PATHS ON THE SPHERE WITHOUT SMALL ANGLES

IMRE BÁRÁNY AND ATTILA PÓR

ABSTRACT. It is a recent result that given a finitely many points on \mathbb{R}^2 , it is possible to arrange them on a polygonal path so that every angle on the polygonal path is at least $\pi/9$. Here we extend this result to finite sets contained in the 2-dimensional sphere.

1. INTRODUCTION AND RESULTS

Let X be a finite set in \mathbb{R}^2 . An ordering, x_1, x_2, \ldots, x_n , of the points of X gives rise to a polygonal path $p = x_1 x_2 \ldots x_n$ on X: its edges are the segments connecting x_i to x_{i+1} . The angle of p at x_i is just $\angle x_{i-1}x_ix_{i+1}$. The path is called α -good if all of its angles are at least α where $\alpha > 0$. Answering a question of Sándor Fekete [3] from 1992, (cf [4] as well) we proved in [1] the following result.

Theorem 1. If X is a finite set in the plane, then there is an α_0 -good path on X with $\alpha_0 = 20^\circ = \pi/9$.

The aim of this paper is to extend this result to finite sets $X \subset S^2$, the 2-dimensional Euclidean sphere. The definitions are almost the same. Given $a, b \in S^2$ there is a shortest path $ab \subset S^2$ connecting a and b in S^2 . This shortest path is an arc of the great circle containing a and b, and is unique unless a and b are antipodal. An ordering, x_1, x_2, \ldots, x_n , of the points of X is identified with a path $x_1x_2\ldots x_n$ on X consisting of the arcs $\widehat{x_ix_{i+1}}$. The angle of this path at x_i is just the spherical angle at x_i of the spherical triangle with vertices x_{i-1}, x_i, x_{i+1} . The path is called α -good if all of its angles are at least α where $\alpha > 0$.

Theorem 2. There is $\alpha > 0$ such that for every finite set $X \subset S^2$ there exists an α -good path on the points of X (using every point of X exactly once).

The proof gives $\alpha = 5^{\circ}$ via generous computations. Slightly larger value for α can be reached by more careful calculations but we have not tried to find the best possible α . The planar example consisting of the vertices of an equilateral triangle and its center shows that Theorem 1 cannot hold with $\alpha_0 > 30^{\circ}$. The same applies to the spherical case as shown by a small size

¹⁹⁹¹ Mathematics Subject Classification. Primary 52C35, secondary 52C99.

Key words and phrases. finite point sets on the sphere, polygonal paths, no small angle.

spherical and equilateral triangle in S^2 . Jan Kynčl [2] has proved recently that Theorem 1 holds with $\alpha = 30^{\circ}$, the best possible bound. Using his results the bound $\alpha = 5^{\circ}$ can be improved to $\alpha = 7^{\circ}$.

The same question can be asked on higher dimensional spheres S^d . The methods of this paper work there as well, resulting in a smaller universal α , see Section 6.

We will need a stronger version of Theorem 1 which is proved in [1]. To state it a few additional definitions are needed. The direction \overline{xy} of a pair $x, y \in \mathbb{R}^2$ is the unit vector (y - x)/|y - x|, we suppose here that $x \neq y$. So $\overline{xy} \in S^1$, the unit circle.

Given a path $z_1 z_2 \ldots z_n$ in the plane the directions $\overline{z_2 z_1}$ and $\overline{z_{n-1} z_n}$ are called the *end directions* of the path. We call a subset R of S^1 a restriction if it is the disjoint union of two closed arcs $R_1, R_2 \subset S^1$ such that both have length $4\alpha_0$ and their distance from each other (along the unit circle) is larger than $2\alpha_0$. (Recall that $\alpha_0 = 20^\circ$.) We call the path $z_1 \ldots z_n$ R-avoiding if the path is α_0 -good and the two end directions are not in the same R_i (i = 1, 2).

Theorem 3. Let X be a finite set of points in the plane. For every restriction R there is an R-avoiding path on all the points of X.

