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The interplay of Invariant Theory with
Multiplicative Ideal Theory and with Arithmetic
Combinatorics

Kálmán Cziszter and Mátyás Domokos and Alfred Geroldinger

Dedicated to Franz Halter-Koch on the occasion of his 70th birthday

Abstract This paper surveys and develops links between polynomial invariants of fi-
nite groups, factorization theory of Krull domains, and product-one sequences over
finite groups. The goal is to gain a better understanding of the multiplicative ideal
theory of invariant rings, and connections between the Noether number and the Dav-
enport constants of finite groups.
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1 Introduction

The goal of this paper is to deepen the links between the areasin the title. Invariant
theory is concerned with the study of group actions on algebras, and in the present
article we entirely concentrate on actions of finite groups on polynomial algebras
via linear substitution of the variables.

To begin with, let us briefly sketch the already existing links between the men-
tioned areas. For a finite-dimensional vector spaceV over a fieldF and a finite
groupG≤ GL(V), letF[V]G ⊂ F[V] denote the ring of invariants. Since E. Noether
we know thatF[V]G ⊂ F[V] is an integral ring extension and thatF[V]G is a finitely
generatedF-algebra. In particular,F[V]G is an integrally closed noetherian domain
and hence a Krull domain. Benson [4] and Nakajima [58] determined its class group.
Krull domains (their ideal theory and their class groups) are a central topic in mul-
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tiplicative ideal theory (see the monographs [46, 51] and the recent survey [52]). B.
Schmid [73] observed that the Noether number of a finite abelian groupG equals the
Davenport constant ofG (a constant of central importance in zero-sum theory) and
this established a first link between invariant theory and arithmetic combinatorics.
Moreover, ideal and factorization theory of Krull domains are most closely linked
with zero-sum theory via transfer homomorphisms (see [40, 37] and Subsection
3.2).

These links serve as our starting point. It is well-known that a domainR is a
Krull domain if and only if its monoidR• of nonzero elements is a Krull monoid if
and only ifR (resp.R•) has a divisor theory. To start with Krull monoids, a monoid
H is Krull if and only if its associated reduced monoidH/H× is Krull, and every
Krull monoid H is a direct productH××H0 whereH0 is isomorphic toH/H×. A
reduced Krull monoid is uniquely determined (up to isomorphism) by its character-
istic (roughly speaking by its class groupC (H) and the distribution of the prime
divisors in its classes; see the end of Subsection4.2). By definition of the class
group, a Krull monoidH is factorial if and only ifC (H) is trivial. Information on
the subsetC (H)∗ ⊂ C (H) of classes containing prime divisors is the crucial ingre-
dient to understand the arithmetic ofH, and hence in order to study the arithmetic of
Krull monoids the first and most important issue is to determineC (H)∗. By far the
best understood setting in factorization theory are Krull monoids with finite class
groups where every class contains a prime divisor. Indeed, there has been an abun-
dance of work on them and we refer the reader to the survey by W.A. Schmid in this
proceedings [77]. A canonical method to obtain information onC (H)∗ is to identify
explicitly a divisor theory forH. A divisor theory of a monoid (or a domain)H is a
divisibility preserving homomorphism fromH to a free abelian monoid which satis-
fies a certain minimality property (Subsection2.1). The concept of a divisor theory
stems from algebraic number theory and it has found far-reaching generalizations in
multiplicative ideal theory ([51]). Indeed, divisor-theoretic tools, together with ideal-
theoretic and valuation-theoretic ones, constitute a highly developed machinery for
the structural description of monoids and domains.

