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Alfréd Rényi Institute
Hungarian Academy of Sciences, Pf.127, H-1365

Hungary
ruzsa@renyi.hu

Abstract

A theorem of Følner asserts that for any set A ⊂ Z of positive upper
density there is a Bohr neigbourhood B of 0 such that B \ (A − A) has
zero density. We use this result to deduce some consequences about the
structure of difference sets of sets of integers having a positive upper
density.

1 Introduction

This paper is about the structure of the difference set D(A) := A − A of sets of
integers having positive density. By density we mean the upper asymptotic density
defined by

d(A) := lim sup
n→∞

|A ∩ [−n, n]|
2n + 1

> 0.

For sets X, Y ⊆ Z we mean

X + Y = {x + y : x ∈ X ; y ∈ Y }

and
X · Y = {x · y : x ∈ X ; y ∈ Y }.

When X = {x} we write x · Y .
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We define a Bohr set as a set of the form

B(S, ε) = {m ∈ Z : max
s∈S

‖sm‖ < ε}, (1.1)

where S is a finite set of real numbers. Here ‖x‖ = minn∈Z |x− n|, the absolute
fractional part.

Recall that every Bohr set has positive density, and for every pair of sets S, S ′

and for every k, 0 < k · ε′ ≤ ε, we have

k · B(S, ε′) ⊆ B(S, ε), (1.2)

and
B(S ∪ S ′, ε) = B(S, ε) ∩ B(S ′, ε) (1.3)

(see e.g. [9] p. 165).

These sets are just the basic neighbourhoods of 0 in the Bohr topology. We
say that B(S, ε) is a k, ε-neighbourhood if |S| = k (or a k-neighbourhood if ε is
unimportant).

Bogolyubov [4] proved in the case of integers, and Følner [5], [6] generalized for
general commutative groups, that the second difference set D(D(A)) = A−A+A−A
of a set having positive upper Banach density is always a Bohr neighborhood of 0.

In Bogolyubov’s theorem four copies of A are used. Three suffice with a small
change. If r, s, t are nonzero integers satisfying r+s+ t = 0 and A is a set of integers
having positive Banach density, then S = rA+sA+tA is a Bohr neighbourhood of 0,
see [3]. Here rA = {ra : a ∈ A}. The condition r + s + t = 0 is necessary to exclude
trivial counterexamples; so there is no really “symmetric” result here. (A further
comment on this is given in Section 3). The case r = s = 1, t = −2 immediately
generalizes Bogolyubov’s theorem.

On the other hand, a theorem of Kř́ıž ([8]) implies that there is a set A with
positive upper density whose difference set contains no Bohr set.

In the positive direction in [4] Følner proved that there is a Bohr set which is
almost a subset of A− A; the exceptional set has zero density.

In this paper we give some applications of Følner’s theorem. We investigate A +
A+A and A+A−A and Bohr sets. In [1] Bergelson investigated the additive structure
of D(A). He also proved that for every k there exists an infinite set B of integers for
which A − A ⊇ B + B + · · · + B, k times, provided A has positive upper density.
His proof of this theorem is based on an ergodic theorem, namely the Fürstenberg
correspondence theorem In [7] the first author gave a purely combinatorial proof of
this result. Here we give a third proof of it using Følner’s theorem. See also Theorem
2.5 in [2].

2 Structure of sum-differences

We have already mentioned in the introduction that D(D(A)) always contains a Bohr
set, while the set D(A) does not necessary contain a Bohr set. Now we investigate the
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three-fold sum-differences of A. This generalizes Bogolyubov’s theorem in a different
direction.

Theorem 2.1 There is a symmetric set A of integers such that 0 ∈ A, d(A) > 0
and the set A + A + A does not contain a Bohr set.

On the other hand we prove that A+A−A is always a Bohr neighborhood of many
a ∈ A.

Theorem 2.2 Assume that d(A) > 0. There exists a subset A′ of A, such that
d(A \A′) = 0 and for every a′ ∈ A′, the set A + A−A− a′ is a Bohr neighbourhood
of 0.

We remark that the arguments used in our proof (see Section 3) actually yield
the following property. For every A and X , with d(A) > 0, d(X) > 0, there exists a
subset X ′ of X such that d(X \X ′) = 0, and for every x′ ∈ X ′, the set X+A−A−x′

is a Bohr neighbourhood of 0. We leave the details of this to the interested reader.