2. Preparations

In the proofs to come we assume that our finite set $X \subset S^2$ contains no antipodal pair. The general case follows from this by a simple limit argument.

Given $a, b \in S^2$, the length of the arc \widehat{ab} is simply the angle between the vectors a and b, measured in degrees (sometimes in radians). Of course the length of \widehat{ab} can be expressed by the Euclidean distance |a - b|. The pair $a, b \in X$ is a diameter of X if it has the largest length among all pairs in X.

For the proof of Theorem 2 we need two auxiliary results. The first one is simpler: it is essentially the planar case, that is Theorem 1 applied on S^2 . Precisely, let P be a plane touching S^2 at a point $z \in S^2$ and let C = C(t)be the cap of S^2 defined by

$$C(t) = \{x \in S^2 : z \cdot x \ge t\}$$

where $t \in (0, 1)$.

Theorem 4. If $X \subset C(t)$ is finite, then there is an $\alpha(t)$ -good path on X where $\alpha(t) \in (0, 90^{\circ})$ is given by $\sin \alpha(t) = t \sin 20^{\circ}$.

The proof is given in Section 4. The following corollary to Theorem 4 will be used in the proof of Theorem 2. Note that $\alpha(1/2) = 9.846.^{\circ} > 9^{\circ}$. Set $\alpha_1 = 9^{\circ}$.

Corollary 1. If the diameter of X is at most 60° , then there is an α_1 -good path on X.

FIGURE 1. The spherical halfslab Q(a, b) and its planar representation

To state the second auxiliary result we need some definitions. Let $a, b \in X$ form a diameter of $X \subset S^2$. Set c = (a-b)/|a-b| so $c \in S^2$. Choose $e \in S^2$ that is orthogonal to both c and a + b. Let $\beta = 10^\circ$. We define the halfslab Q = Q(a, b) as

$$Q = \{x \in S^2 : (a+b) \cdot x \ge 0, \ |e \cdot x| \le \sin\beta\},\$$

see Figure 1. Here is the second auxiliary result.

Theorem 5. If a, b form a diameter of X and $X \subset Q(a, b)$, then there is an α -good path on X (where $\alpha = 5^{\circ}$).

We prove this theorem in Section 6 with some preparations in Section 5. The next section contains the proof of Theorem 2. It is essentially an induction argument reducing the problem to two cases: when X lies in a cap C(t) for some t and when X lies in the halfslab Q(a, b). These two cases are covered by Theorems 4 and 5.

3. Proof of Theorem 2

We introduce further terminology and notation before the proof. Given $u, v \in S^2$ with $u \neq \pm v$, let L(u; v) be the half of the great circle connecting u to -u that contains v. The union of L(u; v) and L(u; w) (when $w \notin L(u; v)$) is a closed curve without self-intersection on S^2 so it splits S^2 into two connected components to be called sectors. Let E(u; v, w) denote the smaller one of the two. No confusion will arise here since E(u; v, w) will always be much smaller than the other sector.

Note that for $x, y \in E(u; v, w)$ the arc $\widehat{xy} \subset E(u; v, w)$.

Let L(u; z) be the half of the great circle exactly halving E(u; v, w). Let γ be the angle between the planes L(u; v) and L(u; z), we call γ the angle of the sector E(u; v, w). Note that this angle is at most 90° always.

We will often write $E(u; \gamma, z)$ or simply $E(u; \gamma)$ instead of E(u; v, w) where γ is the angle of this sector, especially when v and w are not important.

Proof of Theorem 2. It goes by induction on |X|. Everything is easy when |X| = 1, 2 or 3. Suppose now that |X| > 3. Assume that there is a spherical triangle \triangle with vertices a, b, c with all of its angles at least 2α which is not contained in any sector $E(z; \alpha)$ when $z \in X$. Then induction works as follows. Find first an α -good path $p = x_1 x_2 \dots x_n$ on $X \setminus \{a, b, c\}$. Define $E(x_1; \alpha)$ as $E(x_1; \alpha, x_2)$ if n > 1 (that is, |X| > 4), and as $E(x_1; \alpha, c)$ if n = 1. As some vertex of \triangle , say a, is not contained in $E(x_1; \alpha)$, $ax_1x_2 \dots x_n$ is an α -good path. The angle of \triangle at a is at least 2α so either $\angle bax_1$ or $\angle cax_1 \ge \alpha$. Suppose, say, that $\angle bax_1 \ge \alpha$. Then $cbax_1 \dots x_n$ is an α -good path on X, even $\angle cba \ge 2\alpha$.