All the above mentioned concepts and problems from multiplicative ideal theory
are studied for the ring of invariants. Theorem4.5 (in Subsection4.2) provides an
explicit divisor theory of the ring of invariantsR=F[V]G. The divisibility preserving
homomorphism fromR• goes into a free abelian monoid which can be naturally
described in the language of invariant theory, and the associated canonical transfer
homomorphismθ : R• → B(C (R)∗) from the multiplicative monoid of the ringR
onto the monoid of zero-sum sequences over the class group ofRalso has a natural
invariant theoretic interpretation. In addition to recovering the result of Benson and
Nakajima on the class groupC (F[V]G) (our treatment is essentially self-contained),
we gain further information on the multiplicative structure of R, and we pose the
problem to determine its characteristic (Problem1). In particular, whenever we can
show – for a given ring of invariants – that every class contains at least one prime
divisor, then all results of factorization theory (obtained for Krull monoids with
finite class group and prime divisors in all classes) apply tothe ring of invariants.
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In Subsection4.3 we specialize to abelian groups whose order is not divisible
by the characteristic ofF. The Noether numberβ (G) is the supremum over all fi-
nite dimensionalG-modulesV of the maximal degree of an element in a minimal
homogeneous generating system ofF[V]G, and the Davenport constantD(G) is the
maximal length of a minimal zero-sum sequence overG. We start with a result on the
structural connection betweenF[V]G and the monoid of zero-sum sequences overG,
that lies behind the equalityβ (G) = D(G). Clearly, the idea here is well known (as
far as we know, it was first used by B. Schmid [73], see also [24]). The benefit of the
detailed presentation as given in Proposition4.7 is twofold. First, the past 20 years
have seen great progress in zero-sum theory (see Subsection3.4 for a sample of
results) and Proposition4.7allows to carry over all results on the structure of (long)
minimal zero-sum sequences to the structure ofG-invariant monomials. Second, we
observe that the submonoidMG of R• consisting of the invariant monomials is again
a Krull monoid, and restricting the transfer homomorphismθ : R• → B(C (R)∗)
(mentioned in the above paragraph) toMG we obtain essentially the canonical trans-
fer homomorphismMG → B(C (MG)∗). This turns out to be rather close to the
transfer homomorphismψ : MG → B(Ĝ) into the monoid of zero-sum sequences
over the character group ofG (see Proposition4.7), which is responsible for the
equalityβ (G) = D(G). The precise statement is given in Proposition4.9, which ex-
plains how the transfer homomorphismψ (existing only for abelian groups) relates
to the more general transfer homomorphismθ from the above paragraph which ex-
ists for an arbitrary finite group. In Proposition4.9we point out that every class of
C (F[V]G) contains a prime divisor which contributes to Problem1.

Let nowG be a finite non-abelian group. Until recently the precise value of the
Noether numberβ (G) was known only for the dihedral groups and very few small
groups (such asA4). In the last couple of years the first two authors have determined
the precise value of the Noether number for groups having a cyclic subgroup of
index two and for non-abelian groups of order 3p [13, 10, 12]. In this work results
on zero-sum sequences over finite abelian groups (for example, information on the
structure of long minimal zero-sum sequences and on thekth Davenport constants)
were successfully applied. Moreover, a decisive step was the introduction of the
kth Noether numbers, a concept inspired by thekth Davenport constants of abelian
groups. The significance of this concept is that it furnishessome reduction lemmas
(listed in Subsection5.1) by which the ordinary Noether number of a group can be
bounded via structural reduction in the group.

The concept of thekth Davenport constantsDk(G) has been introduced by Halter-
Koch [50] for abelian groups in order to study the asymptotic behavior of arithmeti-
cal counting functions in rings of integers of algebraic number fields (see [40, The-
orem 9.1.8], [67, Theorem 1]). They have been further studied in [15, 30]. In the
last years the third author and Grynkiewicz [39, 48] studied the (small and the large)
Davenport constant of non-abelian groups, and among othersdetermined their pre-
cise values for groups having a cyclic subgroup of index two.It can be observed that
for these groups the Noether number is between the small and the large Davenport
constant.
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This motivated a new and more abstract view at the Davenport constants, namely
kth Davenport constants of BF-monoids (Subsection2.5). The goal is to relate the
Noether number with Davenport constants of suitable monoids as a generalization of
the equationβ (G) = D(G) in the abelian case. Indeed, thekth Davenport constant
Dk(G) of an abelian groupG is recovered as ourkth Davenport constant of the
monoidB(G) of zero-sum sequences overG.