Let f : N+ → N+ be any function and C ⊆ N; C �= ∅. We will use the following
notation:

FSf(C) :=
{ ∑

ci∈X
wici : X ⊆ C, |X| < ∞; wi ∈ [1, f(i)] ∩ N

}
.

Let the sum be zero when X is the empty set.

Furthermore write

FP (C) :=
{ ∏

ci∈X
ci : X ⊆ C; X �= ∅, |X| < ∞

}
.

Clearly we have

FSf({c1, c2, . . . cn}) = FSf({c1, c2, . . . cn−1}) + {0, cn, . . . , f(n)cn}, (2.1)

and
FP ({c1, c2, . . . cn}) = FP ({c1, c2, . . . cn−1}) · {1, cn}, (2.2)

for every {c1, c2, . . . cn} ⊆ N; n ≥ 2; or equivalently,

FP ({c1, c2, . . . cn}) = FP ({c1, c2, . . . cn−1}) ∪ cn · FP ({c1, c2, . . . cn−1}).

Theorem 2.3 Let A be a set of integers d(A) > 0. Let f : N+ → N+ be any
function. There exists an infinite set C of integers, such that

A− A ⊇ FSf(C) ∪ FP (C).

This will give a third proof of Bergelson’s theorem (see [1]). In fact we can conclude
that A− A contains both an additive and a multiplicative structure.
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3 Proofs

Proof of Theorem 2.1.

By the theorem of Kř́ıž [8] we know the existence of a set X of positive integers
for which d(X) > 0, and the set X −X does not contain a Bohr set. Let

Y = {4x + 1 : x ∈ X},
and

A = Y ∪ −Y ∪ {0}.
Since d(Y ) = 1

4
d(X) > 0, we have d(A) > 0 and the set A is symmetric and

contains 0.

Now we prove that A+A+A does not contain a Bohr set. Assume to the contrary
that there is a B(S, �) ⊆ A+A+A. Then by (1.2), 4 ·B(S, �/4) ⊆ A+A+A. Now
notice that 4k ∈ A + A + A if and only if 4k ∈ Y − Y = 4(X −X). So we conclude
that B(S, �/4) ⊆ X −X which contradicts the fact that X −X does not contain a
Bohr set. �

Proof of Theorem 2.2.

Let B = B(S, ε) be a Bohr set for which

d(B(S, ε) \ (A− A)) = 0,

the existence of which is given by Følner’s theorem. Since {B(S, ε)+x : x ∈ Z} is an
open covering of Z in the (compact) Bohr topology, there is a finite set T for which

B(S, ε) + T = Z.

For t ∈ T write At = A∩ (B + t). Some of these sets have positive upper density; let
A′ be the union of such sets At. Clearly A \ A′ is contained in the union of finitely
many At of density 0, so it has density 0 itself.

Put B′ = B(S, ε/3). We now show A + A − A ⊃ A′ + B′. This is equivalent to
A + A− A ⊃ At + B′ whenever d(At) > 0.

Take arbitrary a ∈ At, b ∈ B′. Consider the set a + b − At. This has positive
upper density and

a + b− At ⊂ At − At + B′ ⊂ (B′ + t) − (B′ + t) + B′ = B′ + B′ − B′ ⊂ B.

Hence a + b− At is contained, up to a subset of density 0, in A− A, so we can find
a′ ∈ At such that a+b−a′ ∈ A−A, and consequently a+b ∈ a′+A−A ⊂ A+A−A
as wanted. �

Proof of Theorem 2.3.

We start our proof by quoting Følner’s theorem again. We have a Bohr set
for which the exceptional set has density zero, i.e. for some B = B(S, ε), E :=
B(S, ε) \ (A− A), d(E) = 0.
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We will prove the existence of the infinite set C inductively.

Let K1 := f(1). Since any Bohr set has positive density and the exceptional set
has zero density, and also using (1.2), it follows that one can find an element c0 from
B(S, ε/K1) such that ic1 �∈ E, for i = 1, 2, . . .K1. So we have

FSf({c1}) ∪ FP ({c1}) = {0, c1, . . . , K1c1} ⊆ B \ E ⊆ A− A.

