's *t*-intersection theorem [3] states that $|A| \leq |\mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p, d) \cap \{0,1\}^n)|$ for all $n \geq s$.

Next we show that the conjecture is true if n = r+1. We also verify the conjecture or general n if A satisfies some additional properties described below.

Let $A \subset \mathbb{N}^n$ be *r*-wise *s*-union. For $1 \leq i \leq n$ let

$$m_i := \max\{x_i : \mathbf{x} \in A\}.$$

If n-r divides $|\mathbf{m}| - s$, then we define

$$d := \frac{|\mathbf{m}| - s}{n - r} \ge 0,$$

and for $1 \leq i \leq n$ let

$$a_i := m_i - d_i$$

and we assume that $a_i \ge 0$. In this case we have $|\mathbf{a}| = s - rd$. Since $|\mathbf{a}| \ge 0$ it follows that $d \le \lfloor \frac{s}{r} \rfloor$. For $1 \le i \le n$ define $P_i \in \mathbb{N}^n$ by

$$P_i := \mathbf{a} + d\mathbf{e}_i,$$

where \mathbf{e}_i denotes the *i*th standard base, for example, $P_2 = (a_1, a_2 + d, a_3, \dots, a_n)$.

Theorem 2. Let $A \subset \mathbb{N}^n$ be r-wise s-union. Assume that P_i 's are well-defined and $(P_i = P_i) \subset A$

$$\{P_1,\ldots,P_n\} \subset A. \tag{1}$$

Then it follows that

$$|A| \le \max_{0 \le d' \le \lfloor \frac{s}{r} \rfloor} |K(r, n, \mathbf{a}', d')|,$$

where $\mathbf{a}' \in \mathbb{N}^n$ is an equitable partition with $|\mathbf{a}'| = s - rd'$. Moreover if equality holds, then $A = K(r, n, \mathbf{a}', d')$ for some $0 \le d' \le \lfloor \frac{s}{r} \rfloor$.

We will show that the assumption (1) is automatically satisfied when n = r + 1.

Corollary. If n = r + 1, then Conjecture is true.

Notation: For $\mathbf{a}, \mathbf{b} \in \mathbb{N}^n$ we define $\mathbf{a} \setminus \mathbf{b} \in \mathbb{N}^n$ by $(\mathbf{a} \vee \mathbf{b}) - \mathbf{b}$, in other words, $(\mathbf{a} \setminus \mathbf{b})_i := \max\{a_i - b_i, 0\}$. The support of \mathbf{a} is defined by $\operatorname{supp}(\mathbf{a}) := \{j : a_j > 0\}$.

2. Proof of Theorem 1 — the case when n is large

Let r, s be given, and let $s = dr + p, 0 \le p < r$.

Claim 1. $|\mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p, d))| = 2^p \binom{n+d}{d}$.

Proof. By definition we have

$$\mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p, d)) = \{\mathbf{x} + \mathbf{y} \in \mathbb{N}^n : |\mathbf{x}| \le d, \, \mathbf{y} \prec \mathbf{e}_p\}.$$

The number of $\mathbf{x} \in \mathbb{N}^n$ with $|\mathbf{x}| \leq d$ is equal to the number of non-negative integer solutions of $x_1 + \cdots + x_n \leq d$, which is $\binom{n+d}{d}$. It is 2^p that the number of $\mathbf{y} \in \mathbb{N}^n$ satisfying $\mathbf{y} \prec \tilde{\mathbf{e}}_p$.

Let $A \subset \mathbb{N}^n$ be *r*-wise *s*-union with maximal size. So A is a downset. We will show that $|A| \leq 2^p \binom{n+d}{d}$. Notice that this RHS is $\Theta(n^d)$ for fixed r, s.

First suppose that there is t with $2 \le t \le r$ such that A is t-wise (dt + p)-union, but not (t-1)-wise (d(t-1) + p)-union. In this case, by the latter condition, there are $\mathbf{b}_1, \ldots, \mathbf{b}_{t-1} \in A$ such that $|\mathbf{b}| \ge d(t-1) + p + 1$, where $\mathbf{b} = \mathbf{b}_1 \lor \cdots \lor \mathbf{b}_{t-1}$. Then, by the former condition, for every $\mathbf{a} \in A$ it follows that $|\mathbf{a} \lor \mathbf{b}| \le dt + p$, so $|\mathbf{a} \setminus \mathbf{b}| \le d - 1$. This gives us

$$A = \{ \mathbf{x} + \mathbf{y} \in \mathbb{N}^n : |\mathbf{x}| \le d - 1, \, \mathbf{y} \prec \mathbf{b} \}.$$

There are $\binom{n+(d-1)}{d-1}$ choices for **x** satisfying $|\mathbf{x}| \leq d-1$. On the other hand, the number of **y** with $\mathbf{y} \prec \mathbf{b}$ is independent of n (so it is a constant depending on r and s only). In fact $|\mathbf{b}| \leq (t-1)s < rs$, and there are less than 2^{rs} choices for **y**. Thus we get $|A| < \binom{n+(d-1)}{d-1} 2^{rs} = O(n^{d-1})$ and we are done.