We apply the new concept of thekth Davenport constants to two classes of
BF-monoids. First, to the monoidB(G,V) associated to aG-moduleV in Subsec-
tion 4.4 (whenG is abelian we recover the monoidMG of G-invariant monomials
from Subsection4.3), whose Davenport constants provide a lower bound for the cor-
responding Noether numbers (see Proposition4.12). Second, we study the monoid
of product-one sequences over finite groups (Subsections3.1 and3.3). We derive
a variety of features of thekth Davenport constants of the monoid of product-one
sequences overG and observe that they are strikingly similar to the corresponding
features of thekth Noether numbers (see Subsection5.1for a comparison).

We pose a problem on the relationship between Noether numbers and Davenport
constants of non-abelian groups (Problem2) and we illustrate the efficiency of the
above methods by Examples5.2, 5.3, and5.4 (appearing for the first time), where
the explicit value of Noether numbers and Davenport constants of some non-abelian
groups are determined.

Throughout this paper, let G be a finite group,F be a field, and
V be a finite dimensionalF-vector space endowed with a linear action of G.

2 Multiplicative Ideal Theory: Krull monoids, C-monoids, a nd
Class Groups

We denote byN the set of positive integers, and we putN0 = N∪ {0}. For every
n∈ N, we denote byCn a cyclic group withn elements. For real numbersa,b∈ R,
we set[a,b] = {x∈ Z : a≤ x≤ b}. If A,B are sets, we writeA⊂ B to mean thatA
is contained inB but may be equal toB. In Subsections2.1 – 2.4 we gather basic
material on Krull monoids and C-monoids. In Subsection2.5 we introduce a new
concept, namely Davenport constants of BF-monoids.

2.1 Monoids and Domains: Ideal theoretic and divisor theoretic
concepts

Our notation and terminology follows [40] and [51] (note that the monoids in
[51] do contain a zero-element, whereas the monoids in [40] and in the present
manuscript do not contain a zero-element). By amonoid, we mean a commutative,
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cancellative semigroup with unit element. Then the multiplicative semigroupR• =
R\ {0} of non-zero elements of a domain is a monoid. Following the philosophy
of multiplicative ideal theory we describe the arithmetic and the theory of divisorial
ideals of domains by means of their multiplicative monoids.Thus we start with
monoids.

Let H be a multiplicatively written monoid. An elementu∈ H is called

• invertibleif there is an elementv∈ H with uv= 1.
• irreducible(or anatom) if u is not invertible and, for alla,b∈ H, u= ab implies

a is invertible orb is invertible.
• prime if u is not invertible and, for alla,b∈ H, u|ab impliesu|a or u|b.

We denote byA (H) the set of atoms ofH, by H× the group of invertible elements,
and byHred= {aH× : a∈ H} the associated reduced monoid ofH. We say thatH is
reduced if|H×|= 1. We denote byq(H) a quotient group ofH with H ⊂ q(H), and
for a prime elementp∈ H, let vp : q(H)→ Z be thep-adic valuation. Each monoid
homomorphismϕ : H → D induces a group homomorphismq(H) : q(H) → q(D).
For a subsetH0 ⊂ H, we denote by[H0] ⊂ H the submonoid generated byH0, and
by 〈H0〉 ≤ q(H) the subgroup generated byH0. We denote bỹH =

{
x∈ q(H) : xn ∈

H for somen∈N
}

the root closureof H, and byĤ =
{

x∈ q(H) : there existsc∈

H such thatcxn ∈ H for all n∈ N
}

thecomplete integral closureof H. BothH̃ and
Ĥ are monoids, and we haveH ⊂ H̃ ⊂ Ĥ ⊂ q(H). We say thatH is root closed
(completely integrally closed resp.) ifH = H̃ (H = Ĥ resp.). For a setP, we denote
by F (P) the free abelian monoid with basisP. Then everya∈ F (P) has a unique
representation in the form

a= ∏
p∈P

pvp(a) , wherevp(a) ∈N0 andvp(a) = 0 for almost allp∈ P.

The monoidH is said to be

• atomicif everya∈ H \H× is a product of finitely many atoms ofH.
• factorial if every a∈ H \H× is a product of finitely many primes ofH (equiva-

lently, H = H××F (P) whereP is a set of representatives of primes ofF).
• finitely generatedif H = [E] for some finite subsetE ⊂ H.

