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ON LINEAR CONFIGURATIONS IN SUBSETS OF COMPACT
ABELIAN GROUPS, AND INVARIANT MEASURABLE
HYPERGRAPHS

PABLO CANDELA, BALAZS SZEGEDY, AND LLUIS VENA

ABSTRACT. We prove an arithmetic removal result for all compact abelian groups,
generalizing a finitary removal result of Kral’, Serra and the third author. To this end,
we consider infinite measurable hypergraphs that are invariant under certain group
actions, and for these hypergraphs we prove a symmetry-preserving removal lemma,
which extends a finitary result of the same name by the second author. We deduce
our arithmetic removal result by applying this lemma to a specific type of invariant
measurable hypergraph. As a direct application, we obtain the following generalization
of Szemerédi’s theorem: for any compact abelian group G, any measurable set A C G
with Haar probability pu(A) > « > 0 satisfies
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where the constant ¢ = ¢(«, k) > 0 is valid uniformly for all G. This result is shown to
hold more generally for any translation-invariant system of r linear equations given by
an integer matrix with coprime r X r minors.

1. INTRODUCTION

This paper concerns the general question of the extent to which linear configurations
of a given type must occur in subsets of abelian groups. Given a matrix M € Z™"™,
and a subset A of an abelian group G, we consider the set of elements z € A™ solving
the system Mx = 0, that is the set A™ Nkerg M. In relation to the above question, it
is a well-known fruitful approach to examine what can be deduced about A if the set
A™ N kerg M occupies a small proportion of the total set of configurations kerg M. In
this direction, useful information is provided by what are often called arithmetic removal
results. The following example treats the case of simple abelian groups G' = Z,,.
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Theorem 1.1. Let m,r be positive integers, with m > r. Then for any € > 0 there exists
0 > 0 such that the following holds. Let M be a matrixz of rank r in Z"™™ and suppose that
Ay, Ay, ... Ay, are subsets of Z, such that |Ay X Ay x -+ x Ay, Nkerg, M| < 0| kerg, M].
Then there exist Ry C Ay,..., R, C A, such that |R;| < ep for every j € [m], and
(Hje[m] Aj \ R]) N kerzp M = @

As a consequence, if |A™ N kerz, M| < d|kerz, M|, then it is possible to eliminate
all these solutions in A™ by removing at most ep elements from A. Thus A must be of
the form B U R, where |R| < ep and B is what we call an M-free set, that is it satisfies
B™Nkerg M = (.
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Theorem [I.T] was proved by Shapira [27] and independently by Kral’, Serra and the
third author [17]. (Strictly speaking, the result was proved more generally for finite
fields.) This result confirmed a conjecture of Green from [10]. In that paper, Green
introduced the notion of such removal results as arithmetic counterparts of well-known
combinatorial removal results from graph theory, and he proved a version of Theorem [l
for a single linear equation on an arbitrary finite abelian group. For more background on
the relation between arithmetic and combinatorial removal results, the reader is referred
to the survey [6], especially Section 4 therein.

One of the central consequences of Theorem [LLI] is a general form of Szemerédi’s
famous theorem on arithmetic progressions [28], Theorem [[.2] below. To state the result,
we use the following terminology. We say that a matrix M € Z"™"™ is invariant if its
columns sum to zero, that is if M(1,1,...,1)T = 0; equivalently, for any abelian group
G, the set kerg M is invariant under translations by constant elements (¢,¢,...,t),t € G.
Examples of configurations given by invariant matrices include arithmetic progressions
of an arbitrary fixed length.

Theorem 1.2. Let m,r be positive integers, with m > r. For any o > 0 there exists
¢ = c(a,m) > 0 such that the following holds. Let M be an invariant matriz of rank r
in 2™, and let A be a subset of Z, of cardinality at least ap. Then we have

|A™ N kerg, M|/ |kerz, M| > c.

In particular, for any positive integer k, the set A must contain a positive proportion
c(a, k) of the total number p? of k-term progressions in Z,. The deduction of Theorem
from Theorem [[.1] is very short, we record a proof in a more general context at the
end of Section B

If M is not invariant, then the conclusion of Theorem fails, in that there exists
a = a(M) > 0 such that in any group Z, there is an M-free set of size at least ap. This
can be shown using a simple adaptation of the argument from [22, Theorem 2.1].

Thus for G = Z,, as a direct consequence of Theorem [[.T], the question recalled at
the beginning of this introduction receives a strong answer (Theorem [[2]) which is also
exhaustive as far as systems of linear equations are concerned[] Tt is natural to wonder
whether this picture holds for more general abelian groups.

Given M € Z"*™ of rank r, let us denote by d,(M) the determinantal divisor of M
of order r, that is the greatest common divisor of the non-zero determinants of r x r
submatrices of M; see [19, Chapter II, §13]. We shall not consider determinantal divisors
of lower order, and will therefore refer to d,.(M) simply as ‘the determinantal’ of M.

Under the assumption that d,.(M) = 1, Krél’, Serra and the third author generalized
Theorem [LL] to all finite abelian groups, obtainir@g [18, Theorem 1]. This extension
has found several applications. In particular it immediately implies a corresponding
extension of Szemerédi’s theorem to all finite abelian groups, since a matrix characterizing

IThe answer is strong in a qualitative sense. The quantitative problem of obtaining optimal estimates
for the function ¢(«, M) in Theorem is a vast and very interesting one, that includes improving the
bounds for Szemerédi’s theorem. For the latter theorem the current best general bounds were given in
[8]; see also [I}, 12} 24] for the latest improvements in the cases k = 3, 4.

2Theorem 1 in [I8] actually assumes that ged(d,(M),|G|) = 1, a weaker assumption than d,.(M) = 1.
However, the theorem itself holds equivalently for each of these two assumptions; see Remark [4.4]
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arithmetic progressions of a fixed length satisfies the above assumption; other applications
include those in [25] Section 10] and [26]. Assuming that d,.(M) =1 is a simple way to
ensure that the set of solutions has the ‘expected dimension’; more precisely, we then have
kerg M = G™", as can be seen using the Smith normal form of M (see [19, Theorem
I1.9]). We shall say more about this assumption in Section Bl below.

Some recent works have made use of removal results in the setting of infinite compact
abelian groups. For instance, in [5] it was shown that Theorem [Tl implies an analogous
result for the circle group G = R/Z, formulated in terms of Haar measure, which was
found to be useful for certain additive-combinatorial questions studied in Z, as p — o0;
see also [4]. At the end of [5], the possibility of a removal result for a general compact
abelian group was raised.

The main result of this paper is an extension of Theorem [[.1] for matrices of deter-
minantal 1, to all compact abelian groups. Below we discuss further motivation for this
extension, but before that let us state the result formally.

All topological groups in this paper are assumed to be Hausdorff. Any compact
group G admits a unique Haar probability measure, which we denote by ug. A subset
of G is said to be Haar measurable (or just measurable) if it is in the completion of the
Borel g-algebra on G relative to ug. Given a compact abelian group G and a matrix
M € 7Z"™™, the kernel kerg M of the continuous homomorphism M : G™ — G" is a
compact subgroup of G™, with its own Haar probability jike as. For a measurable set
A C G, the quantity piger m(A™Nkerg M) gives the natural notion of the proportion (or
density) of solutions contained in A™. This makes the setting of compact abelian groups
a very natural one in which to seek general versions of results such as Theorem (note
that if G is finite then pixer, pr(A™ Nkerg M) is just |A™ Nkerg M|/| kerg M|). For more
background on the Haar measure, we refer the reader to [7, 13|, 21].

We can now state our main result.

Theorem 1.3. Let M € Z™™ satisfy d,(M) = 1. For any € > 0, there exists § =
d(e, M) > 0 such that the following holds. If Ay, Ao, ..., A,, are Borel subsets of a
compact Hausdorff abelian group G such that ,ukerGM(Al X -+ X A, Nkerg M) <4, then
there exist Borel sets Ry C Ay, ..., R, C Ay, such that pa(R;) < € for all j € [m] and
(Hje[m] Aj \ R]) N kerG M = @

We shall deduce this result from a more precise version, which holds for second
countable compact abelian groups, and which gives additional information on the location
of the sets R; and on their measure; see Theorem [3.Jl Note that Theorem also
implies the inhomogeneous version of itself, where instead of kerg M we consider the set
of solutions x € G™ to Mx = b for some non-zero b € G".

From Theorem [L.3], one deduces directly the following generalization of Szemerédi’s
theorem (for a proof see the end of Section [3]).

Theorem 1.4. Let M € Z7*™ be invariant and satisfy d,.(M) = 1. Then for any o > 0
there exists ¢ = c(a, M) > 0 such that if A is a measurable subset of a compact abelian
group G with pc(A) > «, then pyeg v (A™ Nkerg M) > c.
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In particular, for any positive integer k, any measurable set A C G with pug(A) >
a > 0 satisfied]

/ / la(z) La(z+7) -+ lalz+ (k= Dr) dug(z) dpg(r) > ¢,
ala

where the positive lower bound ¢ = ¢(«, k) is independent of the particular structure of
A and is in fact valid uniformly for all G.

In addition to the generality of Theorem [I.3] this extension to compact abelian groups
offered us the motivation that it does not seem to follow from the known finite results by
a simple measure-theoretic argument. Significant additive-combinatorial aspects had to
be taken into account, requiring in particular further understanding of the relationship
between combinatorial removal results for hypergraphs and their arithmetic counterparts.
Let us complete this introduction by detailing these points.

In order to prove a removal result in an infinite compact abelian group, it is natural to
try to deduce it from a finitary version by a discretization argument. An approach of this
type was taken in [5], yielding the above-mentioned analogue of Theorem [LLT] for the circle
group. However, as noted at the end of that paper, for more general compact abelian
groups this approach yields a version of Theorem [L.3] with a parameter 0 depending on
the topological dimension of the group. By contrast, the function ¢ in Theorem [.3] is
independent of the compact abelian group. To obtain this, the approach in this paper
consists instead in finding infinite analogues of some elements from known proofs of finite
removal results, and combining those with some new elements in the infinite setting.

Most of the known proofs in the finite setting proceed by reducing the arithmetic
removal result somehow to its combinatorial counterpart for uniform hypergraphs, a
method which first appeared explicitly, using graph removal lemmas, in [16].

The most elaborate form of this method so far, i.e. the proof of [I8, Theorem 1], is
implemented in a way that makes important use of properties specific to finite abelian
groups, in particular the fact that multiplication by an integer does not increase the
measure of a set in such a group (these aspects are discussed in more detail in Section 4
below). This prevents a simple transfer of the whole argument from [I8] to the infinite
setting, although several tools from that argument do transfer and are used in this paper.

