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ABSTRACT

The pinning down number pd(X) of a topological space X is the small-

est cardinal κ such that for any neighborhood assignment U : X → τX
there is a set A ∈ [X]κ with A ∩ U(x) �= ∅ for all x ∈ X. Clearly,

c(X) ≤ pd(X) ≤ d(X).

Here we prove that the following statements are equivalent:

(1) 2κ < κ+ω for each cardinal κ;

(2) d(X) = pd(X) for each Hausdorff space X;

(3) d(X) = pd(X) for each 0-dimensional Hausdorff space X.

This answers two questions of Banakh and Ravsky.

The dispersion character Δ(X) of a space X is the smallest cardinality

of a non-empty open subset of X. We also show that if pd(X) < d(X)

then X has an open subspace Y with pd(Y ) < d(Y ) and |Y | = Δ(Y ),

moreover the following three statements are equiconsistent:

(i) There is a singular cardinal λ with pp(λ) > λ+, i.e., Shelah’s Strong

Hypothesis fails;

(ii) there is a 0-dimensional Hausdorff space X such that |X| = Δ(X)

is a regular cardinal and pd(X) < d(X);

(iii) there is a topological space X such that |X| = Δ(X) is a regular

cardinal and pd(X) < d(X).

We also prove that

• d(X) = pd(X) for any locally compact Hausdorff space X;

• for every Hausdorff space X we have |X|≤22
pd(X)

and pd(X)<d(X)

implies Δ(X) < 22
pd(X)

;

• for every regular space X we have min{Δ(X), w(X)} ≤ 2pd(X) and

d(X) < 2pd(X), moreover pd(X) < d(X) implies Δ(X) < 2pd(X).

1. Introduction

Definition 1.1: Let X be a topological space. We say that A ⊂ X pins down

a neighborhood assignment U : X → τX iff

A ∩ U(x) �= ∅

for all x ∈ X . The pinning down number pd(X) of X is the smallest cardinal

κ such that every neighborhood assignment on X can be pinned down by a set

of size κ.

Clearly, for any space X we have

c(X) ≤ pd(X) ≤ d(X).
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The pinning down number has been recently introduced in [2] under the name

“foredensity” and it was denoted there by �−(X). The following two interesting

results concerning the pinning down number were also established in [2]:

• [2, Theorem 5.2] If |X | < ℵω then pd(X) = d(X).

• [2, Corollary 5.4] If κ is any singular cardinal then there is a T1 semi-

topological group X such that

pd(X) = cf(κ) < κ = d(X) = |X | = Δ(X).

Moreover, if κ < 22
cf(κ)

then X is even Hausdorff and totally discon-

nected.

The following two natural problems were then raised in [2]:

• [2, Problem 5.5] Is there a ZFC example of a Hausdorff space X with

pd(X) < d(X)?

• [2, Problem 5.6] Is it consistent to have a regular space X with

pd(X) < d(X)?

Our next result completely settles both of these problems.

Theorem 1.2: The following three statements are equivalent:

(1) 2κ < κ+ω for each cardinal κ;

(2) d(X) = pd(X) for every Hausdorff space X ;

(3) d(X) = pd(X) for every 0-dimensional Hausdorff space X .

We shall say that a topological space X is neat iff X �= ∅ and |X | = Δ(X),

where the dispersion character Δ(X) of X is the smallest cardinality of a

non-empty open subset of X . In other words, X is neat iff all non-empty open

sets in X have the same size. We shall show in the next section that any space

X satisfying pd(X) < d(X) has a neat open subspace Y with pd(Y ) < d(Y ).

The examples that Banakh and Ravsky constructed in the proof of [2, Corol-

lary 5.4], as well as the examples we first constructed in our proof of Theorem

1.2 were both neat and of singular cardinality. Hence it was natural for us to

raise the question if witnesses for pd(X) < d(X) that are both neat and of

regular cardinality could also be found.

Before discussing our answer to this question, we need to recall Shelah’s

Strong Hypothesis which is the following statement:

(1.1) pp(μ) = μ+ for all singular cardinals μ.
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Our next result gives an answer to the previous question that is complete up

to consistency.

Theorem 1.3: The following statements are equiconsistent:

(i) Shelah’s Strong Hypothesis fails;

(ii) there is a neat 0-dimensional Hausdorff space X of regular cardinality

with pd(X) < d(X);

(iii) there is a neat topological space X of regular cardinality with

pd(X) < d(X).

We shall prove both Theorems 1.2 and 1.3 in section 3.

In the last section of the paper we shall establish several interesting inequal-

ities involving the pinning down number. Perhaps the most interesting and

surprising of these is Theorem 4.1, which states that |X | ≤ 22
pd(X)

holds for ev-

ery Hausdorff space X . This, of course, improves Pospǐsil’s classical inequality

|X | ≤ 22
d(X)

.

2. Preliminary results

In this section we present several rather simple results that, however, will be

frequently used in the proofs of our main results. We start with a proposition

that describes the monotonicity properties of pd(X). These are so obvious that

we omit their proofs.

Proposition 2.1: (i) If G is an open subspace of X then pd(G) ≤ pd(X);

(ii) if f : X → Y is a continuous onto map then pd(Y ) ≤ pd(X).

We now give the result that was promised in the introduction.

