
PATHS ON THE SPHERE WITHOUT SMALL ANGLES

IMRE BÁRÁNY AND ATTILA PÓR

Abstract. It is a recent result that given a finitely many points on R2,
it is possible to arrange them on a polygonal path so that every angle on
the polygonal path is at least π/9. Here we extend this result to finite
sets contained in the 2-dimensional sphere.

1. Introduction and results

Let X be a finite set in R2. An ordering, x1, x2, . . . , xn, of the points of
X gives rise to a polygonal path p = x1x2 . . . xn on X: its edges are the
segments connecting xi to xi+1. The angle of p at xi is just ∠xi−1xixi+1.
The path is called α-good if all of its angles are at least α where α > 0.
Answering a question of Sándor Fekete [3] from 1992, (cf [4] as well) we
proved in [1] the following result.

Theorem 1. If X is a finite set in the plane, then there is an α0-good path
on X with α0 = 20◦ = π/9.

The aim of this paper is to extend this result to finite sets X ⊂ S2, the
2-dimensional Euclidean sphere. The definitions are almost the same. Given
a, b ∈ S2 there is a shortest path âb ⊂ S2 connecting a and b in S2. This
shortest path is an arc of the great circle containing a and b, and is unique
unless a and b are antipodal. An ordering, x1, x2, . . . , xn, of the points of
X is identified with a path x1x2 . . . xn on X consisting of the arcs x̂ixi+1.
The angle of this path at xi is just the spherical angle at xi of the spherical
triangle with vertices xi−1, xi, xi+1. The path is called α-good if all of its
angles are at least α where α > 0.

Theorem 2. There is α > 0 such that for every finite set X ⊂ S2 there
exists an α-good path on the points of X (using every point of X exactly
once).

The proof gives α = 5◦ via generous computations. Slightly larger value
for α can be reached by more careful calculations but we have not tried to
find the best possible α. The planar example consisting of the vertices of an
equilateral triangle and its center shows that Theorem 1 cannot hold with
α0 > 30◦. The same applies to the spherical case as shown by a small size
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spherical and equilateral triangle in S2. Jan Kynčl [2] has proved recently
that Theorem 1 holds with α = 30◦, the best possible bound. Using his
results the bound α = 5◦ can be improved to α = 7◦.

The same question can be asked on higher dimensional spheres Sd. The
methods of this paper work there as well, resulting in a smaller universal α,
see Section 6.

We will need a stronger version of Theorem 1 which is proved in [1]. To
state it a few additional definitions are needed. The direction xy of a pair
x, y ∈ R2 is the unit vector (y − x)/|y − x|, we suppose here that x 6= y. So
xy ∈ S1, the unit circle.

Given a path z1z2 . . . zn in the plane the directions z2z1 and zn−1zn are
called the end directions of the path. We call a subset R of S1 a restriction
if it is the disjoint union of two closed arcs R1, R2 ⊂ S1 such that both
have length 4α0 and their distance from each other (along the unit circle)
is larger than 2α0. (Recall that α0 = 20◦.) We call the path z1 . . . zn R-
avoiding if the path is α0-good and the two end directions are not in the
same Ri (i = 1, 2).

Theorem 3. Let X be a finite set of points in the plane. For every restric-
tion R there is an R-avoiding path on all the points of X.

2. Preparations

In the proofs to come we assume that our finite set X ⊂ S2 contains
no antipodal pair. The general case follows from this by a simple limit
argument.

Given a, b ∈ S2, the length of the arc âb is simply the angle between the
vectors a and b, measured in degrees (sometimes in radians). Of course the
length of âb can be expressed by the Euclidean distance |a − b|. The pair
a, b ∈ X is a diameter of X if it has the largest length among all pairs in X.

For the proof of Theorem 2 we need two auxiliary results. The first one
is simpler: it is essentially the planar case, that is Theorem 1 applied on S2.
Precisely, let P be a plane touching S2 at a point z ∈ S2 and let C = C(t)
be the cap of S2 defined by

C(t) = {x ∈ S2 : z · x ≥ t}
where t ∈ (0, 1).

Theorem 4. If X ⊂ C(t) is finite, then there is an α(t)-good path on X
where α(t) ∈ (0, 90◦) is given by sinα(t) = t sin 20◦.

The proof is given in Section 4. The following corollary to Theorem 4 will
be used in the proof of Theorem 2. Note that α(1/2) = 9.846..◦ > 9◦. Set
α1 = 9◦.