Assume now that the elements c1 < c2 < · · · < cn have been defined with the
property

Fn := FSf({c1, c2, . . . , cn}) ∪ FP ({c1, c2, . . . , cn}) ⊆ B \ E ⊆ A−A.

Write FP ({c1, c2, . . . , cn}) = {p1 < p2 < · · · < pm}, and let K := max{f(n+1), pm}.
Define

ε1 =
1

K
min{ε− ‖xs‖ : x ∈ FSf({c1, c2, . . . , cn}); s ∈ S}, (3.1)

and let B1 := B(S, ε1). Note that B(S, ε1) ⊆ B = B(S, ε).

By (3.1) we have that for every non-negative integer i ≤ K, for every u ∈
FSf ({c1, c2, . . . , cn}), for every c ∈ B1 and s ∈ S,

‖s(u + ic)‖ < ε

holds; hence
FSf({c1, c2, . . . cn}) + {0, c, 2c, . . .K · c} ⊆ B.

Now we claim that there exists an element c ∈ B1, with c > c1, for which

FSf({c1, c2, . . . cn}) + {0, c, 2c, . . .K · c} ⊆ B \ E ⊆ A− A

also holds.

Assume to the contrary that for every c ∈ B1 with c > c1 there is at least
one element x ∈ FSf({c1, c2, . . . cn}) and one integer j ∈ [1, . . . , K] for which x +
jc ∈ E. Since d(B1 \ [1, cn]) > 0, by the pigeonhole principle there is then an
x0 ∈ FSf({c1, c2, . . . cn}), j0 ∈ [1, . . . , K] and a B′

1 ⊆ B1, such that d(B1) > 0 and
x0 + j0B

′
1 ⊆ E, contradicting the fact that d(E) = 0 and d(x0 + j0B

′
1) > 0.

Let cn+1 be any such c. Since K ≥ pm and 0 ∈ FSf({c1, c2, . . . , cn}) we have

cn+1 · FP ({c1, c2, . . . , cn}) ⊆ {0, cn+1, 2cn+1, . . . , K · cn+1} ⊆ B \ E.

Then by (2, 2) and by the inductive hypothesis, FP ({c1, c2, . . . , cn, cn+1}) ⊆ B \ E.
Moreover K > f(n + 1),

FSf({c1, c2, . . . cn, cn+1}) ⊆ FSf({c1, c2, . . . cn})

+{0, cn+1, 2cn+1, . . . , K · cn+1}
⊆ B \E.
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Thus we have that
Fn+1 ⊆ B \ E ⊆ A− A,

as we wanted.

So our desired set is

C := {c1 < c2 < . . . cn < cn+1 < . . . }.
�

4 Further problems and results

We mention some open problems and announce some new results without proofs.

Bogolyubov’s proof is effective: given the density of A one can specify k, η so
that A+A−A−A contains a Bohr k, η-set. Følner’s proof is not effective, and the
reason is that an effective version does not hold:

For every α < 1/2, k ∈ N and η > 0 there is an A ⊂ Z, d(A) > α such that
d(V \ (A− A)) > 0 for every Bohr k, η-set V .

Our proof of Theorem 2.2 about A + A − A used Følner’s theorem, and so it is
not effective. We cannot decide whether an effective version holds. However, we can
solve positively a related finite question. The result is as follows:

Let α > ε > 0 be given. There exist k, η depending on α and ε with the following
property. For every A ⊂ Zm, |A| ≥ αm, the set S = A + A−A− a contains a Bohr
k, η-set for all but εm elements a ∈ A.

Here Zm is the group of residues modulo m and Bohr sets are defined as in (1.1)
with the modification that only rational numbers for s ∈ S of the form k/m can be
used.

Assume d(A) > 0. Is A − A a Bohr neighbourhood of something? We know
it may not be a neighbourhood of 0, and 0 is the most natural difference. For the
analogous finite question we can give a negative answer, which is as follows:

Let α < 1/2, k, η be given. For all large m there is an A ⊂ Zm, |A| ≥ αm, such
that A− A− x does not contain a Bohr k, η-set for any x ∈ Zm.

We close by posing the following open question.

Is A − A a Bohr neighbourhood of 0 under the stronger assumption that A has
positive lower Banach density? (In this case A is syndetic, that is, has bounded
gaps).

Here we cannot solve the related finite problem either, and do not have any
heuristic reasoning in any direction.
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