Lemma 2.2: If pd(X) < d(X) then X has a neat open subspace Y with

pd(Y ) < d(Y ).

Proof of Lemma 2.2. Clearly, every non-empty open set in X has a neat open

subset, hence if U is a maximal family of pairwise disjoint neat open subsets of

X then
⋃U is dense open in X and, consequently, d(

⋃U) = d(X). Let us put

V = {U ∈ U : d(U) ≤ pd(X)};



Vol. 215, 2016 PINNING DOWN VS DENSITY 587

then |V| ≤ c(X) ≤ pd(X) implies

d(∪V) ≤ pd(X) < d(X) = d
(⋃

U
)
,

and so V �= U . But every Y ∈ U \ V is neat open and, by definition, satisfies

d(Y ) > pd(X) ≥ pd(Y ).

The basic idea of the following lemma goes back to [2].

Lemma 2.3: Assume that λ ≤ |X |=Δ(X)=κ. If there is a family A ⊂ [κ]<d(X)

with |A| = κ such that

[κ]<λ =
⋃
A∈A

[A]<λ

then pd(X) ≥ λ. In particular, if for every cardinal μ < d(X) we have

cf([κ]μ,⊂) = κ then pd(X) = d(X).

Proof of Lemma 2.3. We may assume that the underlying set of X is κ. Write

A = {Aν : ν < κ} and, by transfinite recursion, pick points {xν : ν < κ} from

X such that for each ν < κ

xν ∈ (X \Aν) \ {xμ : μ < ν}.

This can be done because Aν is not dense in X , hence |X \Aν | = κ.

Let U be a neighborhood assignment of X such that

U(xν) = X \Aν

for all ν < κ. For every D ∈ [X ]<λ then, by our assumption, there is ν < κ

with D ⊂ Aν , hence D∩U(xν) = ∅, i.e., D does not pin down U . Consequently,

we indeed have pd(X) ≥ λ.

The second statement follows by applying the first one with λ = μ+ for all

μ < d(X).

It is well-known that for every infinite cardinal κ < ℵω we have

cf([κ]<κ,⊂) = κ,

so we can easily deduce from the previous two lemmas that |X | < ℵω implies

pd(X) = d(X). Our next two results give further ways to deduce this equality.

Lemma 2.4: If X satisfies Δ(X) ≥ π(X) then pd(X) = d(X).
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Proof. Write κ = π(X) and let P = {Uν : ν < κ} be a π-base of X . By

transfinite recursion we may then pick points {xν : ν < κ} from X such that

for each ν < κ

xν ∈ Uν \ {xμ : μ < ν}.
This is possible because |Uν | ≥ Δ(X) ≥ κ.

Let U be a neighborhood assignment on X such that

U(xν) = Uν

holds for all ν < κ. Then any set that pins down U meets every member of P ,

and so is dense in X , hence pd(X) = d(X).

Lemma 2.5: If X is any topological space and

G = {G ∈ τX : π(G) ≤ |G|}
is a π-base of X then pd(X) = d(X).

Proof. Clearly, if G is a π-base of X then so is

H = {G ∈ G : |G| = Δ(G)}
and, by Lemma 2.4, we have

pd(G) = d(G)

for all G ∈ H.

Let U be a maximal family of pairwise disjoint elements of H. Then
⋃U is

dense open in X and |U| ≤ c(X) ≤ pd(X). So we have

d(X) = d
(⋃

U
)
=

∑
U∈U

d(U) =
∑
U∈U

pd(U) ≤ |U| · pd(X) = pd(X),

and hence pd(X) = d(X).

As a corollary of this we get the following result.

Theorem 2.6: For every locally compact Hausdorff space X we have pd(X) =

d(X).

Proof. By Lemma 2.5 it suffices to show that

{G ∈ τX : π(G) ≤ |G|}
is a π-base of X .
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But it is well-known that even the weight of a locally compact Hausdorff

space is less than or equal to its cardinality, hence we have π(G) ≤ |G| for all

non-empty open sets G in X .

It is, of course, a natural question to raise if this equality holds for the mem-

bers of other classes of spaces. In particular, we could not answer the following

questions.

Problem 2.7: Does pd(X) = d(X) hold true if X is

(i) regular σ-compact, or

(ii) regular Lindelöf, or

(iii) regular countably compact, or

(iv) monotonically normal ?

3. The pinning down number and cardinal arithmetic

Our first result in this section establishes the implication (1) ⇒ (2) in Theorem

1.2.

Theorem 3.1: If X is any Hausdorff space with

μ ≤ |X | = Δ(X) < μ+ω

where μ is strong limit, then d(X) = pd(X).

Proof of Theorem 3.1. Since μ ≤ |X | ≤ 22
d(X)

and μ is strong limit, we have

d(X) ≥ μ. Now we distinguish two cases.

Case 1. d(X) = μ.

Instead of our space (X, τ) we may take a coarser Hausdorff topology σ on

X such that for the space X∗ = (X, σ) we have w(X∗) ≤ |X | = |X∗|. Clearly,

we also have pd(X∗) ≤ pd(X). Since μ is strong limit and X∗ is Hausdorff,

d(X∗) = μ holds as well.