The above-mentioned method is implemented in another way in the approach to
arithmetic removal results given in [29]. The main result of that paper is a so-called
symmetry-preserving version of the removal lemma for finite hypergraphs. This version
has the additional information that if the edge sets of the given hypergraph were invariant
under a certain group action, then the edge sets to be removed can be guaranteed also to
be invariant. This version of the hypergraph removal lemma turns out to have a useful
extension to the infinite setting, which we prove in this paper; see Lemma .12l This
extension concerns hypergraphs defined on general probability spaces and acted upon in
a certain way by a compact group; see Definitions 2.8 and 2.10l This infinite symmetry-
preserving removal lemma gives a convenient footing for a proof of Theorem 3.1l However,
completing the proof requires finding how to associate such an invariant hypergraph with
a given system of linear equations on a compact abelian group. Indeed, in [29] the finite

3The case k = 3 of this result, namely Roth’s theorem for a general compact abelian group, can be
treated using Fourier analysis; see for instance [31].
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symmetry-preserving removal lemma was shown to yield finite arithmetic removal results,
but this was demonstrated only for certain examples of linear configurations, and it was
not clear how to handle more general systems. In this paper, to clarify this we define a
notion of a hypergraph representation of a system of linear equations on an abelian group.
This notion extends and unifies previous finitary notions of a similar kind [3} 17, 27], and
it is designed to go together with the symmetry-preserving removal lemma; see Definition
3.7l More precisely, this representation is a homomorphism which enables us to associate
a certain measurable invariant hypergraph to the given system of equations, in such a
way that the desired arithmetic removal result can be deduced from the removal lemma
for this hypergraph; see Definition

In Section 2 we prove the symmetry-preserving removal lemma. In Section [3] we
define the hypergraph representation and use it to deduce the arithmetic removal result
as mentioned above. In Section [ we show that for any matrix M € Z™™ with d,.(M) =1
and any compact abelian group, there exists such a hypergraph representation. In Section
we end with some remarks on potential further extensions of Theorem

2. A SYMMETRY-PRESERVING REMOVAL LEMMA FOR MEASURABLE HYPERGRAPHS

In this section we establish the main result that we shall use concerning measur-
able hypergraphs, namely the symmetry-preserving removal lemma (Lemma 212). This
generalizes |29, Theorem 2|. Let us set up some terminology and notation.

Let [t] = {1,2,...,t}, and let us denote the set of subsets of [t] of size k by ([Z]).
Given any cartesian product Hie[t] Vi, and any set e C [t], we denote by p, the projection
[LicyVi = Ilic. Vi to the components indexed by e, thus pe(v) = (v(i))iee. (If € is a
singleton {i} we write p; rather than pgy.) When there is no danger of confusion, we
shall often use the notation V, to refer to the product ... Vi.

The kind of hypergraph that we consider is the following.

Definition 2.1. A t-partite m-colored k-uniform hypergraph, or (t, m, k)-graph for short,
is a triple (V, C, E) consisting of the following elements. The vertex set V' is the disjoint
union of labelled sets Vi, Vs, ..., V;. The set C of edge color-classes is a collection of m
distinct labelled sets C,...,C,, € ([E). The edge set E is the union of sets Ey, ..., E,,
where each E; is a subset of Hiecj V;, the elements of which are the edges of color j.

We say that a (t,m, k)-graph is measurable if there is a probability space structure
(Vi, Vi, p;) on each vertex set V; (here V; denotes a o-algebra of subsets of V;, and p;
a probability on V;), and every set E; is in the product o-algebra Hz‘ecj V. All the
(t, m, k)-graphs that we consider in this paper are assumed to be measurable.

Given probability spaces (V;, V;, i), i € [t], for any e C [t] of size |e| > 1 we shall
denote by (V¢, Ve, pte) the product probability space ([[;c, Vi, [Lice Vis [ Lice 144)-

Definition 2.2 ((¢, m, k)-graph homomorphism). Let H; be a (¢, m, k)-graph with vertex
set U = | |, U;, and let Hy be a (t,m, k)-graph with vertex sets V = ||, V;. A homomor-
phism from H; to Hy is a map ¢ : U — V defined by ¢(u) = ¢;(u) for u € U;, where
(¢i)icy is a t-tuple of measurable maps ¢; : U; — V; with the following property: if

(ui)icc; is an edge of Hi, then the image (gbz(uz)) o, 18 an edge of Ho.
el
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We say that H, is Hi-free if there is no injective homomorphism ¢ : H; — Hy. A
measurable (¢, m, k)-graph is finite if the vertex sets V; are finite and the probabilities y;
are uniform. In this paper we will only use homomorphisms from a finite (¢, m, k)-graph
to a possibly infinite (¢, m, k)-graph. It is helpful to view these homomorphisms as points
in the space V"' x V72 x - - x VY. Indeed, this leads naturally to the following definition
of the homomorphism density, using the product probability on this space.

Definition 2.3. Let F' be a finite (¢, m, k)-graph with vertex sets U;, and let H be
a (t,m, k)-graph with vertex sets V;. The homomorphism density of F' in H, denoted
7(F, H), is the probability that for a random t-tuple of maps (¢; : Uy — V;)icy the
corresponding map ¢ is a homomorphism.

In particular, if H has color-classes (1, ..., (), and F is the finite hypergraph with
vertex set [t] and edges C1, . .., Cy,, then, recalling that (Viy, Vi, py) denotes the product
of the probability spaces (V;, V;, 11;), we have

~(F,H) = /[ ﬂ jy,,ﬂ 15, (pe, () dyg () M

For reasons that will become clear in the following sections, in this paper we only
need this type of homomorphism ¢ : F' — H where each vertex class of F'is a singleton
U; = {i}. Note that any such homomorphism is an injective map, since the vertex classes
of H are disjoint by definition. We may sometimes refer to the image ¢(F) = (¢(7))icy
as a copy of F'in H. In the general case, where F' may have more than one vertex per
class, there is a similar but more complicated version of formula (IJ), but as mentioned
above we shall not use this.

In the next subsection we shall obtain a removal lemma for (¢, m, k)-graphs, Lemma
2.4l by deducing it from the well-known removal lemma for finite hypergraphs. We shall
then add the symmetry-preserving property in subsection 2.2, obtaining the main result
of this section, Lemma 212

2.1. A removal lemma for (t,m,k)-graphs. In this subsection we establish the fol-
lowing result.

Lemma 2.4. Let t > k > 2 and m be positive integers, and let O < € < 1. There exists
d = 6(t,k,e) > 0 such that the following holds. Let H be a (t,m,k)-graph with vertex
sets Vi, i € [t], and edge color-classes C;, j € [m], let F' be the (t,m, k)-graph with vertex
set [t] and edges C;, and suppose that 7(F, H) < §. Then for each j € [m] there exists a
measurable set R; C E;(H) with pc,(R;) < €, such that removing each R; from E;(H)
yields an F'-free (t, m, k)-graph.

The finite version of this result, that is the special case in which both F' and H
are finite (t,m,k)-graphs, is a version of the well-known hypergraph removal lemma,
given for instance in [30]. Our task here is to show that the above version for arbitrary
probability spaces follows from the finite version. To prove this we use a discretization
argument whereby H is approximated by a (t,m, k)-graph H) whose vertex sets are
partitioned into finitely many parts, and whose edge sets are disjoint unions of products
of some of these parts. Then, we model each of these parts by a finite set of vertices,
the cardinality of which is chosen according to the measure of the part. This enables
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us to relate 7(F, H) with 7(F, H®) for some associated finite (t,m, k)-graph H® | thus
reducing the proof to an application of the finite version of Lemma 2.4

Proof of Lemma 2] Let &' < ¢/(4m) be such that the finite version of Lemma [2.4] holds
with parameters €/(4m),t, k. (As mentioned above, this finite version is known; indeed
it is essentially [30), Corollary 1.14].) Suppose that 7(F, H) < ¢ with 6 = ¢’/2.

For each j € [m], since the o-algebra V¢, on Vi, = Hiecj V; is generated by products
of measurable subsets of the components V;, there exist disjoint sets B; 1, Bja, ..., Bju;,

each of the form B, = Hiecj D; ;, with D; ;. € V;, satisfying

M;
pey | Bi(H)A | | By | <6/m<e/2. (2)
r=1

Let H® be the (t,m, k)-graph obtained from H by replacing the edge sets E;(H) with
Ej(l) = |_|i\i’1 B;,. By () and a simple telescoping argument using multilinearity of the
function (1g,,...,1g,,) — H].E[m] 1, o pc,, we hav

7(F,HY) < 7(F, H) + m <.
m

We shall now show that H can be made F-free by removing a set of measure at most
€/2 from each set EJ(-l).

For each ¢ € [t| we define a partition of V; generated by all the sets D;;,. More
precisely, let P; denote the partition of V; into the atoms of the finite o-algebra gen-
erated by the collection of sets U;epy o,5:{Digr © 7 € [Mj]}. Let K; = [P;], thus
P, ={Pi1,P,2, ..., Pk} BEachset EJ(-l) is a disjoint union of sets of the form Hz‘ecj P,
for some £ = ({;)icc; € liec,[£]- Thus H®W can already be viewed as a finite hyper-
graph, with vertex sets Py, ..., P; and edges these k-tuples ¢. However, the measures of
the atoms F; ; are not necessarily equal, so the probabilities on the vertex sets of this
hypergraph may fail to be uniform. In order to apply the finite version of the removal
lemma, we shall now approximate this weighted hypergraph by a finite (¢, m, k)-graph
H®,

Note that if v = (v(1),...,v(t)) is a copy of F in HW, with v(i) € P,,, C V; for each
i € [t], then in fact every point in P;,, X --- x P;,, is such a copy, and this product set
gives us a measure y; (P, ) - pit(Piy,) of homomorphisms F — HY,

Let N be a large positive integer to be determined below, depending on k,t, e and
the measure of the atoms P ..

Let H® be the finite (¢, m, k)-graph defined as follows. The finite vertex sets, de-
noted VY,..., V/, are each of cardinality N, with uniform probability denoted ;. Each
set V/ is partitioned into sets Q; o, Qi1, - - -, Qix,, such that we have

Vre (K, [Qirl = Gy Gir/N < pi(Pir) < (qir +1)/N, and [Qiol = gio < Ki.  (3)
The edge color classes of H® are the same as for H"), and for each such class C; the
edge set E](?) of H® is defined as follows. A k-tuple (v(i))iec, € V¢, 1s an edge in Ej(?)

4We illustrate the argument for m = 3: for any functions f;,g; : Vig — R, j € [3], we have fifofs =

(fimg)fafstaifafs = (i—g1)fafsta1(fa—g2)fs+g192f3 = (f1—91) fafs+91(f2—92) f3+g192(f3—
93) + 919293; we then apply this with f; = 1, opc; and g; = 1g; o pc;.
J



8 PABLO CANDELA, BALAZS SZEGEDY, AND LLUIS VENA

if and only if [[;cc, Piri © E( ) where v(i) € Q; o for each i € C;. In other words, E( )

is the disjoint union of all the sets [], cc; Qir, satistying [], cc; P, C E](l).

Since each set Q;, satisfies p}(Q;,) < pi(F;,), we have 7(F), H®) < 7(F,HD) < §".
By the finite version of the removal lemma, there exist sets R C Ej(?) with pe (R}) <

2)

¢/(4m) such that, removing each R} from E;”, the resulting hypergraph is F-free.

Let us now use the sets R} to specify which subsets to remove from EJ(-I). To do so,
we first show that each R, may be replaced with a set R} that is a union of sets of the
form [;cc, Qin,» in such a way that the sets R still have small measure and preserve
the removal property.

Let R? be the union of sets Hiecj Qi r, such that

’R; N H Qi,m > m~ H Qir;-

iGCj iGCj

We have |R}| < m|R}|, and so pug, (R]) < mpc, (R}) < €/4.