So we can assume that no such triangle \triangle exists. If the diameter of X is at most 60°, then Corollary 1 applies and gives an α_1 -good path on X (where $\alpha_1 = 9^\circ$). So suppose that the diameter, formed by the pair $a, b \in X$ is at least 60°.

Observe now that ab is contained in no sector $E(z; \alpha)$ with $z \in X \setminus \{a, b\}$. Indeed, ab is the longest side of the spherical triangle with vertices a, b, z. Then the largest angle of this triangle is at vertex z, and this largest angle is more than $60^{\circ} > 2\alpha$.

We claim now that no point of X is outside of the set

$$F := E(a; 2\alpha, b) \cup E(b; 2\alpha, a).$$

Assume the contrary and let $c \in X \setminus F$. All angles of the spherical triangle \triangle with vertices a, b, c are larger than 2α : the angle at c is at least $60^{\circ} > 2\alpha$ as we just saw, while for the angles at a, b this follows from $c \notin F$. The triangle \triangle is not contained in any sector $E(z; \alpha)$ for $z \in X \setminus \{a, b\}$ as \hat{ab} is not contained in such a sector. Further $\triangle \subset E(a; \alpha)$ is impossible because $c \notin E(a; 2\alpha, b)$, and $\triangle \subset E(b; \alpha)$ cannot hold for the same reason. Thus \triangle is not contained in any sector $E(z, \alpha), z \in X$, contradicting our previous assumption.

Consequently

$$X \subset F \cap \{x \in S^2 : |x - a|, |x - b| \le |a - b|\}.$$

We observe that the set $F \cap \{x \in S^2 : |x-a|, |x-b| \le |a-b|\}$ is contained in the halfslab Q(a, b). Then Theorem 5 applies and finishes the proof. \Box

4. Proof of Theorem 4

For $x \in C(t)$ let x^* denote its radial projection (from the origin which is the center of S^2) to P. Then X^* , the radial projection of X, is a finite set in the plane P. So by Theorem 1 there is a polygonal path $p^* = x_1^* \dots x_n^*$ on X^* with all of its angles at least 20°. The next lemma implies that the path $p = x_1 \dots x_n$ on X is $\alpha(t)$ -good.

Lemma 1. Assume $a, b, c \in C(t)$. Let the angle of the spherical triangle abcat c be $\phi < 90^{\circ}$ and that of the (planar) triangle $a^*b^*c^*$ at c^* be ϕ^* . Then $\sin \phi \ge t \sin \phi^*$ if $\phi^* \le 90^{\circ}$ and $\sin \phi \ge t$ if $\phi^* > 90^{\circ}$.

FIGURE 2. Proof of Lemma 1

Proof. Let $K \subset \mathbb{R}^3$ be the cone consisting of all the points of the form $\alpha a + \beta b + \gamma c$ where $\alpha, \beta \geq 0$ and $\gamma \in \mathbb{R}$. Its boundary consists of two halfplanes $A = \{\alpha a + \gamma c : \alpha \geq 0\}$ and $B = \{\beta b + \gamma c : \beta \geq 0\}$. The angle of this cone is $\phi \in (0, 180^\circ)$, which is the same as the angle between the two halfplanes A, B. The plane P that is tangent to S^2 at z intersects K in a 2-dimensional cone with angle ϕ^* . Translate P by -z. The translated copy P_1 contains the origin and intersects K in a 2-dimensional cone whose angle is also ϕ^* . We assume first that $\phi^* \leq 90^\circ$.