We also have Δ(X∗) = Δ(X) = |X | = |X∗| ≥ w(X∗) ≥ π(X∗), hence by

Lemma 2.4, d(X∗) = pd(X∗). So we have

μ = d(X∗) = pd(X∗) ≤ pd(X) ≤ d(X) = μ,

which completes the proof in this case.

Case 2. d(X) > μ.

Then d(X) = λ+ for some cardinal λ ≥ μ and |X | = λ+m for some 0 < m < ω.

But then we have cf([λ+m]λ,⊂) = λ+m and so Lemma 2.3 may be applied to

conclude pd(X) ≥ λ+ = d(X).
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In order to establish the implication (3) ⇒ (1) in Theorem 1.2 we clearly

need to show how to construct a 0-dimensional Hausdorff space X satisfying

pd(X) < d(X) from the assumption that 2κ > κ+ω for some cardinal κ. Note

that in this case κ+ω is a singular cardinal that is not strong limit. In fact,

our construction may be carried out for any singular cardinal that is not strong

limit.

Actually, we shall introduce two extra parameters σ and 
 in the construction

which are not needed just for the proof of Theorem 1.2. The role of σ is to show

a great deal of flexibility in the choice of the density of the space we construct,

while 
 will be used in the proof of Theorem 1.3,

Before formulating our result we first present Shelah’s definition of the “pseu-

dopower” pp(μ) of an arbitrary singular cardinal μ. This will be necessary to

understand our construction.

In what follows, Reg denotes the class of regular cardinals. For a singular

cardinal μ we let

S(μ) = {a ∈ [μ ∩Reg]cf(μ) : sup a = μ}

and, for a ∈ S(a),

U(a) = {D : D is an ultrafilter on a with D ∩ Jbd[a] = ∅},

where Jbd[a] denotes the ideal of bounded subsets of a. The pseudopower

pp(μ) of a singular cardinal μ is now defined as follows (see, e.g., [1]).

Definition 3.2: If μ is any singular cardinal then

pp(μ) = sup
{
cf
(∏

a/D
)
: a ∈ S(μ) and D ∈ U(a)

}
.

It will be useful to give the following, obviously equivalent, reformulation of

this:

pp(μ) = sup
{
cf
( ∏

i∈cf(μ)

k(i)/D
)
: k ∈ cf(μ)(μ ∩Reg) and

D is an ultrafilter on cf(μ) with lim
D
k=μ

}
,

where limD k = μ means that {i < cf(μ) : k(i) > ν} ∈ D whenever ν < μ.

Now, our desired construction in its most general form can be formulated as

follows.
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Theorem 3.3: Assume that μ, λ, σ, and 
 are infinite cardinals such that

cf(μ) ≤ λ < σ ≤ μ ≤ 
 < pp(μ) ≤ 2λ,(3.1)

moreover

σ = cf(σ) if σ < μ.(3.2)

Then there is a 0-dimensional Hausdorff space X such that

(1) pd(X) ≤ λ,

(2) d(X) = σ,

(3) Δ(X) = |X | = 
.

In particular, if μ is a singular cardinal that is not strong limit, then there is a

neat 0-dimensional Hausdorff space X of size μ satisfying pd(X) < d(X) = μ.

Proof. It is easy to see from the above definition of pp(μ) that, with 
 < pp(μ),

there exists a regular cardinal κ with


 < κ ≤ pp(μ),

a function k : cf(μ) → μ ∩Reg, and an ultrafilter D on cf(λ) with limD k = μ

such that

cf

( ∏
i∈cf(μ)

k(i)/D

)
= κ.

Since λ < μ, we can assume without loss of generality that

k(i) > λ for all i < cf(μ).

Next we define two functions k1 and k2 with domain cf(μ) as follows: For

any i < cf(μ) we set

k1(i) =

⎧⎨
⎩
σ if σ < μ,

k(i) if σ = μ,

and

k2(i) =

⎧⎨
⎩

 · μ+ if 
 > μ,

k(i) if 
 = μ;

here and in the rest of the proof “ · ” always denotes ordinal multiplication.

Hence in the case 
 > μ the values of k2 are ordinals of size 
 that are not
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cardinals. To simplify the notation we put

k0 = k.

Now, for each m < 3 let us put

Xm = {〈i,m, α〉 : i < cf(μ) and α < km(i)}.
The underlying set of our space will be

X =
⋃
m<3

Xm.

Clearly this is a disjoint union and |X0| = μ, |X1| = σ, |X2| = 
, hence |X | = 


as well.

Let us next put κ0 = κ,

κ1 =

⎧⎨
⎩
σ if σ < μ,

κ if σ = μ,

and

κ2 =

⎧⎨
⎩
μ+ if 
 > μ,

κ if 
 = μ.

Then for every m < 3 we have cf(
∏

i∈cf(μ) km(i)/D) = κm, hence we may fix

a ≤D-cofinal subfamily Fm ⊂ ∏
i∈cf(μ) km(i) of cardinality κm. Then we put

F = F0 ×F1 ×F2;

clearly, F has cardinality κ. Thus every member f ∈ F is a triple of the form

f = 〈f0, f1, f2〉 with fm ∈ Fm for m < 3; F will be used in the definition of the

topology on X .