We claim that removing R} (instead of R}) from E](?) still yields an F-free (¢, m, k)-
Qir, is a copy of F in H® . Then, by the
Qi r, is such a copy. By the removal property

graph. Indeed, suppose that vy, € Hie[ﬂ

definition of H® | every element v € Hie[ﬂ
of the sets R, for any such v there exists j € [m] such that the edge pc,(v) lies in
R);. There must therefore exist j € [m] such that there are at least m™' [Ticiy @i
such copies v with pc;(v) € Rj. On the other hand, an edge w € Hz‘ecj Qir, can

satisfy w = pc,(v) for at most H ¢, dir; of these copies v. We therefore conclude

i€[t]\
that ’R; N Hz‘ecj Q”z’ > mL Hiecj ¢ir,- Hence all these copies (including vy) have
pc;(v) € R} and are therefore eliminated by removing R7. This proves our claim.

We can now specify the sets R(1 that we remove from E](.l). Let R;l) be the union of

sets [ [, c; P, C E ) such that HZEC Qir, € R}. Note that

(HPZTZ><H(MZ Qi) + )_M(;(HQW) - (4)

1€C 1€Cy 1€C

Choosing N > % MaX;¢|m] (Hz‘ecj Ki), we deduce from ({]) that

e (1) (1) + (L)’

1€C

% for each j € [m]. (5)

2 |

If there was a copy v left in (), p&? <E(1) \R(1)>7 then there would have to be in fact
a measure fi < [Ticiy Pm) of such copies, where v(i) € P;,, for each i € [t]. Therefore,

by an analogue of (4]), there would be a measure at least p ( Hiem ‘P'iﬂ’i) — % of copies
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of F'in ;¢ Pe; (Ej \ R; ) If

N > 2'/min N[t](HPi,n) t(ri) € H[Ki]v jelml e,

i€t] ieCj

then there is at least one such copy of F', contradicting the removal property of the sets
(2
R}

We now set R; = R§1) U (Ej(H) \ |_|é\/[:"1 M), which by ([2)) and (&) has measure at

most € for each j € [m|, and the proof is complete. O

Remark 2.5. Lemma [2.4] concerns the so-called ‘partite hypergraph version’ of the
removal lemma (as it is called in [30]), which corresponds to the case of formula () in
which F' has one vertex per class. This case suffices for our purposes in this paper, as
we shall see in the next sections. Let us mention that there is a version of Lemma [2.4]
where F' may have more than one vertex in each part U;, and that in fact this extension
can be deduced using Lemma [2.4]

2.2. Preserving symmetries. We now move on to the main result of this section,
Lemma This is a version of Lemma [2.4] which preserves certain symmetries of
the given hypergraph. The symmetries of (¢,m, k)-graphs that we shall consider are
described in terms of a type of group action on the product of the vertex sets, that we
call a t-partite action (see Definition 2.§]). To build up to this notion, we first recall the
definition of a measurable group action (see for instance [32} §3]). We denote the identity
element of a group G by idg.

Definition 2.6 (Group action on a probability space). Let (V,V,u) be a probability
space, and let G be a group. An action of G on V is a map ® : G xV — V satisfying the
following properties:

(i) Vo € V, Vg, h € G we have ®(gh,v) = ®(g, P(h,v)), and ®(idg,v) = v.
(ii) For each g € G the invertible map ®, : v — ®(g,v) is measurable and preserves
i1, that is for any set A € V, we have ®,'(A) € V and pu(®,"(A)) = u(A).

In other words, the map g — ®, is a homomorphism from G into the group of measure-
preserving automorphisms of V. If G is a topological group, with Borel o-algebra de-
noted Bg, then we say that the action ® is measurable if the map ® is measurable from

(G xV,Bg x V) to (V, V).

We shall often use the simpler notation g - v for ®(g,v).

Given an action of G on (V,V, ), a set B € V is said to be G-invariant if g- B = B
for all g € G. These sets form a sub-o-algebra of V that we denote by £g. A measurable
function f: V — R is said to be G-invariant if, for every g € G, we have f(g-v) = f(v)
for all v € V. This is equivalent to f being measurable with respect to £g.

In this paper we consider measurable actions mainly of compact groups. We shall
use the following simple notion of the average of a measurable function with respect to
such an action. (We shall only need to take the average of non-negative functions.)

Definition 2.7. Let (V,V, ) be a probability space, let G be a compact group with
Haar probability measure pg, and let ® : G xV' — V be a measurable action. Then, for
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any non-negative measurable function f : V' — R, we denote by J¢g(f) the non-negative

measurable function defined by Jg(f)(v) = [ f(g~" - v) dug(g).

From our assumptions we have that the function (g,v) — f(g7! - v) is (Bg x V)-
measurable. By Fubini’s theorem [20, Theorem 8.8], we therefore have that dg(f) is
indeed a V-measurable function, and satisfies

[ st ) = [ ([ st 0)aut)) dngto) - [t e 0. ©

Note also that for any non-negative measurable functions f,g on V' we have dg(f + g) =
Yg(f) +UJg(g), and in particular if f > g then Jg(f) > Jg(g).

A more general notion of averaging can be given in terms of the conditional expec-
tation relative to the o-algebra £g, but the above definition is more convenient for us.

(We discuss this in Remark 2.13])

Definition 2.8 (¢-partite action). Let (V;, V;, 1;), ¢ € [t], be probability spaces, and let G
be a topological group. We say that an action ® : G xV}y — V|, is a t-partite action if it
is of the following form: for each i € [t] there is a topological group G; with a measurable
action ®; : G; x V; — V;, such that G is a closed subgroup of Gy x - - - x G (in the product
topology) and for every g € G, v € V}y we have ®(g,v)(i) = ®;(g(i),v(i)) for each i € [t].

In the next section we shall focus on t-partite actions where each V; is a second-
countable compact abelian group G; acting on itself by addition. For the main results
of this section, however, we can work with more general ¢-partite actions of compact
groups. Let us record the following basic fact.

Lemma 2.9. A t-partite action is a measurable action.

Proof. The fact that a t-partite action ® is indeed an action is straightforward. To see
that the measurability of each map ®; implies measurability of ®, it suffices to check
this for an arbitrary product set A = Ay x --- x A;, A; € V;. To this end we note that

A= (GxVy) N R(H@ <I>;1Ai>, where R : [[.(G; x V;) — (HZ Gi> X Vi is the map

permuting the coordinates appropriately. We can then use the fact that each ®;*4; lies
in Bg, X V; to deduce that @' A lies in Bg X Vi O

Given a t-partite action of a compact group G on V}, and a non-empty set e C [t],
we denote by G, the closed subgroup pe(G) of [[,., Gi. Recall that the map p, is the
coordinate projection corresponding to e. On the direct product G; x --- x Gy, this
map is a continuous homomorphism onto G.. We can then define a measurable action
O, : G, xV, =V, by ®.(g,v)(2) = ®;(g(7),v(7)).

Definition 2.10 (Invariant (¢, m, k)-graph). Let (V;, V;, ;) € [t], be probability spaces,
and let G be a topological group with a ¢-partite action G xVjy — Vig. A (¢, m, k)-graph
H with vertex sets V; is said to be G-invariant if for each j € [m], the edge set E;(H) is
g o,-invariant.

We shall use the following fact that relates averaging over G to averaging over G.,
for each projection p,.
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Lemma 2.11. Let (V;, Vs, 1;),1 € [t], be probability spaces, and let G xViy — V[t] be a
t-partite action by a compact group G with Haar probability. Then for any e € ( ) for
any non-negative measurable function f : V., — R, we have

Ug(f o pe) = (Ug.(f)) 0 pe. (7)
Proof. The actions &, ®, commute with p., that is we have

Pe(g - v) = Pe(g) - pe(v) for every g € G,v € Vjy. (8)

Moreover, the map p. : G — G, is a surjective continuous homomorphism. We therefore
have ug, = pg o p;!, where g, pug, are the Haar probabilities on G,G.. Thus for any
v € V| we have

% ( ope /f pe d,ug /f pe 1']76(@)) dﬂQ(Q)
_ / £ Do) dug(g0) = D (F)(pe(v). O

e

We can finally establish the main result of this section.

Lemma 2.12 (Symmetry-preserving removal lemma).

Let t > k > 2 and m be positive integers, and let € > 0. There exists § = §(t, k,e) > 0
such that the following holds. Let (Vi, Vi, p;),i € [t], be probability spaces, let H be
a (t,m,k)-graph with vertex sets V; and edge color-classes Cj, let G xViy — Vig be a
t-partite action by a compact group G such that H is G-invariant, let F' be the (t,m,k)-
graph on [t| with edges C, ..., Cy,, and suppose that T7(F, H) < §. Then for each j € [m)]
there exists a measurable set S; C E;(H) with puc,(S;) < €, such that removing S; from
E;(H) for each j € [m] yields an F-free (t,m, k)-graph that is still G-invariant.

An equivalent version of the conclusion is that for each j € [m] there exists a G¢;-
invariant set S; C E;(H) with uc,(S;) < €, such that removing S; from E;(H) for each
J € [m] yields an F-free (t, m, k)- graph

Proof. Let R; C E;(H),j € [m], be the removal sets given by Lemma 2.4] applied with
parameter 0 such that pc, (R;) < €/(2|E(F)]) = ¢/(2m).
We define a new removal set S; C E;(H) as follows:
Sji={v € Vg, : hj(v) > 1/(2m)}, where h; := ﬁgcj(le). 9)

Note that h; is a QC -invariant function, whence S; is a QC -invariant measurable set.
Moreover, we have pc,(S;) < €. Indeed, by Markov’s 1nequahty and () we have

Lé::j) < /vc, hj(v) dpc; (v) = /gcv </vc Lr; (97" - v) dpey (v >> duge, (9) = ne, (1).

We now show that removing S; from E; for each j € [m] yields an F-free (¢, m, k)-graph,
i.e. that we have

() pc (B \S;) =0. (10)

JE€m]
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In other words, we show that the function Hj eim) LB, 0Pc; 18 0 everywhere on the region
ﬂje[m} P(}J-I(VCJ- \ 55).

By a telescoping argument using multilinearity (similar to the one used in the proof
of Lemma 2.4]), we have

H lp, opc; = ZlR ope, [[fe + ] (te, = 1r,) o pe,,

L] J€m]

where for each 7 we have f, = (lE[ —1g,)opc, if ¢ < j, and fr=1p, 0pc, it £ > 5. It
follows that

H lg; opc; < Z lg; o po; + H lg, — 1g;) o pc; everywhere on V.

JE€Im] JE€m]

Let us now apply ¥g to both sides. Since each set E; is G¢,-invariant, by (8) each set
p(}lej is in the o-algebra of G-invariant sets, and therefore so is their intersection. By
the removal property of the sets R;, we also have || jelm] (1, — 1g;) opc; = 0 everywhere.