If H = H××F (P) is factorial anda∈ H, then|a|= ∑p∈Pvp(a) ∈ N0 is called the
length ofa. If H is reduced, then it is finitely generated if and only if it is atomic
andA (H) is finite. Since every prime is an atom, every factorial monoid is atomic.
For every non-unita∈ H,

LH(a) = L(a) = {k∈ N : a may be written as a product ofk atoms} ⊂ N

denotes theset of lengthsof a. For convenience, we setL(a) = {0} for a∈ H×. We
say thatH is a BF-monoid if it is atomic and all sets of lengths are finite. A monoid
homomorphismϕ : H → D is said to be

• adivisor homomorphismif ϕ(a) |ϕ(b) implies thata|b for all a,b∈ H.
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• cofinalif for everyα ∈ D there is ana∈ H such thatα |ϕ(a).
• a divisor theory(for H) if D = F (P) for some setP, ϕ is a divisor homomor-

phism, and for everyp∈P, there exists a finite nonempty subsetX ⊂H satisfying
p= gcd

(
ϕ(X)

)
.

Obviously, every divisor theory is cofinal. LetH ⊂ D be a submonoid. ThenH ⊂ D
is called

• saturatedif the embeddingH →֒ D is a divisor homomorphism.
• divisor closedif a∈ H, b∈ D andb|a impliesb∈ H.
• cofinalif the embeddingH →֒ D is cofinal.

It is easy to verify thatH →֒ D is a divisor homomorphism if and only ifH =
q(H)∩D, and if this holds, thenH× = D× ∩H. If H ⊂ D is divisor closed, then
H ⊂ D is saturated.

For subsetsA,B ⊂ q(H), we denote by(A : B) = {x ∈ q(H) : xB ⊂ A}, by
A−1 = (H : A), and byAv = (A−1)−1. A subseta ⊂ H is called ans-ideal of H if
aH = a. A subsetX ⊂ q(H) is called a fractionalv-ideal (or afractional diviso-
rial ideal) if there is ac∈ H such thatcX ⊂ H andXv = X. We denote byFv(H)
the set of all fractionalv-ideals and byIv(H) the set of allv-ideals ofH. Fur-
thermore,I ∗

v (H) is the monoid ofv-invertiblev-ideals (withv-multiplication) and
Fv(H)× = q

(
I ∗

v (H)
)

is its quotient group of fractional invertiblev-ideals. The
monoidH is completely integrally closed if and only if every non-empty v-ideal
of H is v-invertible, andH is calledv-noetherian if it satisfies the ACC (ascending
chain condition) onv-ideals. IfH is v-noetherian, thenH is a BF-monoid. We denote
byX(H) the set of all minimal nonempty primes-ideals ofH.

The map∂ : H → I ∗
v (H), defined by∂ (a) = aH for eacha ∈ H, is a cofinal

divisor homomorphism. Thus, ifH = {aH : a ∈ H} is the monoid of principal
ideals ofH, thenH ⊂ I ∗

v (H) is saturated and cofinal.

2.2 Class groups and class semigroups

Let ϕ : H → D be a monoid homomorphism. The groupC (ϕ) = q(D)/q(ϕ(H))
is called theclass groupof ϕ . Fora∈ q(D), we denote by[a]ϕ = aq(ϕ(H)) ∈ C (ϕ)
the class containinga. We use additive notation forC (ϕ) and so[1]ϕ is the zero
element ofC (ϕ).

Suppose thatH ⊂ D and thatϕ = (H →֒ D). ThenC (ϕ) = q(D)/q(H), and for
a∈ D we set[a]ϕ = [a]D/H = aq(H). Then

D/H = {[a]D/H : a∈ D} ⊂ C (ϕ)

is a submonoid with quotient groupq(D/H) =C (ϕ). It is easy to check thatD/H is
a group if and only ifH ⊂D is cofinal. In particular, ifD/H is finite or ifq(D)/q(H)
is a torsion group, thenD/H = q(D)/q(H). Let H be a monoid. ThenH ⊂I ∗

v (H)
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is saturated and cofinal, and

Cv(H) = I
∗
v (H)/H = Fv(H)×/q(H )

is thev-class groupof H.
We will also need the concept of class semigroups which are a refinement of

ordinary class groups in commutative algebra. LetD be a monoid andH ⊂ D a
submonoid. Two elementsy,y′ ∈ D are calledH-equivalent, ify−1H∩D = y′−1H ∩
D. H-equivalence is a congruence relation onD. For y ∈ D, let [y]DH denote the
congruence class ofy, and let

C (H,D) = {[y]DH : y∈ D} and C
∗(H,D) = {[y]DH : y∈ (D\D×)∪{1}}.