Next we fix an independent family A ⊂ [λ]λ of cardinality 2λ. Since

2λ ≥ μcf(μ) ≥ |X ×F ×D|,
we can also fix an injection

A : X ×F ×D → A;

moreover, we shall use the notation

A0(x, f, d) = A(x, f, d) and A1(x, f, d) = λ \A(x, f, d).
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So, the injectivity of the map A and the independence of A imply that for every

finite function s ∈ Fn(X ×F ×D, 2) we have

As =
df

⋂
(x,f,d)∈dom s

As(x,f,d)(x, f, d, ) �= ∅.

For any x = (i,m, ζ) ∈ X and S ⊂ λ we shall write

x⊕ S = {(i,m, ζ � η) : η ∈ S},
where � denotes ordinal addition.

Next, for any x ∈ X , f ∈ F , and d ∈ D we put

(3.3)
B0(x,f, d)

={x}∪
⋃

{(j,m, λ · α)⊕A(x, f, d) :j∈d,m∈3, fm(j)<α<km(j)}
and B1(x, f, d) = X \B0(x, f, d).

For s ∈ Fn(X ×F ×D, 2) let

Bs =
⋂

(x,f,d)∈dom s

Bs(x,f,d)(x, f, d).

Now, the family

B = {Bs : s ∈ Fn(X ×F ×D, 2)}
will be the, obviously clopen, base of our topology τ on X .

〈X, τ〉 is Hausdorff because if x = 〈i,m, α〉 ∈ X and y ∈ X \ {x}, then

for d = λ \ {i} ∈ D and an arbitrary f ∈ F we have y ∈ B0(y, f, d) but

x /∈ B0(y, f, d).

The following observation will be crucial in the rest of our proof. To simplify

its formulation, we introduce the following piece of notation:

Iα = [λ · α, λ · (α � 1)),

where α is any ordinal. That is, Iα is the interval of order type λ starting with

λ · α.
Claim 3.3.1: Fix s ∈ Fn(X × F × D, 2) and assume that m ∈ 3, i < cf(μ),

and α < km(i) are chosen in such a way that

i ∈ d and α > fm(i) whenever (x, f, d) ∈ dom(s).

Then

({i} × {m} × Iα) ∩Bs �= ∅.
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Proof of the Claim. Recall first that the set

As =
⋂

(x,f,d)∈dom s

As(x,f,d)(x, f, d, )

is non-empty. But if η ∈ As, then for every (x, f, d) ∈ dom s we have

(i,m, α · λ� η) ∈ ({i} × {m} × Iα) ∩Bs(x,f,d)(x, f, d)

because i ∈ d and fm(i) < α, hence

(i,m, α · λ� η) ∈ ({i} × {m} × Iα) ∩Bs,

and this completes the proof.

Claim 3.3.2: d(X) = σ.

Proof of the Claim. For every basic clopen set Bs ∈ B we can pick i < cf(μ)

and α < k1(i) such that i ∈ d and f1(i) < α for all (x, f, d) ∈ dom s. By Claim

3.3.1 then we have

({i} × {1} × Iα) ∩Bs �= ∅,
and so X1 is dense in X . Consequently, d(X) ≤ |X1| = σ.

Now, consider an arbitrary set S ∈ [X ]<σ. Then, of course,

d = {i ∈ cf(μ) : k0(i) > |S|} ∈ D.

But k0(i) is regular for all i, hence we can choose a function p0 ∈ ∏
i∈cf(μ) k0(i)

such that

S ∩ ({i} × {0} × k0(i)) ⊂ {i} × {0} × λ · p0(i)
whenever i ∈ d. We may then pick f ∈ F such that p0 ≤D f0. Then we also

have

e = {i ∈ d : p0(i) ≤ f0(i)} ∈ D.

But for any i∈e and x∈{i}×{0}×(k0(i)\λ·f(k)) we have thenB0(x, f, e)∩S=∅,
hence S is not dense. Consequently, we indeed have d(X) = σ.

Claim 3.3.3: Δ(X) = 
.

Proof of the Claim. We know that |X | = 
. Now let Bs ∈ B be any basic open

set. Let us put

e =df
⋂

{d ∈ D : (x, f, d) ∈ dom s} ∈ D.
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Then, by Claim 3.3.1, for every i ∈ e and for all α with f2(i) < α < k2(i) we

have

Iα ∩Bs �= ∅,
and so

|X2 ∩Bs| ≥ |k2(i) \ f2(i)| = |k2(i)|.(3.4)

If 
 > μ, then |k2(i)| = 
, hence |Bs| = 
. If 
 = μ then, as (3.4) holds for all

i ∈ e, we have

|X2 ∩Bs| = sup
i∈e

k(i) = μ = 
,

and so we conclude |Bs| = 
 again. Thus, indeed, we have Δ(X) = 
.

Claim 3.3.4: pd(X) ≤ λ.

Proof of the Claim. Clearly, it suffices to show that any neighborhood assign-

ment of the form

B = 〈Bs(y) : y ∈ X〉
can be pinned down by a set of size λ, where

s : X → Fn(X ×F ×D, 2)

and y ∈ Bs(y) for all y ∈ X .