Corollary 1. If the diameter of X is at most 60◦, then there is an α1-good
path on X.
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Figure 1. The spherical halfslab Q(a, b) and its planar representation

To state the second auxiliary result we need some definitions. Let a, b ∈ X
form a diameter of X ⊂ S2. Set c = (a− b)/|a− b| so c ∈ S2. Choose e ∈ S2

that is orthogonal to both c and a+ b. Let β = 10◦. We define the halfslab
Q = Q(a, b) as

Q = {x ∈ S2 : (a+ b) · x ≥ 0, |e · x| ≤ sinβ},
see Figure 1. Here is the second auxiliary result.

Theorem 5. If a, b form a diameter of X and X ⊂ Q(a, b), then there is
an α-good path on X (where α = 5◦).

We prove this theorem in Section 6 with some preparations in Section
5. The next section contains the proof of Theorem 2. It is essentially an
induction argument reducing the problem to two cases: when X lies in a
cap C(t) for some t and when X lies in the halfslab Q(a, b). These two cases
are covered by Theorems 4 and 5.

3. Proof of Theorem 2

We introduce further terminology and notation before the proof. Given
u, v ∈ S2 with u 6= ±v, let L(u; v) be the half of the great circle connecting u
to −u that contains v. The union of L(u; v) and L(u;w) (when w /∈ L(u; v))
is a closed curve without self-intersection on S2 so it splits S2 into two
connected components to be called sectors. Let E(u; v, w) denote the smaller
one of the two. No confusion will arise here since E(u; v, w) will always be
much smaller than the other sector.

Note that for x, y ∈ E(u; v, w) the arc x̂y ⊂ E(u; v, w).
Let L(u; z) be the half of the great circle exactly halving E(u; v, w). Let

γ be the angle between the planes L(u; v) and L(u; z), we call γ the angle
of the sector E(u; v, w). Note that this angle is at most 90◦ always.

We will often write E(u; γ, z) or simply E(u; γ) instead of E(u; v, w) where
γ is the angle of this sector, especially when v and w are not important.
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Proof of Theorem 2. It goes by induction on |X|. Everything is easy
when |X| = 1, 2 or 3. Suppose now that |X| > 3. Assume that there is a
spherical triangle4 with vertices a, b, c with all of its angles at least 2α which
is not contained in any sector E(z;α) when z ∈ X. Then induction works
as follows. Find first an α-good path p = x1x2 . . . xn on X \ {a, b, c}. Define
E(x1;α) as E(x1;α, x2) if n > 1 (that is, |X| > 4), and as E(x1;α, c) if
n = 1. As some vertex of 4, say a, is not contained in E(x1;α), ax1x2 . . . xn
is an α-good path. The angle of 4 at a is at least 2α so either ∠bax1 or
∠cax1 ≥ α. Suppose, say, that ∠bax1 ≥ α. Then cbax1 . . . xn is an α-good
path on X, even ∠cba ≥ 2α.

So we can assume that no such triangle 4 exists. If the diameter of X
is at most 60◦, then Corollary 1 applies and gives an α1-good path on X
(where α1 = 9◦). So suppose that the diameter, formed by the pair a, b ∈ X
is at least 60◦.

Observe now that âb is contained in no sector E(z;α) with z ∈ X \{a, b}.
Indeed, âb is the longest side of the spherical triangle with vertices a, b, z.
Then the largest angle of this triangle is at vertex z, and this largest angle
is more than 60◦ > 2α.

We claim now that no point of X is outside of the set

F := E(a; 2α, b) ∪ E(b; 2α, a).

Assume the contrary and let c ∈ X \ F . All angles of the spherical triangle
4 with vertices a, b, c are larger than 2α: the angle at c is at least 60◦ > 2α
as we just saw, while for the angles at a, b this follows from c /∈ F . The
triangle 4 is not contained in any sector E(z;α) for z ∈ X \ {a, b} as âb is
not contained in such a sector. Further 4 ⊂ E(a;α) is impossible because
c /∈ E(a; 2α, b), and 4 ⊂ E(b;α) cannot hold for the same reason. Thus 4
is not contained in any sector E(z, α), z ∈ X, contradicting our previous
assumption.