ThenC (H,D) is a semigroup with unit element[1]DH (called theclass semigroup
of H in D) andC ∗(H,D) ⊂ C (H,D) is a subsemigroup (called thereduced class
semigroupof H in D). The map

θ : C (H,D)→ D/H , defined by θ ([a]DH) = [a]D/H for all a∈ D ,

is an epimorphism, and it is an isomorphism if and only ifH ⊂ D is saturated.

2.3 Krull monoids and Krull domains

Theorem 2.1. Let H be a monoid. Then the following statements are equivalent :

(a)H is v-noetherian and completely integrally closed,
(b)∂ : H → I ∗

v (H) is a divisor theory.
(c)H has a divisor theory.
(d)There is a divisor homomorphismϕ : H → D into a factorial monoid D.
(e)Hred is a saturated submonoid of a free abelian monoid.

If H satisfies these conditions, thenH is called aKrull monoid.

Proof. See [40, Theorem 2.4.8] or [51, Chapter 22].

Let H be a Krull monoid. ThenI ∗
v (H) is free abelian with basisX(H). Let

p ∈ X(H). Thenvp denotes thep-adic valuation ofFv(H)×. For x ∈ q(H), we
set vp(x) = vp(xH) and we callvp the p-adic valuation ofH. Then v : H →

N(X(H))
0 , defined by v(a) =

(
vp(a)

)
p∈X(H)

is a divisor theory andH = {x ∈

q(H) : vp(x)≥ 0 for all p ∈ X(H)}.
If ϕ : H →D=F (P) is a divisor theory, then there is an isomorphismΦ : I ∗

v (H)→
D such thatΦ ◦ ∂ = ϕ , and it induces an isomorphismΦ : Cv(H) → C (ϕ). Let
D = F (P) be such thatHred →֒ D is a divisor theory. ThenD andP are uniquely
determined byH,
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C (H) = C (Hred) = D/Hred

is called the(divisor) class groupof H, and its elements are called the classes ofH.
By definition, every classg∈ C (H) is a subset ofq(D) andP∩g is the set of prime
divisors lying ing. We denote byC (H)∗ = {[p]D/Hred

: p∈ P} ⊂ C (H) the subset
of classes containing prime divisors (for more details we refer to the discussion after
Definition 2.4.9 in [40]).

Proposition 2.2.Let H be a Krull monoid, and letϕ : H → D = F (P) be a divisor
homomorphism.

1. There is a submonoid C0 ⊂ C (ϕ) and an epimorphism C0 → Cv(H).

2. Suppose that H⊂ D is saturated and thatq(D)/q(H) is a torsion group. We set
D0 = {gcdD(X) : X ⊂ H finite}, and for p∈ P define e(p) = min{vp(h) : h ∈
H with vp(h)> 0}.

(a)D0 is a free abelian monoid with basis{pe(p) : p∈ P}.

(b)The embedding H֒→ D0 is a divisor theory for H.

Proof. 1. follows from [40, Theorem 2.4.8], and 2. from [74, Lemma 3.2].