Let us put

(3.5) F ′ = {f ∈ F : ∃(x, f, d) ∈ dom(s(y)) for some y ∈ X}.
Then |F ′| ≤ 
 < κ implies that there is a map g ∈ F0 such that

(3.6) f0 ≤D g

for all f ∈ F ′.
For every i < cf(μ) let

Ji = {i} × {0} × Ig(i)

and put

J =
⋃

i<cf(μ)

Ji.
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Then |J | = λ and we claim that J pins down B. To see this, let us fix any

y ∈ X and set

e = {i ∈ cf(μ) : i ∈ d and f0(i) ≤ g(i) for all (x, f, d) ∈ dom s(y)}.

Then e ∈ D and for any i ∈ e we can apply Claim 3.3.1 for s(y), 0, i and

α = g(i) to conclude that Ji ∩ Bs(y) �= ∅. Thus, J indeed pins down B, which

completes the proof.

With this the proof of Theorem 3.3 has also been completed.

Now we have more than necessary to prove Theorem 1.2.

Proof of Theorem 1.2.

(1) implies (2) is an immediate consequence of Theorem 3.1 and lemma 2.2.

(2) implies (3) is trivial.

(3) implies (1). This, or rather its contrapositive, follows immediately from

Theorem 3.3, because if 2κ > κ+ω then μ = κ+ω is a singular cardinal that is

not strong limit.

Next we turn to the proof of Theorem 1.3. First we present a purely set-

theoretic statement, without proof, that is folklore and easy to prove.

Proposition 3.4: If κ is a regular cardinal and λ<κ is such that cf([κ]λ,⊂)>κ,

then we have cf([μ]λ,⊂) > μ+ for some singular cardinal μ < κ.

From this proposition and from Lemma 2.3 we can immediately deduce the

following result.

Theorem 3.5: Assume that X is any topological space for which |X | = Δ(X)

is a regular cardinal and pd(X) < d(X). Then there are a cardinal λ < d(X)

and a singular cardinal μ < |X | such that

cf([μ]λ,⊂) > μ+.

But by [3, Lemma 8.2], a highly non-trivial result of Shelah, the existence of a

singular cardinal μ such that cf([μ]λ,⊂) > μ+ for some λ implies that SSH fails.

Consequently, we have actually established above the validity of the implication

(iii) ⇒ (i) in Theorem 1.3. Since (ii) ⇒ (iii) is trivial, to complete the proof of

Theorem 1.3 it only remains to show that Con(i) ⇒ Con(ii).
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Before doing that, however, we need the following lemma which is probably

known. Still we give its proof because we did not find any reference for it.

Lemma 3.6: Assume that μ and ν are cardinals such that

2cf(μ) < ν < μ.

Assume also that W is an extension of our ground model V such that

(1) OnW = On and α ≤ 2cf(μ) implies cfW (α) = cf(α);

(2) W � [V ]2
cf(μ) ⊂ V ;

(3) W � “if A ⊂ V and |A| ≥ ν then there is B ∈ V such that A ⊂ B and

|A| = |B|”.
Then μ remains a singular cardinal in W , (μ+)W = μ+, and

(3.7) ppW (μ) = pp(μ).

Consequently, the failure of SSH in V is preserved in W .

Proof. Only (3.7) needs verification. To this end, note first that, by (3), we

have cfW (α) = cf(α) for any ordinal α such that cfW (α) ≥ ν. This clearly

implies that

(3.8) RegW \ ν+ = Reg \ ν+.
It follows from (2) that we also have

SW (μ) ∩ [μ \ ν+]cf(μ) = S(μ) ∩ [μ \ ν+]cf(μ).
Then, by (2) again, we clearly have

UW (a) = U(a) and
(∏

a
)W

=
∏

a

whenever a ∈ S(μ) ∩ [μ \ ν+]cf(μ).
Consequently, (3.7) will follow if we can show that

cfW
(∏

a, ≤D

)
= cf

(∏
a, ≤D

)

whenever a ∈ S(μ) ∩ [μ \ ν+]cf(μ) and D ∈ U(a). To see this, let us fix, in W ,

any such a and D; moreover, consider any ≤D-cofinal subset A ⊂ ∏
a. Then

|A| > μ > ν implies by (3) that there is B ⊂ ∏
a such that B ∈ V , |A| = |B|,

and A ⊂ B. But then B is also ≤D-cofinal in
∏

a, which clearly implies that

cfW (
∏

a, ≤D) ≥ cf(
∏

a, ≤D). But cfW (
∏

a, ≤D) ≤ cf(
∏

a, ≤D) is trivially

true, and so the proof of Lemma 3.6 is completed.
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Now we are ready to finish the proof of Theorem 1.3.

Proof of Con(i) ⇒ Con(ii). Assume that Shelah’s Strong Hypothesis fails, i.e.,

pp(μ) > μ+ for some singular cardinal μ.

But if μ is not strong limit then there is a cardinal λ such that cf(μ) ≤ λ < μ

and 2λ > μ. But then 2λ ≥ μcf(μ) ≥ pp(μ) as well, hence we can apply Theorem

3.3 with, e.g., σ = μ and 
 = μ+ to obtain a 0-dimensional Hausdorff space X

with pd(X) ≤ λ < d(X) = μ and |X | = Δ(X) = μ+.

If μ is strong limit then we take

λ = (2cf(μ))
+

and ν = (2λ)+,

and consider the forcing notion

P = Fn(2μ × λ, 2;λ)

which adds 2μ Cohen subsets of λ with conditions of size ≤ 2cf(μ). Let G

be P -generic over the ground model V . We claim that the generic extension

W = V [G] ⊃ V satisfies the conditions of Lemma 3.6.