Consequently

X ⊂ F ∩ {x ∈ S2 : |x− a|, |x− b| ≤ |a− b|}.
We observe that the set F ∩{x ∈ S2 : |x−a|, |x−b| ≤ |a−b|} is contained

in the halfslab Q(a, b). Then Theorem 5 applies and finishes the proof. �

4. Proof of Theorem 4

For x ∈ C(t) let x∗ denote its radial projection (from the origin which is
the center of S2) to P . Then X∗, the radial projection of X, is a finite set
in the plane P . So by Theorem 1 there is a polygonal path p∗ = x∗1 . . . x

∗
n

on X∗ with all of its angles at least 20◦. The next lemma implies that the
path p = x1 . . . xn on X is α(t)-good.

Lemma 1. Assume a, b, c ∈ C(t). Let the angle of the spherical triangle abc
at c be φ < 90◦ and that of the (planar) triangle a∗b∗c∗ at c∗ be φ∗. Then
sinφ ≥ t sinφ∗ if φ∗ ≤ 90◦ and sinφ ≥ t if φ∗ > 90◦.
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Figure 2. Proof of Lemma 1

Proof. Let K ⊂ R3 be the cone consisting of all the points of the form
αa + βb + γc where α, β ≥ 0 and γ ∈ R. Its boundary consists of two
halfplanes A = {αa+ γc : α ≥ 0} and B = {βb+ γc : β ≥ 0}. The angle of
this cone is φ ∈ (0, 180◦), which is the same as the angle between the two
halfplanes A,B. The plane P that is tangent to S2 at z intersects K in a
2-dimensional cone with angle φ∗. Translate P by −z. The translated copy
P1 contains the origin and intersects K in a 2-dimensional cone whose angle
is also φ∗. We assume first that φ∗ ≤ 90◦.

The condition c ∈ C(t) implies that z · c ≥ t.
Let S be the unit circle centered at the origin in the plane orthogonal to

c. We can assume that a = S ∩A and b = S ∩B as the angle φ remains the
same. The plane P1 intersects the lines {a+λc : λ ∈ R} resp. {b+λc : λ ∈ R}
in points a1 and b1. Let T resp. T1 be the triangle with vertices 0, a, b and
0, a1, b1, see Figure 2.

Then Area T = 1
2 sinφ, and Area T1 = 1

2 |a1| · |b1| sinφ∗ ≥ 1
2 sinφ∗ since

|a1|, |b1| ≥ 1. As T is the orthogonal projection of T1 to the plane orthogonal
to c, Area T = cos γArea T1 where γ is the angle of the planes containing T
and T1. Here cos γ = c · z so we have

sinφ ≥ c · z sinφ∗ ≥ t sinφ∗

finishing the proof when φ∗ ≤ 90◦.

In the case φ∗ > π
2 fix c and b and rotate a towards b around the line

through 0 and c. The angles φ and φ∗ will continuously decrease. Rotate
a till φ∗1 = 90◦. Now sinφ ≥ sinφ1 ≥ t sinφ∗1 = t which finishes the proof.

�

5. Decreasing paths

Some preparations are needed before the proof of Theorem 5. We assume
that S2 is centered at the origin. For A ⊂ R3 we let lin A denote the linear
hull of A. We call the 2-dimensional plane H = lin {a, b} the horizontal
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Figure 3. The two cases in Proposition 1

plane. H intersects the halfslab Q = Q(a, b) in the halfcircle L = L(c; a)
whose endpoints are c and d = −c. Let e be the unit normal vector of H.

The slope of a pair x, y ∈ X is the angle between H and the 2-plane
lin {x, y}. We denote this angle by σ(x, y). Note that σ(x, y) ∈ [0, 90◦]
always. We call a pair x, y ∈ X steep if σ(x, y) ≥ 400.

If there is no steep pair in X, then one can construct an α2-good path on
X with α2 = 100◦ very easily. For x ∈ Q let h(x) = e · x (the height of x)
and let τ(x) be the angle between c and the midpoint of the half great circle
L(e;x). (Thus for instance, τ(c) = 0 and τ(d) = 180◦). Order the points of
X by decreasing τ(x) and call the resulting path the decreasing path of X.
The following proposition shows that all angles of the decreasing path are
at least 180◦ − 2 · 40◦ = 100◦.

Proposition 1. Assume x, y, z ∈ Q and let γ be the angle of the spherical
triangle with vertices x, y, z at vertex y. If τ(x) ≤ τ(y) ≤ τ(z), then γ ≥
180◦ − σ(x, y)− σ(y, z).