Finally, by linearity and ([7]) we have vg <Zje[m} 1g; © pcy) = Zje[m} h;opc,. Combining
these facts, we conclude that

H lg, opc; — Z hjopc, <0 everywhere on V. (11)

j€m j€m]

Now, on the region ;¢ pajl(ch \ S;), the function }; (,, hjopc, takes values at most
1/2, by definition of the sets S;. Therefore, if [[;c(,, 15, © pc;(v) were positive for some
v in this region, then it would have to take value 1 at v and then the left side of (1))
would be positive at v, a contradiction. O

Remark 2.13. Recall that the conditional expectation relative to a sub-c-algebra £ of
V can be defined on the Hilbert space L?(V,V, u) as the orthogonal projection to the
closed subspace L?(V, &, ule); the conditional expectation of f € L*(V,V, u) relative to
€ is denoted E(f|&). If a compact group G with Haar probability has a measurable
action on (V,V, ) then one can show that ¥g agrees with the conditional expectation
relative to the o-algebra £g of G-invariant sets. More precisely, letting f be any function
class in L*(V,V, i), and letting f’ be any function in this class, we have that Jg(f’)
is in the class E(f|E&g) (this can be proved by showing that ¢ yields an orthogonal
projection L*(V,V, ) — L*(V,Eg, pt|e,)). This conditional expectation relative to E¢
is defined even for actions that are not necessarily measurable. Thus one can obtain
analogues of the results in this subsection for possibly non-measurable actions. However,
E(f| £g) defines a function only up to a null-set, and this introduces several additional
technicalities. Arguments using vg, as above, are therefore more convenient for our
purposes, in addition to being more explicit.

In a similar vein, one can obtain analogues of the results in this section when each
set Ej(H) is only assumed to lie in the completion V¢, of V¢, relative to jic,. One can
also define a group action ® : G xV — V to be measurable in the weaker sense that ®~!
takes values in the completion of Bg x V relative to ug x . One can then use the version
of Fubini’s theorem for completed product measures [20, Theorem 8.12], but again this
is less convenient for us.
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3. CAYLEY (t,m, k)-GRAPHS AND SYSTEMS OF LINEAR EQUATIONS

Our aim now is to apply the results from the previous section to prove Theorem [L.3]
We shall in fact prove the following version first.

Theorem 3.1. Let M € Z"™™ satisfy d.(M) = 1. For any € > 0, there exists 0 =
d(e, M), 0 < < 1, such that the following holds. Let Ay, ..., A,, be Borel subsets of a
second-countable compact Hausdorff abelian group G such that ukerGM(Al X oo X Ay N
kerg M) < 8, and for each j € [m] let GY) denote the closed subgroup p;(kerg M) of G.
Then for each j € [m] there exists a Borel set R; C A; N GY), such that jugu (R;) < €
for all j € [m], and (Hje[m] A;j\ R;) Nkerg M = 0.

The added information here is firstly that we only need to remove elements from
A; that are in the projection p;(kerg M) of the solution space (this is quite clear intu-
itively and is also the case in Theorem [[3]). Secondly, each set R; is small not just in
the measure pg but in the possibly larger measure pq¢). Indeed, note that if the index
k; = |G : GY| is finite then we must have pugy) = Kj - palaw), where ug|qi denotes
the restriction of ug to GY). Thus, while the conclusion pg) (R;) < € above is roughly
equivalent to the conclusion ug(R;) < € in Theorem L3 if k; = O(e™1), the former con-
clusion is stronger otherwise. We explain the use of second countability in Remark B.3l

To prove Theorem B.I, we want to find, given a system of linear equations of de-
terminantal 1 on G, a certain invariant hypergraph that represents the system in such
a way that the theorem follows from Lemma In [29], a notion of a finite Cayley
hypergraph was introduced and shown to give a representation of the desired kind for
certain systems of equations on certain finite abelian groups, but it was not clear how
far this method could be extended. The main objective for the remainder of this paper
is to show that there is a general version of this framework that can handle all systems
of determinantal 1.

We begin with a definition analogous to [29) Definition 2.1].

Definition 3.2 (Cayley (¢, m, k)-graph). We call a (¢, m, k)-graph H a Cayley (t,m, k)-
graph if it has the following properties. For each i € [t], the i-th vertex set is a compact
group G; with Borel o-algebra and Haar probability, and there is a closed subgroup G of
the direct product Hz‘e[t] G; such that H is invariant under the t-partite action of G on

Gy, where each G acts on itself by left-multiplication. To specify these properties, we
write H € Hy,((G;),C,G), where C is the set of edge color-classes of H.

To illustrate this, let us note briefly how as a special case one finds “bipartite Cayley
graphs” (as they are called in [9], for instance). Let t =k =2, m =1, C = {{1,2}}, let
G1 = Gy = G be a finite group, and let G = {(g,¢9) : ¢ € G} be the diagonal subgroup
of G x G. Then H € Hy5(G,C,G) means that the edge set E(H) is a union of right
cosets of G. Using the map (g1, g2) — g5 ‘g1, we can identify the quotient G\ E with a
set A C G, and thus see that H is the bipartite Cayley graph on G, LI G5 generated by
A (that is we have (g1, g2) € E if and only if g, 'g; € A).

Remark 3.3. By Lemma [2.9] the t-partite action in Definition is measurable (in the
sense of Definition [2.0]) if the action of each G; on itself by left-multiplication is mea-
surable. The latter measurability of the group operation holds for any second-countable
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group G (that is a topological group such that the underlying topological space has a
countable base). Indeed, by continuity of multiplication the preimage of a Borel set
A C G is Borel in G x G, i.e. it lies in the Borel o-algebra Bgx . By second countability,
we have that Bgxg equals the product o-algebra Bg x Bg (see [2, Lemma 6.4.2]), so the
action is measurable. Without second countability, the o-algebra Bgy o may be strictly
larger than Bg x Bg (see [2, Example 6.4.3]). These facts, together with other aspects
(such as Lemma below), make second countability a useful assumption in Theorem
B.Il Moreover, once this theorem has been proved, Theorem [[.3] can be deduced using
an inverse limit argument. This is done in Appendix [Al Thus, from now on we shall
consider such invariant hypergraphs only on second-countable compact groups.

Defining Cayley (¢, m, k)-graphs in terms of invariance, as above, relates them clearly
to the previous section. To relate them to arithmetic removal results, it is useful to
describe the edge sets of such hypergraphs in terms of generating sets.

Lemma 3.4. Let G1,Gs,...,G; be second-countable compact groups, let G be a closed
subgroup of Gy, and let H € Hy,((G;),C,G). For each j € [m], let ¢, denote the
canonical map from G¢, = Hz‘ecj G to the quotient topological space pc,(G)\Gc;. Then

for each j we have E;(H) = 1/)5]_1(Aj), where Aj is the Borel set vo,(E;(H)).

Thus, the edge set of H has the following form: E(H) = | ;¢ @Z)ajl(Aj). We call
the sets A; the generators of H. When the groups G; are labelled copies of the same
group G, we write H € Hy+(G,C,G). If we wish to specify the generators, we shall write
H == Hk,t<G7 C, g, (A]))

The only thing there is to prove in Lemma [3.4] is that each generator A; is indeed
a Borel set in pg;(G)\G¢,. This fact is not trivial, since a priori the o-algebra of Borel
sets on this quotient could be smaller than the o-algebra obtained by pushing forward,
via 9¢;, the Borel subsets of G¢;. In other words, we are using the following fact.

Lemma 3.5. Let G be a Hausdorff second-countable compact group, let K be a closed
subgroup of G, and let m : G — K\G be the quotient map. Then for any K-invariant
Borel set E C G, the set n(E) is Borel.

This follows from results in descriptive set theory, for instance combining [I5, Theo-
rem 12.17 and Corollary 15.2].

We now focus on abelian groups, and for these we shall now relate Cayley (¢, m, k)-
graphs to systems of linear equations. From now on, given M € Z"™™ and an abelian
group G, we shall write (M, G) to refer to the system Mz = 0 with x € G™. Recall that
our aim is to construct some invariant hypergraph H such that Theorem Bl for (M, G)
can be deduced from the symmetry-preserving removal lemma for H.

One of the simplest examples of such a construction, the idea of which can be traced
back to Ruzsa and Szemerédi [23], concerns Schur’s equation x; + x5 = 3. Let us revisit
this example in order to motivate our general construction.
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Example 3.6 (Schur’s equation, M = (1 1 —1)). Consider the homomorphism G* —
G? given by the following matrix:

1 -1 0
v=1[0 1 -1]. (12)
1 0 -1

This homomorphism has image equal to kerg M. Moreover, the row structure of ¥ allows
us to define a very convenient tripartite Cayley graph, given Borel sets A;, Ay, A3 C G.
Indeed, let H be the (3,3,2)-graph with three vertex sets equal to GG, with edge color
classes C; = {1,2}, Cy = {2,3}, C3 = {1,3}, and with j-th edge-set E; = nglAj,
where the map ¢, : GY% — G is given by the j-th row of ¥. (Thus for instance Y1)
takes a couple (v(1),v(2)) from the product of the first two vertex sets to v(1) — v(2).)
Letting F' be the triangle graph with vertices 1, 2, 3, it can be checked easily that for each
homomorphism v = (v(1),v(2),v(3)) of F' in H, the image x = ¥(v) is an element of
Ay x Ay x AsNkerg M, and that we have in fact piger ar(A1 X Aa X AgNkerg M) = 7(F, H).
Moreover, H is a Cayley graph invariant under the 3-partite action of G = kerg ¥, which
means here that each Borel set E; is a union of cosets of kerg ¢)¢;. Therefore, if S; is a set
of small measure that is also a union of such cosets, then removing it from F; corresponds
to removing a subset of small measure from A;. We can thus establish Theorem [3.1] for
(M, G) using Lemma 2121

In order to generalize the argument above, we shall now define a type of group
homomorphism ¥ that will enable us to associate a useful invariant hypergraph with a
given system (M, G). The definition uses the following notation.

For a group G and a subset e of [t], we denote by 7, the homomorphism embedding the
direct power G¢ into G*, defined by letting 7.(g’) be the element g such that g(i) = ¢'(7)
for i € e and g(i) = Og otherwise.

Given any abelian groups Gi, Ga, and m,t € N, any homomorphism ¥ : G} — G¥'
can be viewed as an m X t matrix of homomorphisms G; — G, namely for each (5, k) €
[m] x [t] the entry U, is the homomorphism p;oWo~y, : G; — Ga. We denote by ); the j-
th row of this matrix, that is the homomorphism ; := p;jo¥ = Zke[t} U, popy : G — Go.

We write Supp ¢; for the set of k € [t] such that ¥, is not the 0-homomorphism
G1 — {0¢,}. When Supp ); is a proper subset C; of [t], we will often want to work with
the homomorphism ¢; o y¢; : Glcj — G rather than with ¢; : GY — G,. To simplify the
notation, we shall denote ; o ¢, by ¥¢;.

We can now give the main definition of this section.

Definition 3.7 (Hypergraph representation). Let G be an abelian group, and let M €
27", A (t,m, k)-representation of the system (M, G) is a homomorphism ¥ : GL — G™,
for some abelian group G., such that the following conditions hold:

(i) There are distinct sets C1,Cs, ..., Cp, € ([]’j) such that Vj € [m], Suppv; C C;.
(i) ¥(GL) = kerg M.
(iii) For each j € [m], we have p¢, (kerg, ¥) = kerg, v¢; .