Next we suppose that

A is t-wise
$$(dt + p)$$
-union for all $1 \le t \le r$. (2)

The case t = 1 gives us $|\mathbf{a}| \leq d + p$ for every $\mathbf{a} \in A$. If p = 0, then this means that $A \subset \mathcal{D}(\mathcal{U}(\mathbf{0}, d))$, which finishes the proof for this case. So, from now on, we assume that $1 \leq p < r$. Then there is u with $u \geq 1$ such that there exist $\mathbf{b}_1, \ldots, \mathbf{b}_u \in A$ satisfying

$$|\mathbf{b}| = u(d+1),\tag{3}$$

where $\mathbf{b} := \mathbf{b}_1 \vee \cdots \vee \mathbf{b}_u$. In fact we have (3) for u = 1, if otherwise $A \subset \mathcal{D}(\mathcal{U}(\mathbf{0}, d))$. If u = p+1 then (3) fails. In fact setting t = p+1 in (2) we see that A is (p+1)-wise ((p+1)(d+1)-1)-union. We choose maximal u with $1 \leq u \leq p$ satisfying (3), and fix $\mathbf{b} = \mathbf{b}_1 \vee \cdots \vee \mathbf{b}_u$. By this maximality, for every $\mathbf{a} \in A$, it follows that $|\mathbf{a} \vee \mathbf{b}| \leq (u+1)(d+1) - 1$, and

$$|\mathbf{a} \setminus \mathbf{b}| \le d. \tag{4}$$

Using (4) we partition A into $\bigsqcup_{i=0}^{d} A_i$, where

$$A_i := \{ \mathbf{x} + \mathbf{y} \in A : |\mathbf{x}| = i, \, \mathbf{y} \prec \mathbf{b} \}.$$

Then we have $|A_i| \leq {\binom{n+i}{i}} 2^{|\mathbf{b}|}$. Noting that $|\mathbf{b}| \leq (d+p)u = O(1)$ it follows $\sum_{i=0}^{d-1} |A_i| = O(n^{d-1})$. So the size of A_d is essential as we will see below.

We naturally identify $\mathbf{a} \in A_d$ with a subset of $[n] \times \{1, \ldots, d+p\}$. Formally let

$$\phi(\mathbf{a}) := \{ (i, j) : 1 \le i \le n, 1 \le j \le a_i \}.$$

We say that $\mathbf{b}' \prec \mathbf{b}$ is rich if there exist vectors $\mathbf{c}_1, \ldots, \mathbf{c}_{dr}$ of weight d such that $\mathbf{b}' \lor \mathbf{c}_j \in A$ for every j, and the dr + 1 subsets $\phi(\mathbf{c}_1), \ldots, \phi(\mathbf{c}_{dr}), \phi(\mathbf{b})$ are pairwise disjoint. Informally, \mathbf{b}' is rich if it can be extended to a $(|\mathbf{b}'| + d)$ -element subset of A in dr ways disjointly outside \mathbf{b} . We are comparing our family A with the reference family $\mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p), d)$, and we define $\tilde{\mathbf{b}}$ which plays a role of $\tilde{\mathbf{e}}_p$ in our family, namely, let us define

$$\tilde{\mathbf{b}} := \bigvee \{ \mathbf{b}' \prec \mathbf{b} : \mathbf{b}' \text{ is rich} \}.$$

Claim 2. $|\mathbf{b}| \leq p$.