Let R be a domain with quotient fieldK. ThenR• = R\ {0} is a monoid, and
all notions defined for monoids so far will be applied for domains. To mention a
couple of explicit examples, we denote byq(R) the quotient field ofR and we have
q(R) = q(R•)∪ {0}, and for the complete integral closure we haveR̂= R̂• ∪{0}
(whereR̂ is the integral closure ofR in its quotient field). We denote byX(R) the
set of all minimal nonzero prime ideals ofR, by Iv(R) the set of divisorial ideals
of R, by I ∗

v (R) the set ofv-invertible divisorial ideals ofR, and byFv(R) the
set of fractional divisorial ideals ofR. Equipped withv-multiplication,Fv(R) is a
semigroup, and the map

ι• : Fv(R)→ Fv(R
•) , defined by a 7→ a \ {0} ,

is a semigroup isomorphism mappingIv(R) ontoIv(R•) and fractional principal
ideals ofR onto fractional principal ideals ofR•. ThusR satisfies the ACC on divi-
sorial ideals ofR if and only if R• satisfies the ACC on divisorial ideals ofR•. Fur-
thermore,R is completely integrally closed if and only ifR• is completely integrally
closed. A domainR is a Krull domain if it is completely integrally closed and satis-
fies the ACC on divisorial ideals ofR, and thusR is a Krull domain if and only ifR•

is a Krull monoid. IfR is a Krull domain, we setC (R) =C (R•). The groupFv(R)×

is the group ofv-invertible fractional ideals and the setI ∗
v (R) = Fv(R)×∩Iv(R)

of all v-invertiblev-ideals ofR is a monoid with quotient groupFv(R)×. The em-
bedding of the non-zero principal idealsH (R) →֒I ∗

v (R) is a cofinal divisor homo-
morphism, and the factor group

Cv(R) = Fv(R)
×/{aR: a∈ K×}= I

∗
v (R)/H (R)
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is called thev-class groupof R. The mapι• induces isomorphismsFv(R)×
∼
→

Fv(R•)×, I ∗
v (R)

∼
→ I ∗

v (R
•), andCv(R)

∼
→ Cv(R•), and in the sequel we shall

identify these monoids and groups.
The above correspondence between domains and their monoidsof non-zero ele-

ments can be extended to commutative rings with zero-divisors and their monoids
of regular elements ([43, Theorem 3.5]), and there is an analogue for prime Goldie
rings ([38, Proposition 5.1]).

Examples 2.3.
1. (Domains) As mentioned above, the multiplicative monoidR• of a domainR is

a Krull monoid if and only ifR is a Krull domain. Thus Property (a) in Theorem2.1
implies that a noetherian domain is Krull if and only if it is normal (i.e. integrally
closed in its field of fractions). In particular, rings of invariants are Krull, as we shall
see in Theorem4.1.

2. (Submonoids of domains) Regular congruence submonoids of Krull domains
are Krull ([40, Proposition 2.11.6].

3. (Monoids of modules) LetR be a (possibly noncommutative) ring and letC

be a class of finitely generated (right)R-modules which is closed under finite direct-
sums, direct summands, and isomorphisms. Then the setV (C ) of isomorphism
classes of modules is a commutative semigroup with operation induced by the direct
sum. If the endomorphism ring of each module inC is semilocal, thenV (C ) is a
Krull monoid ([19, Theorem 3.4]). For more information we refer to [20, 21, 1].

4. (Monoids of product-one sequences) In Theorem3.2we will characterize the
monoids of product-one sequences which are Krull.

2.4 C-monoids and C-domains

A monoid H is called a C-monoid if it is a submonoid of a factorial monoid
F such thatH ∩F× = H× and the reduced class semigroupC ∗(H,F) is finite. A
domain is called a C-domainif R• is a C-monoid.

Proposition 2.4.Let F be a factorial monoid and H⊂ F a submonoid such that
H ∩F× = H×.

1. If H is a C-monoid, then H is v-noetherian with(H : Ĥ) 6= /0, and the complete
integral closureĤ is a Krull monoid with finite class groupC (Ĥ).

2. Suppose that F/F× is finitely generated, say F= F× × [p1, . . . , ps] with pair-
wise non-associated prime elements p1, . . . , ps. Then the following statements
are equivalent:

(a) H is a C-monoid defined in F.
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(b) There exist someα ∈N and a subgroupW≤F× such that(F× :W) |α, W(H \
H×) ⊂ H, and for all j ∈ [1,s] and a∈ pα

j F we have a∈ H if and only if
pα

j a∈ H.

Proof. For 1., see [40, Theorems 2.9.11 and 2.9.13] and for 2. see [40, Theorems
2.9.7].

Examples 2.5.
1. (Krull monoids) A Krull monoid is a C-monoid if and only if the class group

is finite ([40, Theorem 2.9.12]).