When G is second-countable compact, we require that the same be true for G, and that
¥ be continuous.
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A simple example is given by the matrix ¥ in (I2), which gives a (3, 3, 2)-representation
for Schur’s equation on any abelian group GG, where we can take G, = G.
The following proposition is the main result of this section.

Proposition 3.8. Let M € 7™, let G be a second-countable compact abelian group, and
suppose that the system (M, G) has a (t, m, k)-representation for some positive integers
t,k. Then Theorem[31] holds for (M,G) with §(€) = 0(t, k,€), where §(t, k, €) is given by
Lemma [212.

Proof. Let W be a (t, m, k)-representation for (M, G). Fix e > 0 and let § = 6(¢, k,¢) > 0
be such that Lemma holds.
Let Aq, As, ..., A,, be Borel subsets of G such that

MkerGM(Al XKoo XAmﬂker(;M) S(;

We may assume that each A; is a subset of GU) = pj(kerg M), since the part of A;
outside the latter subgroup does not contribute to the above measure.

Let H = Hy (G4, C, G, (A;)) be the Cayley (t,m, k)-graph given by W, that is the
hypergraph with vertex sets V; = G, with j-th edge-color-class C;, with G = kerg, U,
and with generators A;, j € [m]. Let F' be the k-uniform hypergraph on [¢t] with edges
Cy,Cy, ..., Chp.

Note the following fact concerning the quotient group G /pc;(G) from Definition

Vjelml, G /po(kerg, W) = ¢;(GL) = pj(kerg M) =: GY, (13)
this being an isomorphism of compact abelian groups. Indeed, by condition (iii) of
Definition B7, we have G’/ pe, (kerg, ¥) = G/ kerg, Ye,. By the first isomorphism

theorem, this is isomorphic as a compact abelian group to 9¢; (ij ) Since Supp v; C C},

we have ¢, (G*Cj) = 1;(G"). By definition of 9;, the latter group is p; o U(G%), and by
condition (ii) this is p;(kerq M).

Now, since the map ¥ is measure-preserving from G* onto kerg M (as a continuous
surjective homomorphism between compact abelian groups), we have

rrm) = [ T stelonds = [ T taolo)dg
G jepm) G jepm)

= e (A < x A N 0(GE))

= ,ukerGM(Al X+ X AmﬂkergM) < 0.
By Lemma 2.12] for each j € [m] there exists a Borel set S; C E;(H), such that by
removing S; from E;(H) for each j € [m] we obtain a (¢, m, k)-graph H' that is F-free and
G-invariant. In particular, each set S; is invariant under the action of p¢, (G) = kerg, v¢;,
so by Lemma [3.4] there is a Borel set R; C G such that E; \ S; = waj_l(Aj \ Rj). We
also have g (R;) = e, (S;) < e. Moreover, the set (Hje[m} A; \ Rj) Nkerg M must be

empty, for if it contained some element x = (x1, ..., x,,) then there would be g € G’ such
that W(g) = = and such that g¢, € waj_l(Aj\Rj) = E;\ S, for each j € [m], contradicting
the removal property of the sets S;. U

We close this section by recording the deduction of Theorem [[.4] from Theorem [L3l
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Proof of Theorem[1.4. Suppose that A C G is measurable with pg(A) > a > 0. Apply
Theorem [[3 with € = a/2m. Let ¢ = §(¢) and suppose that fixere pr(A™ Nkerg M) < c.
Then by Theorem there exists a measurable set R C A of measure at most «/2 such
that A\ R is M-free. However, A\ R has measure at least a/2 > 0, so it is non-empty,
therefore it is not M-free (by invariance of M), a contradiction. U

4. FINDING A HYPERGRAPH REPRESENTATION FOR A GIVEN LINEAR SYSTEM

Having established Proposition B.8, the proof of Theorem [B.1] is reduced to the fol-
lowing task: given an integer matrix M with determinantal 1 and any abelian group G,
show that the system (M,G) admits a (t,m, k)-representation, with ¢, m,k depending
only on M. In fact, we shall need to complete this task only for matrices that do not
satisfy the following property.

Definition 4.1. We say that M € Z"™™ is plain if there exists ¢ € [m] such that
pe(kerg M) = {0¢} for every abelian group G.

This notion is a special case of that of a ‘thin system’ from [I8]. Examples include
any square matrix M € Z™" with d,.(M) = det M = 1, since this has kerg M = {0~ }.

The following result allows us to restrict the above-mentioned task to non-plain ma-
trices. Recall from the previous section the definition of the embedding homomorphism
Ye : G¢ — G™ for a given e C [m].

Lemma 4.2. Let M € Z™™ be a plain matric satisfying d.(M) = 1. Then either
Theorem (31| holds for M, or for some s € [r — 1] there exists a matriz M' € Zr=)>*(m=s)
that is not plain and such that, for some set C C [m] of size m — s, the map ¢ yields a
(measure-preserving) isomorphism from kerg M’ to kerg M.

In other words, any element 2’ € kerg M’ can be extended uniquely to an element
x € kerg M by adding coordinates equal to Og with indices in [m]\ C (i.e. corresponding
with columns from M missing in M’). As a consequence, if Theorem [B3.1] holds for M’
then it holds for M.

Proof. From Definition .1 we have py(kerg M) = {0} for some ¢ € [m]. We claim that
then there exists a unimodular matrix U € Z"*" such that the matrix My = UM has
first row equa]ﬁ to the standard basis element e,. To see this, note that e, must be in
the row space over Q of the rows of M, that is e, € Spang{Mi, ..., M,}. (Indeed, our
assumption is that {e,}+ D kerg M, so e, € (kerg M)+t = {M,,..., M, }*+.) Thus e, €
Spang{ My, ..., M,}NZ™. But this set equals Spang{ M, ..., M,} because d,(M) = 1, as
can be seen using the Smith normal form M = V(I|0)W (where V € Z™" W € Z/"*™
are unimodular, and I, denotes the identity matrix of order r). Thus we have e, =
ni My + - -+ + n, M, where the n; are coprime integers. By [I8, Lemma 9], there exists
a unimodular matrix U € Z™" with first row equal to (n1,ns,...,n,). Thus we have
My = UM as claimed, and so kerg M = kerg My. Now, with the notation from Theorem
B if 0g ¢ Ay, then Theorem Bl holds as there are no solutions z with z; € A;, for all
i € [m]. Otherwise, we remove the first row of Mj as well as the ¢-th column, obtaining

SIncidentally, this claim also implies that in Definition E1] if d,.(M) = 1, then the case G = Q of the
definition (i.e. ps(kerg M) = {0}) implies the general case.
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a matrix M’. Note that the embedding homomorphism vp,\ (s is a measure-preserving
isomorphism kerg M’ — kerg M. If M’ is plain, we repeat the same procedure.

This iteration must produce the desired matrix M’ before all the rows of M, are
removed, for otherwise we would have that Ogm is the only solution and that Og € A;
for each j € [m], which implies that fiegm([[; 4; Nkerg M) = 1, contradicting the
assumption in Theorem B.11 U

Thus, our objective in this section is to prove the following result.

Proposition 4.3 (Existence of a hypergraph representation). Let M € Z™™ with
d,(M) = 1, and suppose that M is not plain. Then there exist positive integers t,k
such that, for any abelian group G, the system (M,G) has a (t, m, k)-representation.

The combination of this result with Proposition B.8] (via Lemma if M is plain)
establishes Theorem [3.11

Remark 4.4. Note that if two matrices M, M’ € Z"™ satisfy kerg M = kerg M’, then
a (t,m, k)-representation for (M’ G) is also a (t,m, k)-representation for (M,G). In
particular, for finite abelian groups G, in Proposition 3] the assumption d,.(M) = 1 can
be relaxed to ged(d,.(M),|G]) = 1 (and the same holds for the finite case of Theorem
[L3). Indeed, the Smith normal form of M is then U(D|0)V where U € Z™*",V € Z™*™
are unimodular, and D € Z™*" is a diagonal matrix with non-zero entries coprime with
|G, so the endomorphism D : G" — G" is invertible. Therefore, letting M’ = (1,.|0)V,
we have that kerg M = kerg M', whence M has a (¢, m, k)-representation if and only if
M’ does.

We shall prove Proposition [4.3]in several steps that constitute the subsections below.
One of the main tools that we shall use is a notion of extension for integer matrices,
which will enable us to replace the given matrix M by a simpler one at each step of the
argument. To define this notion of extension, we use the following notation. Given a set
J C [m/] of size m, and a group G, recall that we denote by p; the coordinate projection
G™ — G’. Instead of the image group G”, we shall often want to work with the group
G™, isomorphic to G7. To avoid a possibly confusing abuse of notation, we shall denote
by 7, the homomorphism G™ — G™ that takes (95)jemmn 10 (9o, () jeim), Where oy is the
order-preserving bijection [m] — J.

Definition 4.5 (Matrix extension). Let v/ > 7, m/ > m and let M € Z™*™ M’ € 7%
We say that M’ is an extension of M if the following holds. There is a subset J C [m/] of
size m such that, for any abelian group G, the homomorphism 7, : G™ — G™ restricts
to an isomorphism kerg M’ — kerg M.

Note that if M and M’ both have full rank, then we must have m’ —r’' = m — r,
since this is the dimension of their isomorphic kernels over G = Q. The extensions that
we shall consider will always be given by a matrix M’ having M as a submatrix in such
a way that m; has the required property.

The key fact that makes extensions useful for us is that they preserve the property
of having a hypergraph representation, in the following sense.
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Lemma 4.6. Let M € Z™*™, and let M’ € Z"*™ be an extension of M with corre-
sponding index set J € ([ZZ} . Let G be an abelian group, and suppose that V' is a
(t,m', k)-representation for (M',G). Then V := m; 0V is a (t,m, k)-representation for
(M, G). Moreover if V' is given by an integer matriz, then so is V.

Proof. First note that we can express the projection 7; as left-multiplication by the
m x m’ integer matrix whose j-th row is the vector with entry o;(j) equal to 1 and all
other entries 0, for each j € [m]. Thus ¥ is an m x ¢t homomorphism matrix with j-th
row equal to the o,(j)-th row of W', with support C; = C’;J(j), where the latter is the
support of the o;(j)-th row of U. In particular, the claim in the last sentence of the
lemma is clear. Let us now check that the conditions of Definition B.7] are satisfied.

Condition (i) is inherited by ¥ from U’, since the m rows of ¥ form a subset of the
m’ rows of W',

Condition (ii) is also satisfied, indeed we have
\I!(Gi”/) = WJ(\III(GT/)) = my(kerg M") = kerg M,
where the last equality follows from Definition [4.5]
To check condition (iii), fix j € [m]. Then, given y € kerg, ¥ < G*, we must have in
particular the j-th coordinate of W(y) equal to 0, and this coordinate equals ¥¢; (pc; (v))

by condition (i), whence p¢, (kerg, ¥) C kerg, ¥¢,. To see the opposite containment, let
y' € kerg, vc;. Since C; = C ), we have y' € kerg, 1, o and since condition (iii)

JU
holds for W', there exists y € kerg, ¥’ C kerg, ¥ such that pe ” (y) = pc;(y) = v/, so
o

we have indeed kerg, v¢; C po,(kerg, V).
If G, G, are topological groups and ¥’ is continuous, then so is V. O

4.1. A reduction to matrices of the form (/,|B). Our first application of matrix
extensions consists in showing that to establish Proposition [4.3] it suffices to prove it for
matrices M = (I.|B). To that end we shall use the following result, the role of which is
analogous to [I8, Lemma 10].