Proof. Suppose the contrary, then there are distinct rich $\mathbf{b}'_1, \ldots, \mathbf{b}'_{p+1}$. Let $\mathbf{c}_1^{(i)}, \ldots, \mathbf{c}_{dr}^{(i)}$ support the richness of \mathbf{b}'_i . Let $\mathbf{a}_1 := \mathbf{b}'_1 \vee \mathbf{c}_{j_1}^{(1)} \in A$, say, $j_1 = 1$. Then choose $\mathbf{a}_2 := \mathbf{b}'_2 \vee \mathbf{c}_{j_2}^{(2)}$ so that $\phi(\mathbf{a}_1)$ and $\phi(\mathbf{a}_2)$ are disjoint. If $i \leq p$, then having $\mathbf{a}_1, \ldots, \mathbf{a}_i$ chosen, we only used *id* elements as $\bigcup_{l=1}^i \phi(\mathbf{c}_{j_l}^{(l)})$, which intersect at most *id* of $\mathbf{c}_1^{(i+1)}, \ldots, \mathbf{c}_{dr}^{(i+1)}$, and since $id \leq pd < rd$ we still have some $\mathbf{c}_{j_{i+1}}^{(i+1)}$ disjoint from any already chosen vectors. So we can continue this procedure until we get $\mathbf{a}_{p+1} :=$ $\mathbf{b}'_{p+1} \vee \mathbf{c}_{j_{p+1}}^{(p+1)} \in A$ such that all $\phi(\mathbf{a}_1), \ldots, \phi(\mathbf{a}_{p+1})$ are disjoint. However, these vectors yield $|\mathbf{a}_1 \vee \cdots \vee \mathbf{a}_{p+1}| \geq (p+1)(d+1)$, which contradicts (2) at t = p+1.

If $\mathbf{y} \prec \mathbf{b}$ is not rich, then

$$\{\phi(\mathbf{x} + \mathbf{y}) \setminus \phi(\mathbf{b}) : \mathbf{x} + \mathbf{y} \in A_d, |\mathbf{x}| = d\}$$

is a family of d-element subsets on (d+p)n vertices, which has no dr pairwise disjoint subsets (so the matching number is dr - 1 or less). Thus, by the Erdős matching theorem [1], the size of this family is $O(n^{d-1})$. There are at most $2^{|\mathbf{b}|} = O(1)$ choices for non-rich $\mathbf{y} \prec \mathbf{b}$, and we can conclude that the number of vectors in A_d coming from non-rich \mathbf{y} is $O(n^{d-1})$. Then the remaining vectors in A_d comes from rich $\mathbf{y} \prec \tilde{\mathbf{b}}$, and the number of such vectors is at most $2^{|\tilde{\mathbf{b}}|} {\binom{n+d}{d}}$. Consequently we get

$$|A| \le 2^{|\tilde{\mathbf{b}}|} \binom{n+d}{d} + O(n^{d-1}).$$

Recall that the reference family is of size $2^p \binom{n+d}{d}$, and $|\tilde{\mathbf{b}}| \leq p$ from Claim 2. So we only need to deal with the case when there are exactly 2^p rich sets, in other words, $\tilde{\mathbf{b}} = \tilde{\mathbf{e}}_p$ (by renaming coordinates if necessary). We show that $A \subset \mathcal{D}(\mathcal{U}(\tilde{\mathbf{e}}_p, d))$. Suppose the contrary, then there is $\mathbf{a} \in A$ such that $|\mathbf{a} \setminus \tilde{\mathbf{e}}_p| \geq d+1$. Since $\tilde{\mathbf{e}}_p$ is rich there are pairwise disjoint vectors $\mathbf{c}_1, \ldots, \mathbf{c}_{r-1}$ of weight d, outside \mathbf{b} . Let $\mathbf{a}_i := \tilde{\mathbf{e}}_p \vee \mathbf{c}_i \in A_d$. Then we get

$$|\mathbf{a} \vee (\mathbf{a}_1 \vee \cdots \vee \mathbf{a}_{r-1})| \ge (d+1) + p + (r-1)d = dr + p + 1 = s + 1,$$

which contradicts that A is r-wise s-union. This completes the proof of Theorem 1.

3. The polytope \mathbf{P} and proof of Theorem 2

We introduce a convex polytope $\mathbf{P} \subset \mathbb{R}^n$, which will play a key role in our proof. This polytope is defined by the following $n + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n-r+1}$ inequalities:

$$x_i \ge 0 \qquad \qquad \text{if } 1 \le i \le n, \tag{5}$$

$$\sum_{i \in I} x_i \le \sum_{i \in I} a_i + d \quad \text{if } 1 \le |I| \le n - r + 1, \ I \subset [n].$$
(6)

Namely,

 $\mathbf{P} := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \text{ satisfies } (5) \text{ and } (6) \}.$

Let L denotes the integer lattice points in \mathbf{P} :

$$L = L(r, n, \mathbf{a}, d) := \{ \mathbf{x} \in \mathbb{N}^n : \mathbf{x} \in \mathbf{P} \}.$$

Lemma 1. The two sets K and L are the same, and r-wise s-union.