The condition $c \in C(t)$ implies that $z \cdot c \ge t$.

Let S be the unit circle centered at the origin in the plane orthogonal to c. We can assume that $a = S \cap A$ and $b = S \cap B$ as the angle ϕ remains the same. The plane P_1 intersects the lines $\{a+\lambda c: \lambda \in \mathbb{R}\}$ resp. $\{b+\lambda c: \lambda \in \mathbb{R}\}$ in points a_1 and b_1 . Let T resp. T_1 be the triangle with vertices 0, a, b and $0, a_1, b_1$, see Figure 2.

Then Area $T = \frac{1}{2} \sin \phi$, and Area $T_1 = \frac{1}{2} |a_1| \cdot |b_1| \sin \phi^* \geq \frac{1}{2} \sin \phi^*$ since $|a_1|, |b_1| \geq 1$. As T is the orthogonal projection of T_1 to the plane orthogonal to c, Area $T = \cos \gamma \operatorname{Area} T_1$ where γ is the angle of the planes containing T and T_1 . Here $\cos \gamma = c \cdot z$ so we have

$$\sin\phi \ge c \cdot z \sin\phi^* \ge t \sin\phi^*$$

finishing the proof when $\phi^* \leq 90^\circ$.

In the case $\phi^* > \frac{\pi}{2}$ fix c and b and rotate a towards b around the line through 0 and c. The angles ϕ and ϕ^* will continuously decrease. Rotate a till $\phi_1^* = 90^\circ$. Now $\sin \phi \ge \sin \phi_1 \ge t \sin \phi_1^* = t$ which finishes the proof.

5. Decreasing paths

Some preparations are needed before the proof of Theorem 5. We assume that S^2 is centered at the origin. For $A \subset \mathbb{R}^3$ we let $\lim A$ denote the linear hull of A. We call the 2-dimensional plane $H = \lim \{a, b\}$ the horizontal

FIGURE 3. The two cases in Proposition 1

plane. H intersects the halfslab Q = Q(a, b) in the halfcircle L = L(c; a) whose endpoints are c and d = -c. Let e be the unit normal vector of H.

The *slope* of a pair $x, y \in X$ is the angle between H and the 2-plane lin $\{x, y\}$. We denote this angle by $\sigma(x, y)$. Note that $\sigma(x, y) \in [0, 90^{\circ}]$ always. We call a pair $x, y \in X$ steep if $\sigma(x, y) \ge 40^{\circ}$.

If there is no steep pair in X, then one can construct an α_2 -good path on X with $\alpha_2 = 100^\circ$ very easily. For $x \in Q$ let $h(x) = e \cdot x$ (the height of x) and let $\tau(x)$ be the angle between c and the midpoint of the half great circle L(e; x). (Thus for instance, $\tau(c) = 0$ and $\tau(d) = 180^\circ$). Order the points of X by decreasing $\tau(x)$ and call the resulting path the decreasing path of X. The following proposition shows that all angles of the decreasing path are at least $180^\circ - 2 \cdot 40^\circ = 100^\circ$.

Proposition 1. Assume $x, y, z \in Q$ and let γ be the angle of the spherical triangle with vertices x, y, z at vertex y. If $\tau(x) \leq \tau(y) \leq \tau(z)$, then $\gamma \geq 180^{\circ} - \sigma(x, y) - \sigma(y, z)$.

Proof. We may assume by symmetry that $h(y) \ge 0$. To simplify the proof we also assume that $\tau(x) < \tau(y) < \tau(z)$ and h(y) > 0. The general case follows from this by a simple limit argument.

Observe next that x can be replaced by any point (distinct from y) on the arc \widehat{xy} . The same applies to z. So we assume that x and z are close to y, in particular, h(x), h(z) > 0.

The first and basic case is when z lies below the plane lin $\{x, y\}$. Then the half-circles L(y; x), L(y; z) and the great circle $H \cap S^2$ delimit a spherical triangle \triangle , see Figure 3 left. The angle of \triangle at y coincides with $\angle xyz$, and its other two angles are $\sigma(x, y)$ and $\sigma(y, z)$. Thus $\angle xyz \ge 180^\circ - \sigma(x, y) - \sigma(y, z)$, indeed.