Lemma 4.7. Let M € Z™™ and suppose that d.(M) = 1 and that M 1is not plain.
Then M has an estension M' € Z™Cm=") with J = [m] and M’ = U(I,,|B), where
U e Z"™™ is unimodular and every row of B is non-zero.

Proof. By [18, Lemma 9] there exists an m x m matrix U =

AE/[ ) satisfying det(U) =

d.(M) = 1. We set M’ to be the following m x (2m — r) matrix:

M — (]‘b{ Lf) _ (U|By).

This is an extension of M with J = [m]. Letting B = U~'By, we have UM’ = (I,,| B)
as required.

Since U is unimodular, we have kerg M’ = kerg([,,|B) for any abelian group G.
Therefore, if for some j € [m] the row B; of B is 0, then

pj(kerg M") = pj(kerg(lm|B)) = {06}

Then, since 7, : kerg M" — kerg M is an isomorphism, we must also have p;(kerg M) =
{0¢}, whence M is plain. O



20 PABLO CANDELA, BALAZS SZEGEDY, AND LLUIS VENA

We can now reduce the proof of Proposition to establishing the following result.

Proposition 4.8. Suppose that M € Z"™™ is of the form M = (I,|B), where m > r + 1
and all rows of B are non-zero. Then there exist positive integers t, k such that, for any
abelian group G, the system (M, G) has a (t,m, k)-representation.

Lemma 4.9. Proposition[4.8 implies Proposition [4.3

Proof. Suppose that M, € Z™*™ satisfies the assumptions in Proposition We
have my > rg + 1, otherwise My is plain. Applying Lemma (4.7, we obtain a matrix
M = U(I,|B) € Z"™, with r = mg, m = 2my —ro > r + 1, and all rows of B non-
zero, such that M’ is an extension of My with J = [mg]. Let M = (I,|B), let ¢,k be
the integers given by Proposition 1.8 and let G be an abelian group. By Proposition
4] there is a (t,m, k)-representation ¥ for (M,G). Then, since U is unimodular, we
have ker¢ M" = kerg M, and so V is also a (¢, m, k)-representation for (M’ G), just by
Definition B.7. Hence, by Lemma .6 the map 7y, o ¥ is a (¢, mo, k)-representation for
the original system (M, G). O

Our goal now is to prove Proposition .8 To begin with, in the next subsection we
deal with a special case consisting of what we call simple matrices.

4.2. Simple matrices. Given a non-zero element v € Z™, we denote by ged(v) the
greatest common divisor of the integers v(i),i € [m].

Definition 4.10. We say that a matrix M € Z™™ of the form (I,|B) is simple if
m > r+ 2, and for each i € [r]| the i-th row of B, denoted B, is non-zero and satisfies

Our main result concerning these matrices is the following.

Proposition 4.11. Suppose that M = (I.|B) € Z"*™ is simple. Then, for some positive
integerst, k, there exists W € Z™*! such that, for any abelian group G, the homomorphism
UG — G™ is a (t,m, k)-representation for the system (M, Q).

Given M € Z™™, for each j € [m] let M(;y denote the square matrix formed by the
columns of M with indices j —r mod m,j — (r —1) mod m,...,j5 —1 mod m.

The main part of the proof of Proposition [£11] consists in showing that any simple
matrix has an extension with the particularly convenient property of being what we call
a circular matrix.

Definition 4.12 (Circular matrix). We say that a matrix M € Z™™ is circular if for
each j € [m] the matrix M(;) is unimodular.

Proposition 4.13. Let M € Z™™ be a simple matrixz. Then there is an extension
M' € 77" such that M’ is circular.

Before we turn to the proof, let us motivate this proposition by briefly discussing
circular matrices. One of the simplest examples of a circular matrix is the one corre-
sponding to Schur’s equation, thatis M = (1 1 —1). In Example B.6l we saw that this
has a nice representation, given in ([I2]), having the triangle as its corresponding graph
F. Circular matrices are very convenient in that they provide simple generalizations of
this construction, as shown by the following result.
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Lemma 4.14. Suppose that M € 7™ is circular and that m > r+2. Then there exists
U e 2™ such that for any abelian group G, the homomorphism ¥ : G™ — G™ is an
(m,m,r + 1)-representation of (M,G), with C; = {j,7 +1 mod m,...,j+r mod m}
for each j € [m)].

Thus, the triangle graph corresponding to Schur’s equation is generalized here to the
‘cyclic’ (r + 1)-uniform hypergraph on [m| with edges C;. Analogues of this construction
have been used in previous works (though not in relation to hypergraph representations
as defined here), specifically in [3, [I8]. In particular, Definition is an analogue of
the notion of ‘n-circular matrix’ used in [18].

Proof of Lemma[{.14} We construct ¥ as follows: the j-th column U7 is an element of
Z™ lying in kerg M, with support inside {j —r,j — (r —1),...,7 — 1,5} (subtractions
mod m), and with j-th entry equal to —1. More precisely, let y = M(;)lMJ € Z"; then
My = M?. We then define W/ by W (i) = y(i) fori € {j —r,j — (r—1),...,j — 1},
Ui (j) = —1, and W7 (i) = 0 otherwise. Note that we have indeed ¥/ € Z™ and M¥’ = (.
Note also that the resulting matrix ¥ has row j with support indeed contained in the
set C; = j 4+ [0,r] mod m, and that these sets C; are distinct since m > r + 2. Hence,
condition (i) from Definition B.7 is satisfied with k& = r + 1.

Let us check condition (ii), i.e. that ¥(G™) = kerg M. Since MV = 0, we clearly
have U(G™) C kerg M. To see equality, fix any = € kerg M. Observe that x is uniquely
determined by any sequence of m — r consecutive coordinates mod m, because the sub-
matrix formed by the remaining r columns of M, being unimodular, gives a bijection
on G". Hence, if we find y € G™ such that ¥(y) agrees with x on such a sequence of
m — r coordinates, then this together with the fact that M¥(y) = 0 will imply that
x = VY(y) € ¥(G™). Now note that the top-left square submatrix of ¥ of order m — r
is upper triangular with entries —1 in the diagonal, so we can indeed find the desired
element y.

To check condition (iii), let G = kerg W. We have to check that for each j € [m],
the map W¢, (the restriction of the j-th row of U to G%) satisfies ker ¢, = pc;(G).
Clearly pc;(G) C kertyg,, since if ¥(y) = 0 then in particular the j-th entry, which
equals ¢, (pcj (y)), is 0. To see the opposite containment, suppose that 3’ € G satis-
fies ¢¢;(y') = 0. We want to show that there exists y € G such that pc,(y) = ¢'. Using
the row structure of ¥, we can find successively elements y;_1,¥;-2,...,Yj—m-r-1) € G
such that for each £ € {j,j —1,...,7 — (m —r — 1)} we have ¢, (ye, Yos+1, - - -, Yoirr) = 0.
We use these elements y, to extend gy’ to an element y € G™, defined by pc,(y) = ¥/
and py(y) = y, for each ¢ € [m] \ C;. By construction, Wy has m — r coordinates equal
to 0. Since 0 and Wy are both in kerg M and agree on these m — r coordinates, by the
observation in the previous paragraph we must have Uy = 0, so y € G as required.

If G is a topological group then ¥ is clearly continuous. We have thus shown that
all the conditions in Definition [3.7] are satisfied. 4

Let us now turn to establishing Proposition .13l The proof is an adaptation of an
argument from [I8]. Given a matrix B, we shall denote by By, ;,) the submatrix of B
formed by consecutive rows with indices 41,4, + 1, ..., 45. First we adapt [18, Lemma 11],
to obtain the following.
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Lemma 4.15. Let B € Z™*" be a unimodular matriz. Then for some integer s = Opg(1),
there exist integer matrices S, T such that the s X r matriz

B= (14)

SN wn

satisfies the following property: for eachi € [1,s— (r —1)], the r X r submatriz E[i,Hrfl}
s unimodular.

In other words, each submatrix of B formed by r consecutive rows is unimodular.

Proof. We shall say that an integer matrix with r columns is good if each of its square
submatrices formed by r consecutive rows is unimodular.

B
We first claim that there exists a matrix 7" such that the matrix L = | T | is good
I,
and has Op(1) rows. (The upper part of B will be found analogously.)
This holds for » = 1 since we can set L = jil . For r > 1, we can suppose

by induction that the claim holds for » — 1. The matrix L is constructed by repeatedly
adding an appropriate new row at the bottom of B while ensuring that the new bottom
r X r submatrix is unimodular. The idea is that each new row essentially captures a step
in an application of Euclid’s algorithm to the entries in the first column of B.
By
Bs
Thus we first form the matrix : , where \; € {—1,1}, and such that
B,
Z:=1 AiBi
(A B11+ > iy \iBi1| is minimized. This coefficient A; having magnitude 1 ensures that
the new row is the result of an elementary row operation on B, so that the above matrix
is still unimodular. If | By ;| = max;e,)|Bii| > 1, then we can find {); : ¢ € [r]} with
|A1] = 1 such that |\ By 1+ > ;_, \iBi1| < |Bi1]. Otherwise, note that we can certainly
make the left side here at most |B;|. It follows that after repeating this addition of a
new row at most r times, we have decreased the greatest magnitude of the entries in the
first column (provided that this magnitude was greater than 1). We then iterate this
process, denoting by 7; the i-th new bottom row. By Euclid’s algorithm, after £ = Op(1)
T

T
steps, we obtain a good matrix ( jl?, ) where T = ,2 and the first entry of Tj is 1

Ty
(the entries in the first column of B are coprime by assumption). Now we can carry out
r — 1 further steps consisting in subtracting integer multiples of T, from previous rows,

Lo ), with top row T, and with B’ € Zr—1)x(-1)

to obtain the r x r matrix T’ = ( 0 B
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being unimodular.
Now we apply the induction hypothesis to B’, obtaining an s’ x (r — 1) good matrix
B/
L = T" |, where s = Op/(1) = Opg(1). We then add to L’ a first column of
Ir—l
zeros, and we insert in the resulting matrix the row (1,0,...,0) of length r between the
positions j(r — 1) and j(r — 1) + 1, for each j € [1, s’ — 1]. The resulting matrix L” has

B
Op(1) rows and, by construction, the following matrix is good: L = ( LB,, ) =\ T |,
I
for some matrix 7" with Op(1) rows.
The proof is completed by a similar argument adding top rows to B, yielding the
desired matrix S. U

To complete the proof of Proposition 13} we adapt the argument from [I8, Lemma
12], using Lemma T3] instead of [I8, Lemma 11].