Proof. This lemma is a consequence of the following three claims.

Claim 3. The set K is r-wise s-union.

Proof. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r \in K$. We show that $|\mathbf{x}_1 \vee \mathbf{x}_2 \vee \cdots \vee \mathbf{x}_r| \leq s$. We may assume that $\mathbf{x}_j \in \mathcal{U}(\mathbf{a}+i_j\mathbf{1}, d-ui_j)$, where u = n-r+1. We may also assume that $i_1 \geq i_2 \geq \cdots \geq i_r$. Let $\mathbf{b} := \mathbf{a}+i_1\mathbf{1}$. Then, informally, $|\mathbf{b} \vee \mathbf{x} - \mathbf{b}|$ counts the excess

of **x** above **b**, more precisely, it is $\sum_{j \in [n]} \max\{0, x_j - b_j\}$. Thus we have

$$\begin{aligned} |\mathbf{x}_1 \lor \mathbf{x}_2 \lor \cdots \lor \mathbf{x}_r| &\leq |\mathbf{b}| + \sum_{j=1}^r |\mathbf{b} \lor \mathbf{x}_j - \mathbf{b}| \\ &\leq |\mathbf{a}| + ni_1 + \sum_{j=1}^r \left((d - ui_j) - (i_1 - i_j) \right) \\ &= a + dr + (n - r)i_1 - \sum_{j=1}^r (u - 1)i_j \\ &= s - \sum_{j=2}^r j_j \leq s, \end{aligned}$$

as required.

Claim 4. $K \subset L$.

Proof. Let $\mathbf{x} \in K$. We show that $\mathbf{x} \in L$, that is, \mathbf{x} satisfies (5) and (6). Since (5) is clear by definition of K, we show that (6). To this end we may assume that $\mathbf{x} \in \mathcal{U}(\mathbf{a}+i\mathbf{1}, d-ui)$, where u = n-r+1 and $i \leq \lfloor \frac{d}{u} \rfloor$. Let $I \subset [n]$ with $1 \leq |I| \leq u$. Then $i|I| \leq ui$. Thus it follows

$$\sum_{j \in I} x_j \le \sum_{j \in I} a_j + i|I| + (d - ui) \le \sum_{j \in I} a_j + d,$$

which confirms (6).

Claim 5. $K \supset L$.

Proof. Let $\mathbf{x} \in L$. We show that $\mathbf{x} \in K$, that is, there exists some i' such that $0 \le i' \le \lfloor \frac{d}{n-r+1} \rfloor$ and

$$|\mathbf{x} \setminus (\mathbf{a} + i'\mathbf{1})| \le d - (n - r + 1)i'.$$

We write \mathbf{x} as

$$\mathbf{x} = (a_1 + i_1, a_2 + i_2, \dots, a_n + i_n),$$

where we may assume that $d \ge i_1 \ge i_2 \ge \cdots \ge i_n$. We notice that some i_j can be negative. Since $\mathbf{x} \in L$ it follows from (6) (a part of the definition of L) that if $1 \le |I| \le n - r + 1$ and $I \subset [n]$, then

$$\sum_{j \in I} i_j \le d.$$

Let $J := \{j : x_j \ge a_j\}$ and we argue separately by the size of |J|. If $|J| \le n - r + 1$, then we may choose i' = 0. In fact,

$$|\mathbf{x} \setminus \mathbf{a}| = \max\{0, i_1\} + \max\{0, i_2\} + \dots + \max\{0, i_{n-r+1}\}$$
$$= \max\left\{\sum_{j \in I} i_j : I \subset 2^{[n-r+1]}\right\} \le d.$$

. .

If $|J| \ge n - r + 2$, then we may choose $i' = i_{n-r+2}$. In fact, by letting $i' := i_{n-r+2}$, we have

$$|\mathbf{x} \setminus (\mathbf{a} + i'\mathbf{1})| = (i_1 - i') + (i_2 - i') + \dots + (i_{n-r+1} - i')$$

$$\leq d - (n - r + 1)i'.$$

We need to check $0 \le i' \le \lfloor \frac{d}{n-r+1} \rfloor$. It follows from $|J| \ge n-r+2$ that $i' \ge 0$. Also $d \ge i_1 \ge i_2 \ge \cdots \ge i_{n-r+2}$ and $i_1 + i_2 + \cdots + i_{n+r-1} \le d$ yield $i' \le \lfloor \frac{d}{n-r+1} \rfloor$. \Box

This completes the proof of Lemma 1.