2. (Domains) LetR be a domain. Necessary conditions forR being a C-domain
are given in Proposition2.4. Thus suppose thatR is a Mori domain (i.e., av-
noetherian domain) with nonzero conductorf = (R: R̂) and suppose thatC (R̂) is
finite. If R/f is finite, thenR is a C-domain by [40, Theorem 2.11.9]. This result
generalizes to rings with zero-divisors ([43]), and in special cases we know thatR
is a C-domain if and only ifR/f is finite ([69]).

3. (Congruence monoids) LetRbe Krull domain with finite class groupC (R) and
H ⊂ R a congruence monoid such thatR/f is finite wheref is an ideal of definition
for H. If R is noetherian orf is divisorial, thenH is a C-monoid ([40, Theorem
2.11.8]). For a survey on arithmetical congruence monoids see [2].

4. In Subsection3.1 we shall prove that monoids of product-one sequences are
C-monoids (Theorem3.2), and we will meet C-monoids again in Proposition4.11
dealing with the monoidB(G,V).

Finitely generated monoids allow simple characterizations when they are Krull or
when they are C-monoids. We summarize these characterizations in the next lemma.

Proposition 2.6.Let H be a monoid such that Hred is finitely generated.

1. Then H is v-noetherian with(H : Ĥ) 6= /0, H̃ = Ĥ, H̃/H× is finitely generated,
andĤ is a Krull monoid. In particular, H is a Krull monoid if and only if H = Ĥ.

2. H is aC-monoid if and only ifC (Ĥ) is finite.

3. Suppose that H is a submonoid of a factorial monoid F= F××F (P). Then the
following statements are equivalent:

a. H is aC-monoid defined in F, F×/H× is a torsion group, and for every p∈ P
there is an a∈ H such thatvp(a)> 0.

b. For every a∈ F, there is an na ∈ N with ana ∈ H.

If (a) and(b) hold, then P is finite and̃H = Ĥ = q(H)∩F ⊂ F is saturated and
cofinal.

Proof. 1. follows from [40, 2.7.9 - 2.7.13], and 2. follows from [41, Proposition
4.8].

3. (a)⇒ (b) For everyp∈ P, we setdp = gcd
(
vp(H)

)
, and by assumption we

havedp > 0. We setP0 = {pdp : p ∈ P} andF0 = F××F (P0). By [40, Theorem
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2.9.11],H is a C-monoid defined inF0 and there is a divisor theory∂ : Ĥ →F (P0).
By construction ofF0, it is sufficient to prove the assertion for alla ∈ F0. Since
F×/H× is a torsion group, it is sufficient to prove the assertion forall a∈ F (P0).
Let a ∈ F (P0). SinceC (Ĥ) is finite, there is ann′a ∈ N such thatan′a ∈ Ĥ. Since
Ĥ = H̃, there is ann′′a ∈ N such that(an′a)n′′a ∈ H.

(b)⇒ (a) For everyp∈P there is annp∈N such thatpnp ∈H whencevp(pnp)=

np > 0. Clearly, we havêH ⊂ F̂ = F and hencêH ⊂ q(Ĥ)∩F = q(H)∩F. Since for
eacha∈ F there is anna ∈ N0 with ana ∈ H, we infer thatq(H)∩F ⊂ H̃ = Ĥ and
henceĤ = q(H)∩F . Furthermore,H ⊂ F andĤ ⊂ F are cofinal, andq(F)/q(H) =
F/H is a torsion group. Clearly,q(H)∩F ⊂ F is saturated, and thuŝH is Krull.
SinceĤ× = Ĥ ∩F× andH× = Ĥ×∩H, it follows thatH× = H ∩F× and then we
obtain thatF×/H× is a torsion group.