Proof. We may assume by symmetry that h(y) ≥ 0. To simplify the
proof we also assume that τ(x) < τ(y) < τ(z) and h(y) > 0. The general
case follows from this by a simple limit argument.

Observe next that x can be replaced by any point (distinct from y) on
the arc x̂y. The same applies to z. So we assume that x and z are close to
y, in particular, h(x), h(z) > 0.

The first and basic case is when z lies below the plane lin {x, y}. Then
the half-circles L(y;x), L(y; z) and the great circle H∩S2 delimit a spherical
triangle 4, see Figure 3 left. The angle of 4 at y coincides with ∠xyz, and
its other two angles are σ(x, y) and σ(y, z). Thus ∠xyz ≥ 180◦ − σ(x, y)−
σ(y, z), indeed.

The second case is when z is above the plane lin {x, y}. Choose points
x1 and z1 in S2 close to, but distinct from, y so that y ∈ x̂x1 and y ∈ ẑz1,
see Figure 3 right. Then τ(z1) < τ(y) < τ(x1), and h(z1), h(y), h(x1) are
all positive, and x1 lies below the plane lin {z1, y}. The previous basic case
applies now to z1, y, x1 in place of x, y, z. Thus ∠z1yx1 ≥ 180◦ − σ(z1, y)−
σ(y, x1). Here ∠z1yx1 = ∠xyz and σ(z1, y) = σ(y, z) and σ(y, x1) = σ(x, y).
Consequently ∠xyz ≥ 180◦ − σ(x, y)− σ(y, z) again. �
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We remark that the decreasing path method is applicable to any subset,
say Y , of X that contains no steep pair. In that case the decreasing path
on Y is α2-good.

6. Proof of Theorem 5

For u, v ∈ L with τ(u) < τ(v) we define

T (u, v) = {x ∈ Q : τ(u) ≤ τ(x) ≤ τ(v)}.
Now let u, v ∈ L be two points with τ(v) − τ(u) = 30◦. Thus c, u, v, d

come on L in this order.

Proposition 2. If x, y ∈ X with x ∈ T (c, u) and y ∈ T (v, d), then σ(x, y) <
35◦.

Proof. The spherical cotangent formula (see spherical trigonometry on
wikipedia, for instance) says that cos c cosB = cot a sin c−cotA sinB where
a, b, c are the sides, and A,B,C the opposite angles of the spherical triangle.
With b = 10◦, c = 15◦, B = 90◦ this shows that the angle in question is at
most arccot(cot 10◦ sin 15◦) = 34.2656.., indeed smaller than 35◦. �

Define now t = sin 15◦ cos 10◦ = 0.25488.. and set α3 ∈ (0, 90◦) by

sinα3 = t sin 20◦ = 0.087176..

and α3 > 5◦ follows.

Lemma 2. Assume again that u, v ∈ L with τ(v) − τ(u) = 30◦, and that
τ(u) ∈ [90◦, 120◦] and further that there is no steep pair from X in T (u, v).
Set Y = X ∩T (c, v). Then there is an α3-good path y1 . . . ym on Y such that
∠xy1y2 > 5◦ for every x ∈ T (v, d).

Proof. The conditions imply that τ(v) ≤ 150◦. Then a simple compu-
tation shows that Y is contained in a cap C(t) with center z ∈ L where
t = sin 15◦ cos 10◦. This value for t = cos b comes from the spherical cosine
theorem cos b = cos c cos a+ sin c sin b cosB with B = 90◦, c = 75◦, a = 10◦.
Project Y radially to the plane P that touches S2 at z. We get a finite set
Y ∗ in P . The unit circle S ⊂ P is centered at z. Let R = R1 ∪ R2 ⊂ S
be the restriction in P where the line H ∩ P halves both R1 and R2. The
radial projection c∗ of c lies in P and we choose the names so that c∗ ∈ R1.

According to Theorem 3, there is a 20◦-good path y∗1y
∗
2 . . . y

∗
m on Y ∗ which

is R-avoiding, that is, not both end directions are in the same Ri. Here we
choose the names so that y∗2y

∗
1 /∈ R1. Theorem 4 implies that y1 . . . ym is an

α3-good path on Y ⊂ S2.

We have to check that ∠xy1y2 > 5◦ for every x ∈ T (v, d). We distinguish
two cases.