The second case is when z is above the plane lin $\{x, y\}$. Choose points x_1 and z_1 in S^2 close to, but distinct from, y so that $y \in \widehat{xx_1}$ and $y \in \widehat{zz_1}$, see Figure 3 right. Then $\tau(z_1) < \tau(y) < \tau(x_1)$, and $h(z_1), h(y), h(x_1)$ are all positive, and x_1 lies below the plane lin $\{z_1, y\}$. The previous basic case applies now to z_1, y, x_1 in place of x, y, z. Thus $\angle z_1 y x_1 \ge 180^\circ - \sigma(z_1, y) - \sigma(y, x_1)$. Here $\angle z_1 y x_1 = \angle x y z$ and $\sigma(z_1, y) = \sigma(y, z)$ and $\sigma(y, x_1) = \sigma(x, y)$. Consequently $\angle x y z \ge 180^\circ - \sigma(x, y) - \sigma(y, z)$ again.

We remark that the decreasing path method is applicable to any subset, say Y, of X that contains no steep pair. In that case the decreasing path on Y is α_2 -good.

6. Proof of Theorem 5

For $u, v \in L$ with $\tau(u) < \tau(v)$ we define

$$T(u,v) = \{ x \in Q : \tau(u) \le \tau(x) \le \tau(v) \}.$$

Now let $u, v \in L$ be two points with $\tau(v) - \tau(u) = 30^{\circ}$. Thus c, u, v, d come on L in this order.

Proposition 2. If $x, y \in X$ with $x \in T(c, u)$ and $y \in T(v, d)$, then $\sigma(x, y) < 35^{\circ}$.

Proof. The spherical cotangent formula (see spherical trigonometry on wikipedia, for instance) says that $\cos c \cos B = \cot a \sin c - \cot A \sin B$ where a, b, c are the sides, and A, B, C the opposite angles of the spherical triangle. With $b = 10^{\circ}$, $c = 15^{\circ}$, $B = 90^{\circ}$ this shows that the angle in question is at most $\operatorname{arccot}(\cot 10^{\circ} \sin 15^{\circ}) = 34.2656...$, indeed smaller than 35° .

Define now $t = \sin 15^{\circ} \cos 10^{\circ} = 0.25488$.. and set $\alpha_3 \in (0, 90^{\circ})$ by

 $\sin \alpha_3 = t \sin 20^\circ = 0.087176..$

and $\alpha_3 > 5^\circ$ follows.

Lemma 2. Assume again that $u, v \in L$ with $\tau(v) - \tau(u) = 30^\circ$, and that $\tau(u) \in [90^\circ, 120^\circ]$ and further that there is no steep pair from X in T(u, v). Set $Y = X \cap T(c, v)$. Then there is an α_3 -good path $y_1 \dots y_m$ on Y such that $\angle xy_1y_2 > 5^\circ$ for every $x \in T(v, d)$.

Proof. The conditions imply that $\tau(v) \leq 150^{\circ}$. Then a simple computation shows that Y is contained in a cap C(t) with center $z \in L$ where $t = \sin 15^{\circ} \cos 10^{\circ}$. This value for $t = \cos b$ comes from the spherical cosine theorem $\cos b = \cos c \cos a + \sin c \sin b \cos B$ with $B = 90^{\circ}$, $c = 75^{\circ}$, $a = 10^{\circ}$. Project Y radially to the plane P that touches S^2 at z. We get a finite set Y^* in P. The unit circle $S \subset P$ is centered at z. Let $R = R_1 \cup R_2 \subset S$ be the restriction in P where the line $H \cap P$ halves both R_1 and R_2 . The radial projection c^* of c lies in P and we choose the names so that $c^* \in R_1$.