Indeed, this follows immediately from the facts that P is both λ-closed and

ν-CC, using standard theorems of forcing theory. Of course, we also have

2λ = 2μ ≥ μcf(μ) ≥ pp(μ) in V [G], as well as μ+ < pp(μ) by Lemma 3.6.

Putting these together we get

V [G] |= cf(μ) < λ < μ < μ+ < pp(μ) ≤ 2λ,

consequently, Theorem 3.3 applied in V [G] yields a 0-dimensional Hausdorff

space X in V [G] that satisfies |X | = Δ(X) = μ+, a regular cardinal, and

pd(X) < d(X).

The following problem can now be raised naturally.

Problem 3.7: Is the existence of a neat (Hausdorff) space X of regular size with

pd(X) < d(X) actually equivalent, and not just equiconsistent, with that of a

0-dimensional (or regular) such space?

4. Inequalities involving the pinning down number

The first inequality we establish is an improvement of Pospǐsil’s classical in-

equality |X | ≤ 22
d(X)

for any Hausdorff space X . Of course, it is only a proper

improvement if the (equivalent) statements of Theorem 1.2 fail.
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Theorem 4.1: |X | ≤ 22
pd(X)

for every Hausdorff space X .

Proof. To simplify our notation, we put μ = pd(X) and κ = 22
μ

. Let us now

consider the set

V =
⋃

{U ∈ τX : |U | ≤ κ}.
Claim 4.1.1: |V | ≤ κ.

Proof of the Claim. Assume, arguing indirectly, that |V | > κ. Then clearly V

contains an open subspace Y with |Y | = κ+. Since (κ+)μ = κ+, we may fix an

enumeration {Aν : ν < κ+} of [Y ]μ. By transfinite recursion, for all ν < κ+ we

pick

xν ∈ (Y \Aν) \ {xζ : ζ < ν}.
This can be done because, by Pospǐsil’s theorem, |Aν | ≤ κ, hence |Y \Aν | = κ+.

Now, let U be any neighborhood assignment on Y such that U(xν) = Y \Aν .

But then U cannot be pinned down by a set of size

μ = pd(X),

a contradiction.

Note that our aim: to show that |X | ≤ κ, is equivalent to showing X = V .

Assume, on the contrary again, that |X | > κ, that is X �= V . Then we can

define

λ = min{|G| : G ∈ τX and |G| > κ},
and fix W , an open subset of X with |W | = λ. Of course, we also have

pd(W ) ≤ pd(X) = μ.

Instead of the subspace topology on W inherited from X we may consider

a coarser Hausdorff topology σ such that the Hausdorff space W ∗ = (W,σ)

has weight w(W ∗) ≤ |W | = λ. Then we have pd(W ∗) ≤ pd(W ) ≤ μ and, by

Pospǐsil’s theorem, λ > κ implies d(W ∗) > μ.

Let B be a base of W ∗ with |B| ≤ λ and let {Bν : ν < λ} enumerate

C = {B ∈ B : |B| = λ}. Note that, by the minimality of λ > κ, we also have

C = {B ∈ B : B \ V �= ∅}.
By transfinite recursion, for all ν < λ we may then pick

xν ∈ Bν \ {xξ : ξ < ν}.
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Let U be a neighborhood assignment on X such that U(xν) = Bν for all

ν < λ. We claim that U cannot be pinned down by any set of size μ. Indeed,

let A ∈ [W ]μ. Then

|Aσ| ≤ κ,

hence |W \Aσ| = λ, so W \Aσ �⊂ V . But W \ Aσ ∈ σ, so there is B ∈ B such

that B ⊂W \Aσ
and B �⊂ V . Then B ∈ C, and so B = Bν for some ν < λ. But

then U(xν) ∩ A = Bν ∩ A = ∅, showing that A does not pin down U . But this

implies pd(W ∗) > μ, which is a contradiction that completes the proof.

Theorem 4.2: If X is any Hausdorff space which satisfies pd(X) < d(X) then

Δ(X) < 22
pd(X)

.

Proof. Since |X | ≤ 22
pd(X)

by Theorem 4.1, Δ(X) ≥ 22
pd(X)

would imply

|X | = Δ(X) = 22
pd(X)

= κ. But for μ = pd(X) we have κμ = κ, hence we can

apply Lemma 2.3 with λ = μ+ ≤ d(X) to conclude that pd(X) = μ ≥ λ, which

contradicts our choice of μ and λ. Thus we must have Δ(X) < 22
pd(X)

.

These are all the inequalities we have for Hausdorff spaces and now we turn

to the study of regular spaces. Perhaps the best known and most frequently

applied inequality concerning a regular space X that involves the density is

w(X) ≤ 2d(X). This led us to raise the following question.

Problem 4.3: Does w(X) ≤ 2pd(X) hold for every regular space X?

This question remains wide open but we managed to obtain quite a few inter-

esting and non-trivial results abut the cardinal function pd(X) for regular X .