Case 1. When y1, y2 is not a steep pair. Then, as is easy to check, the
angle between the line spanned by y∗1, y

∗
2 and the line H ∩P is smaller than



8 IMRE BÁRÁNY AND ATTILA PÓR
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40◦, so y∗2y
∗
1 ∈ R2. Then τ(y2) < τ(y1) ≤ τ(x). Proposition 1 shows that

∠xy1y2 ≥ 180◦ − 90◦ − 40◦ > 5◦.

Case 2. When y1, y2 is a steep pair. Then at least one of y1 and y2 is
in T (c, u). We assume by symmetry that h(y1) ≥ h(y2). Clearly τ(x) >
τ(y1), τ(y2). There are two subcases.

Case 2a. When τ(y2) ≤ τ(y1). Then y2 ∈ T (c, u) and the angle in
question decreases if x is pushed down to h(x) = − sin 10◦ while keeping
τ(x) the same. The halfcircle L(e; y1) cuts the angle ∠xy1y2 into two parts,
see Figure 4. Assume that ∠xy1y2 ≤ 5◦, then both parts are at most 5◦.
The spherical cosine theorem implies then that τ(y1) − τ(y2) ≤ 5◦ and
τ(x)− τ(y1) ≤ 5◦, contradicting τ(x)− τ(y2) ≥ 30◦.

Case 2b. When τ(y1) ≤ τ(y2). Then y1 ∈ T (c, u). The angle in question
decreases again if x is pushed down to h(x) = − sin 10◦ while keeping τ(x)
the same. Note that while x is pushed down, y1, y2 and x do not become
coplanar as otherwise y1, x would become a steep pair contradicting Propo-
sition 2. Let 4 be the spherical triangle delimited by L,L(x; y1), L(y2; y1),
see Figure 5. The angle of 4 at vertex y1 equals ∠y2y1x. The other two
angles of 4 are 180◦ − σ(y1, y2) ≤ 140◦ because y1, y2 is a steep pair, and
σ(y1, x) < 35◦ by Proposition 2. Thus ∠y2y1x > 180◦ − (140◦ + 35◦) =
5◦. �
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Proof of Theorem 5. We have to consider two cases.

Case 1. There is no steep pair in T (u, d) where τ(u) = 120◦. We can
apply Lemma 2 to T (u, v): setting Y = X ∩ T (c, v) there is no steep pair
from Y in T (u, v). We get an α3-good path y1 . . . ym on Y . Let x1 . . . xk
(where m+ k = n) be the decreasing path on the points of X \ Y which is
an α2-good path on X \ Y (α2 = 100◦). We claim that x1 . . . xky1 . . . ym is
an α-good path on X. We only have to check its angles at xk and y1. The
angle at y1 is at least α by Lemma 2. The pair xk−1xk is not steep and
τ(y1) ≤ τ(xk) < τ(xk−1). Then Proposition 1 shows that the angle at xk is
at least 180◦ − 90◦ − 40◦ > 5◦.

The same method works when there is no steep pair in T (c, v) where
τ(v) = 60◦.

Define now u, v, w ∈ L by τ(u) = 60◦, τ(w) = 90◦, and τ(v) = 120◦. We
are left with the following case.

Case 2. There is a steep pair a1, b1 ∈ X ∩ T (c, u) and a steep pair
a2, b2 ∈ X ∩ T (v, d)). By swapping names if necessary we may assume that
τ(a1) ≤ τ(b1) and that τ(b2) ≤ τ(a2). Set Y = T (c, w) ∩ X \ {a1, b1} and
Z = T (w, d)∩X \{a2, b2}. Lemma 2 applies to T (w, v) and Y because there
is no steep pair from Y in T (w, v) (actually, no point of Y there at all).
We get an α3-good path y1 . . . ym on Y such that ∠b2y1y2 > 5◦. The same
lemma applies to Z and T (u,w) giving an α3-good path z1 . . . zk on Z with
∠b1zkzk−1 > 5◦. Here m + 4 + k = n, and the case when either Y or Z is
empty or singleton is easy.