Let

$$\sigma_k(\mathbf{a}) := \sum_{K \in \binom{[n]}{k}} \prod_{i \in K} a_i$$

be the kth elementary symmetric polynomial of a_1, \ldots, a_n .

Lemma 2. The size of $K(r, n, \mathbf{a}, d)$ is given by

$$|K(r, n, \mathbf{a}, d)| = \sum_{j=0}^{n} {d+j \choose j} \sigma_{n-j}(\mathbf{a}) + \sum_{i=1}^{\lfloor \frac{d}{u} \rfloor} \sum_{j=u+1}^{n} \left({d-ui+j \choose j} - {d-ui+u \choose j} \right) \sigma_{n-j}(\mathbf{a}+i\mathbf{1}),$$

where u = n - r + 1. Moreover, for fixed n, r, d and $|\mathbf{a}|$, this size is maximized if and only if \mathbf{a} is an equitable partition.

Proof. For $J \subset [n]$ let $\mathbf{x}|_J$ be the restriction of \mathbf{x} to J, that is, $(\mathbf{x}|_J)_i$ is a_i if $i \in J$ and 0 otherwise.

First we count the vectors in the base layer $\mathcal{D}(\mathcal{U}(\mathbf{a}, d))$. To this end we partition this set into $\bigsqcup_{J \subset [n]} A_0(J)$, where

$$A_0(J) = \{ \mathbf{a}|_J + \mathbf{e} + \mathbf{b} : \operatorname{supp}(\mathbf{e}) \subset J, \ |\mathbf{e}| \le d, \ \operatorname{supp}(\mathbf{b}) \subset [n] \setminus J, \ b_i < a_i \text{ for } i \notin J \}.$$

The number of vectors **e** with the above property is equal to the number of nonnegative integer solutions of the inequality $x_1 + x_2 + \cdots + x_{|J|} \leq d$, which is $\binom{d+|J|}{|J|}$. The number of vectors **b** is clearly $\prod_{l \in [n] \setminus J} a_l$. Thus we get

$$\sum_{J \in \binom{[n]}{j}} |A_0(J)| = \sum_{J \in \binom{[n]}{j}} \binom{d+|J|}{|J|} \prod_{l \in [n] \setminus J} a_l = \binom{d+j}{j} \sigma_{n-j}(\mathbf{a}),$$

and $|\mathcal{D}(\mathcal{U}(\mathbf{a},d))| = \sum_{j=0}^{n} {d+j \choose j} \sigma_{n-j}(\mathbf{a}).$

Next we count the vectors in the *i*th layer:

$$\mathcal{D}(\mathcal{U}(\mathbf{a}+i\mathbf{1},d-ui))\setminus \left(\bigcup_{j=0}^{i-1}\mathcal{D}(\mathcal{U}(\mathbf{a}+j\mathbf{1},d-uj))\right).$$

For this we partition the above set into $\bigsqcup_{J \subset [n]} A_i(J)$, where

$$A_i(J) = \{ (\mathbf{a} + i\mathbf{1}) | J + \mathbf{e} + \mathbf{b} : \operatorname{supp}(\mathbf{e}) \subset J, \ d - u(i-1) - |J| < |\mathbf{e}| \le d - ui, \\ \operatorname{supp}(\mathbf{b}) \subset [n] \setminus J, \ b_l < a_l + i \text{ for } l \notin J \}.$$

In this case we need $d-u(i-1) < |J|+|\mathbf{e}|$ because the vectors satisfying the opposite inequality are already counted in the lower layers $\bigcup_{j < i} A_j(J)$. We also notice that d-u(i-1)-|J| < d-ui implies that |J| > u. So $A_i(J) = \emptyset$ for $|J| \le u$. Now we count the number of vectors \mathbf{e} in $A_i(J)$, or equivalently, the number of non-negative integer solutions of

$$d - u(i - 1) - |J| < x_1 + x_2 + \dots + x_{|J|} \le d - ui.$$

This number is $\binom{d-ui+j}{j} - \binom{d-ui+u}{j}$, where j = |J|. On the other hand, the number of vectors **b** in $A_i(J)$ is $\prod_{l \in [n] \setminus J} (a_l + i)$. Consequently we get

$$\sum_{J \subset [n]} |A_i(J)| = \sum_{j=u+1}^n \left(\binom{d-ui+j}{j} - \binom{d-ui+u}{j} \right) \sigma_{n-j}(\mathbf{a}+i\mathbf{1})$$