We recall that a topological space X is called weakly separated iff there

is a neighborhood assignment U on X such that either x �∈ U(y) or y /∈ U(x)

whenever {x, y} ∈ [X ]2. The related cardinal function R(X) is defined as the

supremum of the cardinalities of all weakly separated subspaces of X . Since

R(X) ≤ w(X) but “not much less than” w(X), our following result may be

considered as a partial affirmative answer to problem 4.3.

Lemma 4.4: If X is a neat regular space then R(X) ≤ 2pd(X).

Proof. Let Y be any weakly separated subspace of X ; we want to show that

|Y | ≤ 2pd(X). It is easy to see that we can find a coarser regular topology σ on

X such that for the space X∗ = (X, σ) we have w(X∗) ≤ |X | and Y remains

weakly separated in X∗.
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Clearly, X∗ is also neat, hence

π(X∗) ≤ w(X∗) ≤ |X∗| = Δ(X∗)

imply d(X∗) = pd(X∗) by Lemma 2.4. Since pd(X∗) ≤ pd(X), we may then

conclude

|Y | ≤ w(X∗) ≤ 2d(X
∗) = 2pd(X

∗) ≤ 2pd(X).

We do not know if the neatness condition is necessary in the previous result

but it is not needed in the next one.

Lemma 4.5: d(X) ≤ 2pd(X) holds for any regular space X .

Proof. Let H be a maximal disjoint family of pairwise disjoint neat open sub-

spaces of X . Then |H| ≤ c(X) ≤ pd(X); moreover,
⋃H is dense in X . We

have d(H) ≤ R(H) ≤ 2pd(H) for all H ∈ H by Lemma 4.4, consequently

d(X) = d
(⋃

H
)
=

∑
H∈H

d(H) ≤ |H| · 2pd(X) = 2pd(X).

Our following result does not involve the pinning down number, still it will

be crucial in our later results that do.

Theorem 4.6: Let X be a regular space and μ be a regular cardinal such that

hL(X) ≤ μ ≤ min(Δ(X),w(X)).

Then there is a regular continuous image Y of X for which Δ(Y ) ≥ w(Y ) = μ

holds.

Proof. For every open set U ⊂ X we let

GU = {V ∈ τX : V ⊂ U}.
Since X is regular we have

⋃GU = U , and hL(X) ≤ μ implies that we can fix

HU ∈ [GU ]
≤μ with

⋃HU = U .

Let M be an elementary submodel of size μ of Hϑ for a large enough regular

cardinal ϑ such that everything relevant belongs to M, μ+ 1 ⊂ M, and M is

<μ-covering, i.e., for each B ∈ [M]<μ there is C ∈ [M]<μ ∩M with B ⊂ C.

For x, y ∈ X let us put

x ∼ y iff ∀U ∈ M∩ τX (x ∈ U ⇐⇒ y ∈ U).

Then ∼ is clearly an equivalence relation on X .
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Claim 4.6.1: If x �∼ y, then there are disjoint open sets Ux, Uy ∈ M∩ τX such

that x ∈ Ux and y ∈ Uy.

Proof of the Claim. Assume that U ∈ M ∩ τX is such that x ∈ U and y /∈ U .

Then we have HU ⊂ M because HU ∈ M and |HU | ≤ μ. We have x ∈ V

for some V ∈ M ∩ HU and clearly y /∈ V because V ⊂ U . Thus Ux = V and

Uy = X \ V are as required.

Let [x] denote the ∼-equivalence class of x ∈ X . Using Claim 4.6.1 we can

see then that

[x] =
⋂

{U ∈ M∩ τX : x ∈ U}.(4.1)

It follows that if U ∈ M∩ τX then

U =
⋃

{[x] : x ∈ U}.(4.2)

Also, for every point x ∈ X ∩M we have [x] = {x} because hL(X) ≤ μ implies

ψ(x,X) ≤ μ.

Let us put

Y = X/ ∼= {[x] : x ∈ X}

and

B = {U/ ∼: U ∈ M∩ τX}.

B is well-defined by (4.2) and it is clearly closed under finite intersections,

hence it is the base of a topology σ on Y . That this topology σ is Hausdorff is

immediate from Claim 4.6.1. But it is also regular: Indeed, if [x] ∈ U/ ∼ with

U ∈ M∩ τX then, as we have seen, there is V ∈ M∩HU with x ∈ V . Now, it

is easy to see that then [x] ∈ V/ ∼⊂ V/ ∼σ ⊂ U/ ∼.

Let us next define the map ϕ : X → Y by the formula

ϕ(x) = [x].

Then ϕ is obviously a continuous surjection, hence Y is a regular continuous

image of X .

Claim 4.6.2: Δ(Y ) ≥ μ.
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Proof. Let U ∈ M ∩ τX be non-empty. Then μ + 1 ⊂ M and |U | ≥ μ imply

|U ∩M| = μ. But for every x ∈ U ∩M we have [x] = {x}, hence
|U/ ∼ | ≥ |U ∩M| = μ,

completing the proof.

Claim 4.6.3: w(Y ) = μ.

Proof. Clearly

w(Y ) ≤ |B| = μ.

Next, asM is<μ-covering, for any G ∈ [M∩τX ]<μ there isH ∈ [M∩τX ]<μ∩M
with G ⊂ H. Then H is not a base of X because w(X) ≥ μ, so there are a point

x ∈ X and an open set V containing x such that for every H ∈ H with x ∈ H

we have H \V �= ∅. By elementarity we can then find to H such witnesses x and

V in M as well. But then for each H ∈ H with x ∈ H there is y ∈ (H \V )∩M,

hence [y] ∈ (H/ ∼) \ (V/ ∼).