We claim finally that z1 . . . zkb1a1a2b2y1 . . . ym is an α-good path, see
Figure 6. We have to check the angles at a1, b1 and also at a2, b2 but the
latter would follow by symmetry. Observe that τ(a1) < τ(b1) ≤ τ(zk) and
σ(zk, b1) < 35◦. Then Proposition 1 shows that the angle at b1 is at least
180◦ − 90◦ − 35◦ > 5◦. Finally, the pair a1, b1 is steep and τ(a1) ≤ τ(b1),
and τ(a2)−τ(a1) ≥ 60◦ > 30◦. The spherical triangle with vertices b1, a1, a2

satisfies the same conditions as the triangle y2, y1, x in Case 2b in the proof
of Lemma 2. The same argument shows then that the angle at a1 is larger
than 5◦. �
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7. Higher dimensions

In the paper [1] we proved the higher dimension analogue of Theorem 1
in the following form.

Theorem 6. For every d ≥ 2 there is a positive αd such that for every finite
set of points X ⊂ Rd there exists an αd-good path on X.

Here the value of αd is π/80 (for d > 2), see [1]. The proof of Theorem 2
goes through in higher dimensions without any real difficulty, and gives the
following result.

Theorem 7. There exists a constant α > 0 such that for every d ≥ 2 and
for every finite set of points X ⊂ Sd there exists an α-good path on X.

We omit the details.

8. Open problems

The same question comes up in more general settings. For instance when
X is a finite subset of the boundary of a convex body (compact convex set
with nonempty interior) K ⊂ R3 (and Rd, d ≥ 2). Again there is a shortest
path âb, the geodesic connecting a, b in ∂K. So an ordering x1, . . . , xn of the
elements of a finite set X ⊂ ∂K gives rise to a path on ∂K. The angle at xi
is defined in the usual way. Extending Theorem 2 would mean that there is
α > 0 such that for every convex body K ⊂ R3 and for every finite X ⊂ ∂K
there is an ordering such that every angle of the corresponding path is at
least α. We suspect that such a universal α exists.

The same problem can be considered on a smooth or piecewise linear
manifold. We remark however that in the hyperbolic plane there are tri-
angles with all three angles very small. The same thing occurs on other
2-dimensional manifolds for instance when they have three long ”tentacles”.

Here comes an abstract or combinatorial version of the same problem.
Let X be a finite set. For every three elements a, b, c in X the combinatorial
angle is a real number ∠abc ∈ [0, 1] satisfying the following conditions:

• ∠abc = ∠cba for all a, b, c ∈ X, (symmetry),
• ∠abc+ ∠cbd ≥ ∠abd for all a, b, c, d ∈ X, (triangle inequality),
• ∠abc+ ∠bca+ ∠cab ≥ 1 for all a, b, c ∈ X, (no small triangle).

The question is now whether there exists an ε > 0 such that for every
finite set X with angles satisfying these three conditions there is an ordering
x1, . . . , xn of the elements of X such that ∠xi−1xixi+1 ≥ ε for every 2 ≤ i ≤
n− 1.

It turns out that for every n there exists a largest number ε = ε(n) such
that if |X| = n there exist an ε-good path on X. In Lemma 3 below we
show that if ε(n) is not zero, then ε(n) = 1

k for some integer k. One can
check the case n = 4 directly and show that ε(4) = 1

6 .
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Let X be a finite set and let S be a subset of the combinatorial angles of X.
We say that S is blocking if any path on X has an angle in S. Let ∠Sabc be
the smallest number t such that there are b0, . . . , bt ∈ X, where b0 = a, bt = c
and all the combinatorial angles ∠bibbi+1 for i = 0, . . . , t− 1 are in S. It is
possible that ∠Sabc =∞. Let α(S) = mina,b,c∈X(∠Sabc+ ∠Sbca+ ∠Scab).
It is possible that α(S) = ∞. Define α(n) = max|X|=n,S is blocking α(S).
Clearly α(n) is an integer, or ∞.

Lemma 3. If α(n) is an integer, then ε(n) = 1
α(n) .

Proof. Let S be the blocking set where α(S) = α(n). Then the abstract
combinatorial geomery with ∠abc = ∠Sabc

α(S) shows that ε(n) ≤ 1
α(S) since all

the angles in S have that size, and S is blocking each path.
Assume that ε(n) < 1

α(n) . Then for some abstract geometry X every
path contains an angle smaller than 1

α(n) . Let S be the set of all angles
smaller than 1

α(n) . By definition S is blocking. By the triangle inequality

∠abc < ∠Sabc
α(n) for any angle. Let abc be the triangle where α(S) = ∠Sabc+

∠Sbca + ∠Scab. Obviously ∠abc + ∠bca + ∠cab < α(S)
α(n) ≤ 1 which is a

contradiction. �
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