According to Theorem 3, there is a 20°-good path $y_1^* y_2^* \dots y_m^*$ on Y^* which is *R*-avoiding, that is, not both end directions are in the same R_i . Here we choose the names so that $\overline{y_2^* y_1^*} \notin R_1$. Theorem 4 implies that $y_1 \dots y_m$ is an α_3 -good path on $Y \subset S^2$.

We have to check that $\angle xy_1y_2 > 5^\circ$ for every $x \in T(v, d)$. We distinguish two cases.

Case 1. When y_1, y_2 is not a steep pair. Then, as is easy to check, the angle between the line spanned by y_1^*, y_2^* and the line $H \cap P$ is smaller than

FIGURE 4. Case 2a

T(u, v)

FIGURE 5. Case 2b

40°, so $\overline{y_2^* y_1^*} \in R_2$. Then $\tau(y_2) < \tau(y_1) \le \tau(x)$. Proposition 1 shows that $\angle x y_1 y_2 \ge 180^\circ - 90^\circ - 40^\circ > 5^\circ$.

Case 2. When y_1, y_2 is a steep pair. Then at least one of y_1 and y_2 is in T(c, u). We assume by symmetry that $h(y_1) \ge h(y_2)$. Clearly $\tau(x) > \tau(y_1), \tau(y_2)$. There are two subcases.

Case 2a. When $\tau(y_2) \leq \tau(y_1)$. Then $y_2 \in T(c, u)$ and the angle in question decreases if x is pushed down to $h(x) = -\sin 10^{\circ}$ while keeping $\tau(x)$ the same. The halfcircle $L(e; y_1)$ cuts the angle $\angle xy_1y_2$ into two parts, see Figure 4. Assume that $\angle xy_1y_2 \leq 5^{\circ}$, then both parts are at most 5° . The spherical cosine theorem implies then that $\tau(y_1) - \tau(y_2) \leq 5^{\circ}$ and $\tau(x) - \tau(y_1) \leq 5^{\circ}$, contradicting $\tau(x) - \tau(y_2) \geq 30^{\circ}$.

Case 2b. When $\tau(y_1) \leq \tau(y_2)$. Then $y_1 \in T(c, u)$. The angle in question decreases again if x is pushed down to $h(x) = -\sin 10^\circ$ while keeping $\tau(x)$ the same. Note that while x is pushed down, y_1, y_2 and x do not become coplanar as otherwise y_1, x would become a steep pair contradicting Proposition 2. Let Δ be the spherical triangle delimited by $L, L(x; y_1), L(y_2; y_1)$, see Figure 5. The angle of Δ at vertex y_1 equals $\angle y_2 y_1 x$. The other two angles of Δ are $180^\circ - \sigma(y_1, y_2) \leq 140^\circ$ because y_1, y_2 is a steep pair, and $\sigma(y_1, x) < 35^\circ$ by Proposition 2. Thus $\angle y_2 y_1 x > 180^\circ - (140^\circ + 35^\circ) = 5^\circ$.

FIGURE 6. Part of the constructed path

Proof of Theorem 5. We have to consider two cases.

Case 1. There is no steep pair in T(u, d) where $\tau(u) = 120^{\circ}$. We can apply Lemma 2 to T(u, v): setting $Y = X \cap T(c, v)$ there is no steep pair from Y in T(u, v). We get an α_3 -good path $y_1 \dots y_m$ on Y. Let $x_1 \dots x_k$ (where m + k = n) be the decreasing path on the points of $X \setminus Y$ which is an α_2 -good path on $X \setminus Y$ ($\alpha_2 = 100^{\circ}$). We claim that $x_1 \dots x_k y_1 \dots y_m$ is an α -good path on X. We only have to check its angles at x_k and y_1 . The angle at y_1 is at least α by Lemma 2. The pair $x_{k-1}x_k$ is not steep and $\tau(y_1) \leq \tau(x_k) < \tau(x_{k-1})$. Then Proposition 1 shows that the angle at x_k is at least $180^{\circ} - 90^{\circ} - 40^{\circ} > 5^{\circ}$.

The same method works when there is no steep pair in T(c, v) where $\tau(v) = 60^{\circ}$.