This shows that {H/ ∼: H ∈ H} and consequently {G/ ∼: G ∈ G} is not a

base of σ. Since every member of [B]<μ is of the form {G/ ∼: G ∈ G} for some

G ∈ [M ∩ τX ]<μ, we conclude that no member of [B]<μ is a base for σ. This

implies w(Y ) = μ because it is known that any base of any space has a subset

which is a base and has cardinality equal to the weight of the space.

This completes the proof of Theorem 4.6.

We note that if the spaceX in Theorem 4.6 is assumed to be Tychonov rather

than regular, then its continuous image Y can also be chosen to be Tychonov.

In fact, in that case the proof is significantly simpler.

The following result gets pretty close to the affirmative solution of Problem

4.3.

Theorem 4.7: If X is any regular space then

min{Δ(X),w(X)} ≤ 2pd(X).

Proof. Our proof is indirect, so we assume that

min{Δ(X),w(X)} > 2pd(X).

Then from 2pd(X) < w(X) ≤ 2d(X), we get

pd(X) < d(X).(4.3)
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Let us consider the family

G = {G ∈ τX : w(G) ≤ Δ(G)};
then for all G ∈ G we have d(G) = pd(G) by Lemma 2.4. If H ⊂ G is a maximal

disjoint subfamily of G, then we have

d
(⋃

G
)
= d

(⋃
H
)
= d

(⋃
H
)
=

∑
H∈H

d(H) ≤ c(X) · pd(X) = pd(X).

But then pd(X) < d(X) implies X \ ⋃G �= ∅, hence we may choose a neat

non-empty open subset G ⊂ X \⋃G. Then we have

w(G) > Δ(G) ≥ Δ(X) > 2pd(X) ≥ 2pd(G).(4.4)

Since G is regular and neat, we may apply Lemma 4.4 to conclude that

hL(G)≤R(G)≤2pd(G). Thus we may apply Theorem 4.6 toG with μ=(2pd(G))+

to obtain a regular continuous image Y of G such that

Δ(Y ) ≥ w(Y ) = μ = (2pd(G))+.

But then, by Lemma 2.4, we have pd(Y ) = d(Y ) and hence

w(Y ) ≤ 2d(Y ) = 2pd(Y ).

Since Y is a continuous image of G, by Proposition 2.1 we also have

pd(Y ) ≤ pd(G). So on one hand we have w(Y ) ≤ 2pd(G), while on the other

hand w(Y ) = (2pd(G))+. This blatant contradiction completes our proof.

Now we can present a strengthened version of Lemma 4.5.

Theorem 4.8: For every regular space X we have d(X) < 2pd(X).

Proof. Assume, on the contrary, that d(X) ≥ 2pd(X). Then, by Lemma 4.5, we

actually have d(X) = 2pd(X).

Let us put

G = {G ∈ τX : d(G) < 2pd(X)}
and let H ⊂ G be a maximal disjoint subfamily. Then we have

d
(⋃

G
)
= d

(⋃
H
)
= d

(⋃
H
)
=

∑
H∈H

d(H) < 2pd(X) = d(X)

because |H| ≤ c(X) ≤ pd(X) and cf(2pd(X)) > pd(X).
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Thus X \⋃G �= ∅ because d(X) = 2pd(X), and so it has a neat non-empty

open subset G. Clearly, then d(G) = 2pd(X), hence |G| = Δ(G) ≥ 2pd(X). But

Δ(G) > 2pd(X) ≥ 2pd(G) would imply

w(G) ≤ 2pd(G) ≤ 2pd(X) ≤ Δ(G)

by Theorem 4.7, hence d(G) = pd(G) by Lemma 2.4, which clearly contradicts

d(G) = 2pd(X). Consequently, we have |G| = Δ(G) = 2pd(X).

Because of (2pd(X))pd(X) = 2pd(X), however, we can apply Lemma 2.3 to the

neat space G with

κ = 2pd(X) and λ = pd(X)+

to conclude that pd(G) ≥ λ = pd(X)+, which is again a contradiction.

Our final result may be considered as the analogue of Theorem 4.8 for regular

rather than just Hausdorff spaces.

Theorem 4.9: If X is any regular space such that pd(X) < d(X) then

Δ(X) < 2pd(X).

Proof. We prove the contrapositive of this statement: Assume that X is regular

and Δ(X) ≥ 2pd(X). Then for any non-empty open subset of G ⊂ X we have

Δ(G) ≥ Δ(X) ≥ 2pd(X) ≥ 2pd(G).

Now, if Δ(G) > 2pd(G) then we have w(G) ≤ 2pd(G) by Theorem 4.7, and so

w(G) < Δ(G) which implies pd(G) = d(G) by Lemma 2.4.

Otherwise Δ(G) = 2pd(G), hence if G is also neat then, as above, we can

apply Lemma 2.3 for G with κ = 2pd(G) and λ = pd(G)+ to conclude that

pd(G) = d(G).

This, of course, implies that pd(G) = d(G) holds for all neat open G ⊂ X ,

consequently pd(X) = d(X) by Lemma 2.2.
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