Summing this term over $1 \leq i \leq \lfloor \frac{d}{u} \rfloor$ we finally obtain the second term of the RHS of |K| in the statement of this lemma. Then, for fixed $|\mathbf{a}|$, the size of K is maximized when $\sigma_{n-1}(\mathbf{a})$ and $\sigma_{n-1}(\mathbf{a}+i\mathbf{1})$ are maximized. By the property of symmetric polynomials, this happens if and only if \mathbf{a} is an equitable partition. \Box

Proof of Theorem 2. Let $A \subset \mathbb{N}^n$ be an r-wise s-union with (1). For $I \subset [n]$ let

$$m_I := \max\left\{\sum_{i\in I} x_i : \mathbf{x}\in A\right\}.$$

Claim 6. If $I \subset [n]$ and $1 \leq |I| \leq n - r + 1$, then

$$m_I = \sum_{i \in I} a_i + d$$

Proof. Choose $j \in I$. By (1) we have $P_j \in A$ and

$$m_I \ge \sum_{i \in I} (P_j)_i = \sum_{i \in I} a_i + d.$$

$$\tag{7}$$

We need to show that this inequality is actually an equality. Let $[n] = I_1 \sqcup I_2 \sqcup \cdots \sqcup I_r$ be a partition of [n]. Then it follows that

$$s \ge m_{I_1} + m_{I_2} + \dots + m_{I_r} \ge \sum_{i \in [n]} a_i + rd = s,$$

where the first inequality follows from the *r*-wise *s*-union property of A, and the second inequality follows from (7). Since the left-most and the right-most sides are the same *s*, we see that all inequalities are equalities. This means that (7) is equality, as needed.

By this claim if $\mathbf{x} \in A$ and $1 \leq |I| \leq n - r + 1$, then we have

$$\sum_{i \in I} x_i \le m_I = \sum_{i \in I} a_i + d.$$

This means that $A \subset L$. Finally the theorem follows from Lemmas 1 and 2. *Proof of Corollary.* Let n = r + 1 and we show that (1) is satisfied. Let $A \subset \mathbb{N}^{r+1}$ be *r*-wise *s*-union with maximum size.

We first check that P_i 's are well-defined. For this, we need (i) $(n-r)|(|\mathbf{m}|-s)$, and (ii) $a_i \ge 0$ for all *i*. Since n-r=1 we have (i). To verify (ii) we may assume that $m_1 \ge m_2 \ge \cdots \ge m_{r+1}$. Then $a_i \ge a_{r+1} = m_{r+1} - d$, so it suffices to show $m_{r+1} \ge d$. Since *A* is *r*-wise *s*-union it follows that $m_1 + m_2 + \cdots + m_r \le s$. This together with the definition of *d* implies $d = |\mathbf{m}| - s \le m_{r+1}$, as needed.

Next we check that $\mathbf{x} \in A$ satisfies (5) and (6). By definition we have $x_i \leq m_i = a_i + d$, so we have (5). Since A is r-wise s-union, we have

$$(x_1 + x_2) + m_3 + \dots + m_{r+1} \le s,$$

or equivalently,

$$(x_1 + x_2) + (a_3 + d) + \dots + (a_{r+1} + d) \le s = |\mathbf{a}| + rd.$$

Rearranging we get $x_1 + x_2 \leq a_1 + a_2 + d$, and we get the other cases similarly, so we obtain (6). Thus $A \subset L$. But by the maximality of |A| we have A = L. Now noting that every P_i satisfies (5) and (6), namely, P_i is in L, and thus (1) is satisfied. \Box

References

- [1] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest., 8:93–95, 1965.
- [2] P. Frankl, N. Tokushige, Intersection problems in the q-ary cube. preprint.
- [3] G. O. H. Katona, Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung., 15:329–337, 1964.

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, H-1364 BUDAPEST, P.O.BOX 127, HUNGARY *E-mail address:* peter.frankl@gmail.com

FACULTY OF EDUCATION, SHIGA UNIVERSITY, 2-5-1 HIRATSU, SHIGA 520-0862, JAPAN *E-mail address*: shino@edu.shiga-u.ac.jp

COLLEGE OF EDUCATION, RYUKYU UNIVERSITY, NISHIHARA, OKINAWA 903-0213, JAPAN *E-mail address*: hide@edu.u-ryukyu.ac.jp