Proof of Proposition[{.13. Since each row B; of B satisfies ged(B;) = 1, by [18, Lemma
9] there exists an (m —r) x (m — r) unimodular matrix U; with top row equal to B;.
Applying Lemma A TH] to each such matrix U; we obtain U; as given by (I[4]). We then

Uy
Uy
form the following ' x (m—r) matrix, where ' = Og(1): B'= | " |. Let M' = (/| B’),
U,
[mfr
and note that M’ = | [,,| X , for some matrix X.
[mfr

We claim that M’ is circular. To see this, let M(’i) denote the square submatrix
formed by r’ consecutive columns of M’ in the circular order, starting with the i-th
column. Then, for the first m — r and last m — r values of i € [m/] it is clear that M(/i)
is unimodular; for example, for the first m — r values, M(’i) is unimodular because its
columns form a circular permutation of the columns of a lower triangular matrix with
diagonal entries equal to 1. For i € (m —r,m’ — (m —r)] = (m — r,7’], note that
det M(’Z.) =+ det Bfi—(m—r),i—l} ==+1 so M(’Z.) is indeed unimodular.

To complete the proof, let us specify the index set J C [m/] of size m showing that
M’ is an extension of M. Let J; C [r'] be the set of size r containing the subscript of
each row of B’ that is the first row of a submatrix U; (recall that U; is a submatrix of
U;). Since this first row is B; by construction, we thus have that the order-preserving
bijection o, : [r] — Jy satisfies B; = B, ;). We set J = JyU[r" +1,m/] C [m]. From
the structure of M’, it then follows that the homomorphism 7; restricted to kerg M’
gives an isomorphism kerg M’ — kerg M, as required. Indeed, the submatrix of M’
formed by the rows indexed by J; is equal to M (up to relabelling rows and columns)
so if ' € kerg M’ then 7;(x') € kerg M; moreover, given = € kerg M, the element of
G7 with j-th coordinate z(c;'(j)) is in the kernel of the above submatrix, and using
the structure of M’ we then extend this element uniquely to an element 2’ € kerg M’
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such that 7;(2') = x (since an element 2’ € kerg M’ is uniquely determined by its last
m’ —r’ = m — r coordinates). O

Let us finally combine the above ingredients to obtain the main result of this sub-
section.

Proof of Proposition [{.11. By Proposition 413 there is a circular matrix M’ = (1.|B’) €
7™ extending M. By Lemma @14 we have an (m/,m/,r’ + 1)-representation for M’
given by an integer matrix ¥’. Hence, by Lemma L6 we obtain a (¢, m, k)-representation
U = 7; 0¥ for M, also given by an integer matrix, with ¢t = m/ and k =" 4 1. O

Remark 4.16. Note that Proposition[4.IT]establishes Proposition 4.8 for simple matrices
in the strong sense that the conditions in Definition [3.7] of hypergraph representability
are satisfied with G, = G and ¥ being just an integer matrix (rather than a more general
homomorphism matrix). In the next subsection, the full generality of Definition 3.7 will
be used to handle all remaining matrices of the form (7| B). For this purpose, instead of
matrix extensions, we shall use a different construction.

4.3. General matrices of the form (/.|B). In this subsection we complete the proof
of Proposition .8, by using Proposition 4.11] to construct a hypergraph representation
for any system (M, G) with M € Z"™™ a non-plain matrix of the form (7,|B). This will
establish Proposition 4.3 and thereby we shall have completed the proof of Theorem [3.11

Let us first explain briefly the main difficulty, and in particular why the rest of the
argument from the finite setting of [I§] does not work in our setting of general compact
abelian groups.

We want to find a hypergraph representation for any given system with a non-simple
r x m matrix ([.|B). There are two cases to treat: in the main case we have m > r + 2
and for some row B; of B we have ged(B;) = s > 1; in the second case we have m = r+1.

In [I§], an analogue of the main case is addressed using a notion of ‘system extension’,
which differs from the matrix extensions used in this paper. In particular, the extensions
in [I8] allow one to multiply group elements by s and thus reduce the task to the case
of simple matrices; see for instance the proof of [I8, Lemma 10]. This multiplication is
allowed in the setting of finite abelian groups because it does not increase the measure
of sets, which is important to ensure that the measures of the removal sets are kept
small. Our general setting includes groups in which multiplication by an integer may
increase measures (e.g. the circle group), so we cannot use this argument. Instead, we
shall construct a certain ‘covering’ of the original kernel kergy M by kernels of systems
given by simple matrices associated with the original matrix[] Proposition [4.11] gives us
a representation for each of these simple matrices, and we shall then combine these to
obtain a representation for the original system. This will address the first case stated
above.

The second case will then be simpler to handle and will be treated at the end of this
section.

Before we go into the details of the main case, let us briefly illustrate the idea of the
argument.

6This construction plays a role, relative to Definition B.7] somewhat analogous to the role played by the
blowup construction described in [33] relative to the arguments in [18].
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Example 4.17. Consider a system (M, G) with M = (1 2 2), a non-simple matrix of the
form (I;|B). Consider then the following two systems: (M©) Gp) with M@ = (1 1 1)
and Gy = G, and (MM, G,) with M®) = (1 2 2 1) and G the subgroup of G consisting
of the preimages of Og under multiplication by 2. Note that M(©® and M® are simple
matrices, so we have representations given by matrices ¥ € Z3%3 and ¥ e Z*** for
(M©_ Gy), (MY G) respectively.

Let us denote an element of kerg, M O by x0 = (01,02, To3) and similarly an
element of kerg, M® by x(M) = (211,12, 21,3,21,4). Consider the following map:

K : kerg, MO % kerq, MY = kerg M
(X(O), X(l)) = X = (2(1’0,1 -+ .T171), .T072 -+ .TLQ, 1’0,3 —+ 1’1,3).

This map is surjective. Moreover, the preimages of any solution x € kerg M have con-
venient ‘covering’ properties when fixing any given coordinate x(j) (see part (iii’) of
Definition F21]), properties which are obtained essentially by using the component z; 4
as a free variable. These properties are then used to construct a representation W, con-
sisting essentially in a 3 X (3 + ¢) matrix in which the left 3 x 3 submatrix is given by
U and the right submatrix is given by ¥() without the last row.

To define our construction formally, we shall use the following simple fact.

Lemma 4.18. Let M € Z™™, let G be an abelian group, and suppose that W' : G'' —
G™ is a (t,m,k)-representation for (M,G). Let G, be another abelian group and let
7 : G, — G, be a surjective homomorphism (if G is compact second countable then we
assume that the same holds for G, and that 7 is continuous). Then letting 7 denote the
homomorphism Gt — G.* mapping g = (g1,..., ;) to (7(q1),...,7(g:)), we have that
U:=Vor': G — G™ is also a (t,m, k)-representation for (M, Q).

Proof. Condition (i) from Definition 3.7 holds clearly for V.

Condition (ii) is also clear: by assumption we have kerg M = ¥/(G"") and this equals
V(7 (G")) by surjectivity of .

For condition (iii), fix any j € [m] and note that we certainly have p¢, (kerg, ¥) C
kerg, ¥c;. To see the opposite containment, suppose that g’ € G satisfies Ve, (9') = 0a
and note that since ¢c;(¢') = ¥, (7% (g")) and condition (iii) holds for ¥’ there exists
gy € kerg, W' such that pe,(g)) = 7 (g’). By surjectivity of m there exists gy € G%. such
that 7'(go) = g. We may not have p¢,(go) = ¢', but we do have this equality mod 7%,
that is we have

7% (pc,(90)) = pe, (' (90)) = pe, (90) = 79 (9).-
Hence there exists h' € kerg, 7% such that pc,;(g0) = ¢’ + I'. Adding coordinates equal
to Og, to ', we obtain h € G such that pc,(h) = ' and 7*(h) = 0. Letting g = go — h,
we have W(g) = V' (gg) — ¥'(7*(h)) = Ogm and pe,(g) = ¢'. Hence condition (iii) holds.

Finally, if ¥ is continuous on the compact abelian group G'', then ¥ is also contin-
uous on the compact abelian group G?. U

Let us now describe the construction for the main case in detail.
Let M = (I,|B) € Z™™ be the given matrix with m > r + 2 and some row B; satisfying
ged(B;) > 1. Let B’ denote the matrix obtained from B by dividing, for each i € [r],
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each coordinate of B; by ged(B;).
Let M© be the simple matrix M) = (I.|B"), and for each i € [r] let M@ be the
following r x (m + 1) simple matrix

Iy 0 0 B[/l,ifl] 0
MO=(0 1 0 B, 1],
0o 0 I, sz‘+1,r] 0
where Bf denotes the submatrix of B’ formed by rows iy,4; + 1,..., 5.

i1,82]

Let G be an arbitrary abelian group. For each i € [r] let G; denote the preimage of
O¢ under multiplication by ged(B;) (thus G; < G), and let Gy = G.
Let G, = Gy x G1 x --- x G,.. (Note that G, is compact second countable if G is.)

For each i € [0,7], let m; be the projection homomorphism G, — G;, and let U9 pe
the matrix in Z™*% given by Proposition ZI1] thus ¥'® : G — G is a (t;, my, ki)-
representation for the system (M®, G;). Then, by Lemma EI8, the homomorphism

VOIS Z0NS T G — G

is also a (t;, m;, k;)-representation for the system (M® G;).
Let t =ty +t; + -- -+ t,. We shall now combine these representations ¥ to define
amap ¥ : Gl — G™.

Each element g € G! may be written in the form g = (g(o),g(l), . ,g(r)>, where
g% € GY for each i € [0,7]. We then define the homomorphism

D:G - G x G xox gt < gmitrimtD) (15)
g - (111(0) (99), ¥ (gD, ..., W (gm)),

Note that ® can be viewed as an (m-+7r(m+1)) x ¢ matrix of homomorphisms, where the
top-left m x t, submatrix is ¥(©), the submatrix on the next m + 1 rows and ¢; columns
is () and so on, and every other entry is the zero homomorphism.

By condition (ii) from Definition B.7 for each ¥, we have

CID(G’;) = kerg, MO x kerg, MM x..ox kerg, M.

We shall denote an element of this group by x = (x,xW, ... x"), where x@ €
kerg, M@,

To complete the definition of ¥, we shall now compose ® with another homomor-
phism, denoted K, which will combine the entries of ®(g) appropriately to produce an
element of kerg M.

We define

K:=Po% : []kerg MY — G™, (16)
=0
where ¥ is the following coordinate-summation map:

¥ [T,_, kerg, M - G™

X — (X(O)7 x . ,X(T)) — (Zgzo x <j>)j€[m]’
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and where P is the following coordinate-multiplication map:

P: G — G™

y o~ (ged(B1)y, ged(B2) ya, - -, ged(Br) Yy Yrits- s Ym )-
Note that ¥ (and hence K) ignores the (m + 1)-st component of x) for each i € [r].

Definition 4.19. Let M = (I,|B) € Z™™ with m > r 4 2, let G be an abelian group,
and suppose that M is not simple. Then we define the following homomorphism:

UGt - agm
g — Kod(g), (17)
where G,, K, ®,t are as defined above.

One can view ¥ as an m x t matrix of homomorphisms, with r+ 1 submatrices formed
by sets of consecutive columns, where the i-th submatrix is formed by ¢; such columns
and is equal to P o W for each i € [0, r].

Proposition 4.20. Let M = (I,|B) € Z™™ with m > r + 2 and let G be an abelian
group. Then the homomorphism ¥ in () is a (t,m, k)-representation for (M,G), with
]{Z:ko—'—kl—i-—l—kr

Thus, the coordinates of an element of G with indices in [Z;:) ti+1, > t;]
are used by ¥ to represent M, and these representations are then combined by K to
make W a representation for (M, G).