Define now $u, v, w \in L$ by $\tau(u) = 60^{\circ}$, $\tau(w) = 90^{\circ}$, and $\tau(v) = 120^{\circ}$. We are left with the following case.

Case 2. There is a steep pair $a_1, b_1 \in X \cap T(c, u)$ and a steep pair $a_2, b_2 \in X \cap T(v, d)$). By swapping names if necessary we may assume that $\tau(a_1) \leq \tau(b_1)$ and that $\tau(b_2) \leq \tau(a_2)$. Set $Y = T(c, w) \cap X \setminus \{a_1, b_1\}$ and $Z = T(w, d) \cap X \setminus \{a_2, b_2\}$. Lemma 2 applies to T(w, v) and Y because there is no steep pair from Y in T(w, v) (actually, no point of Y there at all). We get an α_3 -good path $y_1 \dots y_m$ on Y such that $\angle b_2 y_1 y_2 > 5^\circ$. The same lemma applies to Z and T(u, w) giving an α_3 -good path $z_1 \dots z_k$ on Z with $\angle b_1 z_k z_{k-1} > 5^\circ$. Here m + 4 + k = n, and the case when either Y or Z is empty or singleton is easy.

We claim finally that $z_1 \ldots z_k b_1 a_1 a_2 b_2 y_1 \ldots y_m$ is an α -good path, see Figure 6. We have to check the angles at a_1, b_1 and also at a_2, b_2 but the latter would follow by symmetry. Observe that $\tau(a_1) < \tau(b_1) \leq \tau(z_k)$ and $\sigma(z_k, b_1) < 35^\circ$. Then Proposition 1 shows that the angle at b_1 is at least $180^\circ - 90^\circ - 35^\circ > 5^\circ$. Finally, the pair a_1, b_1 is steep and $\tau(a_1) \leq \tau(b_1)$, and $\tau(a_2) - \tau(a_1) \geq 60^\circ > 30^\circ$. The spherical triangle with vertices b_1, a_1, a_2 satisfies the same conditions as the triangle y_2, y_1, x in Case 2b in the proof of Lemma 2. The same argument shows then that the angle at a_1 is larger than 5° .

IMRE BÁRÁNY AND ATTILA PÓR

7. Higher dimensions

In the paper [1] we proved the higher dimension analogue of Theorem 1 in the following form.

Theorem 6. For every $d \ge 2$ there is a positive α_d such that for every finite set of points $X \subset \mathbb{R}^d$ there exists an α_d -good path on X.

Here the value of α_d is $\pi/80$ (for d > 2), see [1]. The proof of Theorem 2 goes through in higher dimensions without any real difficulty, and gives the following result.

Theorem 7. There exists a constant $\alpha > 0$ such that for every $d \ge 2$ and for every finite set of points $X \subset S^d$ there exists an α -good path on X.

We omit the details.

8. Open problems

The same question comes up in more general settings. For instance when X is a finite subset of the boundary of a convex body (compact convex set with nonempty interior) $K \subset \mathbb{R}^3$ (and \mathbb{R}^d , $d \geq 2$). Again there is a shortest path \hat{ab} , the geodesic connecting a, b in ∂K . So an ordering x_1, \ldots, x_n of the elements of a finite set $X \subset \partial K$ gives rise to a path on ∂K . The angle at x_i is defined in the usual way. Extending Theorem 2 would mean that there is $\alpha > 0$ such that for every convex body $K \subset \mathbb{R}^3$ and for every finite $X \subset \partial K$ there is an ordering such that every angle of the corresponding path is at least α . We suspect that such a universal α exists.

The same problem can be considered on a smooth or piecewise linear manifold. We remark however that in the hyperbolic plane there are triangles with all three angles very small. The same thing occurs on other 2-dimensional manifolds for instance when they have three long "tentacles".