To prove Proposition [£.20, we first record an equivalent definition of a hypergraph
representation, where condition (iii) from Definition .1 is replaced with a variant that

is convenient for our arguments below.

Definition 4.21 (Hypergraph representation, equivalent formulation). Let M € Z™™
and let G be an abelian group. A (t,m,k)-representation of the system (M,G) is a
homomorphism ¥ : G! — G™, for some abelian group G,, such that the following
conditions hold:

(i) There are distinct sets C1,Cs, ..., Cp, € ([]’j) such that Vj € [m], Suppv; C C;.
(i) ¥(GL) = kerg M.
(iii’) For every j € [m], for every z = (z1,...,am) € kerg M, if ¢’ € G’ satisfies
Yo, (9') = x;, then there exists g € G such that ¥(g) =z and p¢,(g) = ¢'.

When G is a compact abelian topological group, we require that G, also be compact,
and that U be continuous.

Lemma 4.22. Definitions[3.7 and [{.2]] are equivalent.

Proof. Let us recall condition (iii) from Definition B
(iii) For each j € [m], we have p¢, (kerg, V) = kerg, ¢¢;.

To see that (iii’) implies (iii), note that by definition we have p¢, (kerg, ¥) C kerg, v¢;,
and that the opposite containment also holds, by (iii’) applied with z = Ogm.

To see that (iii) implies (iii’), suppose that * € ker¢ M and ¢ € G satisfy
Ve, (g') = x;. Note that by condition (ii) we have x = ¥(go) for some go € G%. Then
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Ve, (9') = Y, (pe;(90)) = x5, 50 §' — pe;(go) € kerg, ¥he;. Therefore, by (iii), there ex-
ists g1 € kerg, ¥ such that pc,(g1) = ¢' — pe,;(90). Letting g = go + g1, we thus have
pe,;(g) = g and ¥(g) = ¥(go) = =, so (iii’) holds. O

We now turn to the proof of Proposition .20 A central fact that we shall use is
that K ignores the (m + 1)-st coordinates of each x(, i € [r], indeed this provides the
additional degrees of freedom sufficient for establishing the required properties of .

Let Cj; C [t;] denote the support of the j-th row of W), Then the support of the
j-th row of W is

Cj = C]<0) (] CJ<1) (N Cj(T) - [t],
where C;(7) is the shifted set (tg + ¢ + -+ t;-1) + C;; C [t].
It is then clear that condition (i) from Definition @21]is inherited by ¥ from the U(®,

We prove the other two conditions separately.

Lemma 4.23. The map ¥ in (I7) satisfies ¥(G.) = kerg M.

Proof. We first check that U(G%) C kerg M. We have to ensure that for any g € GL,
for each j € [r] we have M;(¥(g)) = 0. Note that ¥(g) = K(x) for x = ®(g) €
Ty kerg, M@ . Let x'® = pp(x®), for each i € [r]. Observe that, letting P’ denote
the map on G" that multiplies the i-th coordinate by ged(B;) for each i € [r], we have
MoP =P oM®O. It follows that for each j € [r] we have

M;(¥(g)) = Mj o P(£x) = ged(B))M” (x) = ged(B;) (M]@x@ +y M;‘”x/(“).
=1

Here we have firstly that M ](O)X(O) = 0Og, since x(© € kerg M© by definition of ®. For

i € [r]\{j}, since Mj(l) restricted to [m] equals M](O), and the (m+1)-st ComponentAof M]@

is 0, we have M;O)x’(l) = M]@x(i) = Og. Finally, for i = j, we have ged(B;) M;O)x’(]) = 0g,

since x'¥) has coordinates in G;. We have thus shown that M, (¥ = 0O¢g for each
J AR AV

J € [r], hence ¥(g) € kerg M.

We now show that W(G%) D kerg M. Let y = (y1,%2,-..,Ym) € kerg M. For each
i€r],let x; = =B (Yr11,---,Ym) € G. Then the element

xO =z, T Yoits s Ym)
satisfies M(Ox(® = 0. Setting x = (x©,0gm+1,0gm+1,...,0gm1), we have K(x) =

P(x®) =y. The map @ is surjective (since each map W is), so there exists g € G!
such that ®(g) = x, and so ¥U(g) = K o ®(g) =y as required. O

We now check condition (iii).

Lemma 4.24. The map V in () satisfies condition (iii) from Definition [3.7.

Proof. Fix any j € [m]. From the definitions, it is clear that kerg, ¥, 2 pg, (kerg, V).
To prove the opposite containment, we shall use the fact that, by Lemma [£.22] condition
(iii’) holds for each map W,

Recall the notations: C;; C [t;] is the support of the j-th row of U@ and C;(i) C [t]
for each ¢ is such that C; = | |_, C;(4) is the support of the j-th row of W.
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Suppose that ¢’ € GY s given such that ¥¢;(g’) = 0. We want to find g € kerg, ¥
such that pe,(g) = ¢’. We identify the groups G and G the obvious way via the
order-preserving bijection C;; — C;(7).

For each i € [0, 7], let ¢'@ € GS7 be the element such that we can identify ¢ as

g = (9. g0) € GO GI e x GO

Our task is to show that there exists g € G% such ¥(g) = 0 and p¢,;)(9) = ¢ for each
i (modulo the above identification).

Case 1: j € [r].

For each i € [r] \ {j}, let x®) be an element of kerG M® having the right j-th
coordinate, i.e. such that the j-th row of U®  denoted 1/10 . satlsﬁes 1/1 ( )) (Z)
Note that such a solution x can be obtamed just by extendlng g arbltrarlly to an

element g ) of Gl for example by adding 0 coordinates; indeed we then have that
T (g5 (@) ) = x lies in kerg, M@, as ¥ satisfies condition (ii).

Deﬁne
Ldef -= ¢CJO Z X(Z Z @/)c“ (18)
[P\ {4} i€[0,r\{5}
Note the important fact that zg € Gj. Indeed, letting d; = ged(B;), and using that

d; @Z)(] (g ") = 0 (since d; G; = {0¢}), we have
dj Taet =— Y d; 1/)(;“ (g") = Zd wcﬂ (¢') = =4, (¢") =

i€[0,r\{s} i€[0,r]

We can therefore find x') ¢ kerg, M© such that X' W) — g (using the fact that the
rows of B in M© are coprlme).

Define x\) to be the element of kerg, MY that restricts to x') on its first m coor-
dinates. (Thus x@) is ') with an extra (m + 1)-st coordinate equal to Zqef.)

For each i € [r ]\{ j} since U0 1s a representation, by condition (iii’) from Definition
2T we can extend ¢’V to some g € G¥ such that U@ (g¥) = x).

Now we want to extend ¢’) to an element g\ such that W0 (gl)) agrees with x\9)
at each of its first m coordinates except perhaps the j-th one; equivalently, we want
(W) (gD)), = x¥ for each u € [r + 1,m]. (This implies equality also for u € [r] \ {j}
since WU (g)) and x\9) are both in kerg, M9.)

We can find this element g¥) thanks to the freedom in the (m + 1)-st variable in
the system (MY G;). In other words, we are using condition (iii’) for ¥\ to extend

¢'Y), but we are domg so with target- solutlon the element of kerg, M () that has j-th
coordlnate w(cj)j(g (1)) and uth coordinate x for u € [m] \ {j}, and we are using the

freedom in the (m + 1)-st coordinate to claim that such a target-solution exists.

We finally come to extending ¢’(®), and to do so we first have to choose an appropriate
element x(© € kerg, M®. Consider the element x(®) such that the restriction x|, ;1
of x(¥ to coordinates indexed in [r + 1, m] satisfies

x | [r+1,m] — — Z x ‘ [r+1,m]> (19)
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for the x® defined above.

The key claim now is that this solution x(*) € kerg, M®, determined by (I9), satisfies
x§0) = Q/Jg]j %0 (¢"©). If this holds then we may use condition (iii’) to obtain the desired
extension ¢(® of ¢’ such that ¥ (g(®) = x©),

To prove the claim, note that on one hand by (I8) we have

U (00 = —Taer — Y x| (20)
i€[r\{s}

On the other hand, letting B](O) denote the restriction of the row M ](0) to the entries
indexed by [r + 1 m] we deduce from M, () (x(o)) = 0 that

0 (0) _ (0) (4D i
j |[r+1m] —ZB |[r+17m] _ZBj (XT+1,...,X£n)).
1€[r]
Here the summand with index i = j is X§- ) — 24, and for each i € [r] \ {7} the i-th
summand is BJ(-i) (Xfﬁl, e ,x%)) = —xg.i), since M@ has same j-th row as M©. Hence
X§-O) = —Xdef — Z Xgl) (21)
i€[r\{s}

Combining (20) and (2I)) we deduce that @Z)(C%)O(g' 0)) = X§~O) as claimed.

We have thus obtained g = (g(o), g, ... ,g(”)) such that pc;(g) = ¢', and such that
for each u € [r+1,m] we have W, (g) = > ,c (0. ol (gW) = > iclo] x¥ = 0, by definition

of x(¥. Since an element of kerg M is determined by its last m — r coordinates, we must
have ¥(g) = 0. This completes Case 1.

Case 2: j € [r+1,m].
The argument is similar but simpler. Suppose that we are given
g':(g'(o),...,g )EG’O cx GO
such that 7, (ij)z (g/(i)) = 0. For each i € [r], let ¢©) € G% be any element sat-

isfying pc,,(g?) = ¢ (e.g. obtained by extending ¢’ by 0O-coordinates) and let
x = v (g) € kerg, M. (Note that w(z (g @y = xy).) For each i € [r], we

define A
y(l) = < _X§Z)>---a E)lvB/( (Z-I—17~--7X(Z)) XElea---,_X%))-

Note that y® & kerg M(®. Therefore, the element x(© := Ziem y® lies in kerg M.

We also have '
= == (¢ = v, (6,
i€[r] i€lr]

where the first equality follows from the definition of the y®, the second from the
definition of the x®, and the third equality follows by assumption on ¢’. By condi-
tion (iii’), there exists ¢(© extending ¢’'” such that \II(O( ©) = x(O, The element
g= (g9, ..., g™) that we have thus obtained extends ¢’, and for each u € [r + 1, m] we
have W, (9) = > icpo. N (99) = > icon] x) = 0, so just like in the previous case we
must have ¥(g) = 0. This completes Case 2. O
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The proof of Proposition [4.20] is now complete.

It remains only to address the second case described at the beginning of this subsection,
namely that of matrices of the form (I.|B) € Z™U*D. We shall do so by using a
matrix extension slightly different from those used in earlier sections. This replaces the
given matrix by an (r + 1) x (r 4+ 3) matrix. We show that this extension also conserves
hypergraph-representability, so that we can then just apply Proposition [£.20/to the latter
matrix.

Lemma 4.25. Let M = (I.|B) € Z"<0+1). Let

;o B 0 (r+1)x (r+3)
M_(Im‘o_l €z .
Suppose that V' is a (t,r + 3, k)-representation for M', and let J = [r + 2]\ {r + 1}.
Then V := ;0 W is a (t,r + 1, 