Here comes an abstract or combinatorial version of the same problem. Let X be a finite set. For every three elements a, b, c in X the combinatorial angle is a real number $\angle abc \in [0, 1]$ satisfying the following conditions:

- $\angle abc = \angle cba$ for all $a, b, c \in X$, (symmetry),
- $\angle abc + \angle cbd \ge \angle abd$ for all $a, b, c, d \in X$, (triangle inequality),
- $\angle abc + \angle bca + \angle cab \ge 1$ for all $a, b, c \in X$, (no small triangle).

The question is now whether there exists an $\varepsilon > 0$ such that for every finite set X with angles satisfying these three conditions there is an ordering x_1, \ldots, x_n of the elements of X such that $\angle x_{i-1}x_ix_{i+1} \ge \varepsilon$ for every $2 \le i \le n-1$.

It turns out that for every *n* there exists a largest number $\varepsilon = \varepsilon(n)$ such that if |X| = n there exist an ε -good path on *X*. In Lemma 3 below we show that if $\varepsilon(n)$ is not zero, then $\varepsilon(n) = \frac{1}{k}$ for some integer *k*. One can check the case n = 4 directly and show that $\varepsilon(4) = \frac{1}{6}$.

Let X be a finite set and let S be a subset of the combinatorial angles of X. We say that S is *blocking* if any path on X has an angle in S. Let $\angle_S abc$ be the smallest number t such that there are $b_0, \ldots, b_t \in X$, where $b_0 = a, b_t = c$ and all the combinatorial angles $\angle b_i bb_{i+1}$ for $i = 0, \ldots, t-1$ are in S. It is possible that $\angle_S abc = \infty$. Let $\alpha(S) = \min_{a,b,c \in X} (\angle_S abc + \angle_S bca + \angle_S cab)$. It is possible that $\alpha(S) = \infty$. Define $\alpha(n) = \max_{|X|=n,S \text{ is blocking }} \alpha(S)$. Clearly $\alpha(n)$ is an integer, or ∞ .

Lemma 3. If $\alpha(n)$ is an integer, then $\varepsilon(n) = \frac{1}{\alpha(n)}$.

Proof. Let S be the blocking set where $\alpha(S) = \alpha(n)$. Then the abstract combinatorial geomery with $\angle abc = \frac{\angle Sabc}{\alpha(S)}$ shows that $\varepsilon(n) \leq \frac{1}{\alpha(S)}$ since all the angles in S have that size, and S is blocking each path.

Assume that $\varepsilon(n) < \frac{1}{\alpha(n)}$. Then for some abstract geometry X every path contains an angle smaller than $\frac{1}{\alpha(n)}$. Let S be the set of all angles smaller than $\frac{1}{\alpha(n)}$. By definition S is blocking. By the triangle inequality $\angle abc < \frac{\angle sabc}{\alpha(n)}$ for any angle. Let abc be the triangle where $\alpha(S) = \angle sabc + \angle sbca + \angle scab$. Obviously $\angle abc + \angle bca + \angle cab < \frac{\alpha(S)}{\alpha(n)} \leq 1$ which is a contradiction.

Acknowledgements. Research of both authors were partially supported by ERC Advanced Research Grant 267165 (DISCONV). The first author was also supported by Hungarian National Research Grant K 111827.

References

- I. Bárány, A. Pór, P. Valtr: Paths without small angles. SIAM J. on Discrete Math., 23 (2009/10), 1655–1666.
- [2] J. Kynčl. Personal communication, 2011.
- [3] S. Fekete. Geometry and the Traveling Salesman Problem. PhD thesis, the University of Waterloo, 1992.
- [4] S. Fekete and G.J. Woeginger, Angle-restricted tours in the plane, Comput. Geom.: Theory and Appl. 8 (1997), 195–218.

MTA RÉNYI INSTITUTE, PO Box 127, H-1364 Budapest, Hungary, and Depart-Ment of Mathematics, University College London, Gower Street, London, WC1E 6BT, U.K.

E-mail address: barany@renyi.hu

DEPARTMENT OF MATHEMATICS, WESTERN KENTUCKY UNIVERSITY BOWLING GREEN, KY 42101, USA

E-mail address: apor@math.wku.edu