By 1., Ĥ/H× is finitely generated, saŷH/H× = {u1H×, . . . ,unH×}, and set
P0 = {p∈ P: p dividesu1 · . . . ·un in F}. ThenP0 is finite, and we assert thatP0 = P.
If there would exist somep ∈ P\P0, then there is annp ∈ N such thatpnp ∈ H
and hencepnpH× is a product ofu1H×, . . . ,unH×, a contradiction. ThereforeP is
finite, F/F× is a finitely generated monoid,q(F)/F× is a finitely generated group,
and thereforeq(F)/q(H)F× is a finitely generated torsion group and thus finite.
Sinceϕ : Ĥ → F → F/F× is a divisor homomorphism andC (ϕ) = q(F)/q(H)F×,
Proposition2.2.1 implies thatC (Ĥ) is an epimorphic image of a submonoid of
q(F)/q(H)F× and thusC (Ĥ) is finite. Thus 2. implies thatH is a C-monoid (in-
deed, Property 2.(b) of Proposition2.4holds and henceH is a C-monoid defined in
F).

2.5 Davenport constants of BF-monoids

Let H be a BF-monoid. For everyk∈ N, we study the sets

Mk(H) = {a∈ H : maxL(a)≤ k} and M k(H) = {a∈ H : maxL(a) = k} .

A monoid homomorphism| · | : H → (N0,+) will be called adegree functionon
H. In this section we study abstract monoids having a degree function. The results
will be applied in particular to monoids of product-one sequences and to monoids
B(G,V) (see Subsections3.3and4.4). In all our applications the monoidH will be
a submonoid of a factorial monoidF and if not stated otherwise the degree function
onH will be the restriction of the length function onF.

If θ : H → B is a homomorphism andH andB have degree functions, then we
say thatθ is degree preservingif |a|H = |θ (a)|B for all a∈H. Suppose we are given
a degree function onH andk∈N, then

Dk(H) = sup{|a| : a∈ Mk(H)} ∈N0∪{∞}
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is called thelarge kth Davenport constantof H (with respect to| · |H). Clearly,
M1(H) =A (H)∪H×. We callD(H) =D1(H) = sup{|a| : a∈A (H)} ∈N0∪{∞}
the Davenport constantof H. For everyk ∈ N, we haveMk(H) ⊂ Mk+1(H),
Dk(H) ≤ Dk+1(H), andDk(H) ≤ kD(H). Furthermore, we have|u| = 0 for every
unit u ∈ H×. Therefore the degree function onH induces automatically a degree
function | · | : Hred→ (N0,+), and so thekth Davenport constant ofHred is defined.
Obviously we haveDk(H) = Dk(Hred). Let e(H) denote the smallestℓ ∈ N0∪{∞}
with the following property:

There is aK ∈ N0 such that everya∈ H with |a| ≥ K is divisible by an element
b∈ H \H× with |b| ≤ ℓ.

Clearly,e(H)≤ D(H).

Proposition 2.7.Let H be aBF-monoid and| · | : H → (N0,+) be a degree function.

1. If Hred is finitely generated, then the setsMk(Hred) are finite andDk(H)< ∞ for
every k∈N.

2. If D(H)<∞, then there exist constants DH ,KH ∈N0 such thatDk(H) = ke(H)+
DH for all k ≥ KH .

3. If D(H)< ∞, then the mapN→Q, k 7→ Dk(H)
k is non-increasing.

4. Suppose that H has a prime element. Then

Dk(H) = max
{
|a| : a∈ M k(H)

}
≤ kD(H)

and

kD(H) = max
{
|a| : a∈ H, minL(a)≤ k

}
= max

{
|a| : a∈ H, k∈ L(a)

}
.

Proof. 1. Suppose thatHred is finitely generated. ThenA (Hred) is finite whence
Mk(H) is finite for everyk∈N. It follows thatD(H)< ∞ andDk(H)≤ kD(H)< ∞
for all k∈ N.

2. Suppose thatD(H) < ∞ and note thate(H) ≤ D(H). Let f(H) ∈ N0 be the
smallestK ∈N0 such that everya∈ H with |a| ≥ K is divisible by an elementb∈ H
with |b| ≤ e(H). We defineA= {a∈ A (H) : |a| = e(H)}. Let k ∈ N and continue
with the following assertion.

A. There exista1, . . . ,ak ∈ A such thata1 . . .ak ∈ Mk(H). In particular,Dk(H) ≥
|a1 . . .ak|= ke(H).

Proof of A. Assume to the contrary that for alla1, . . . ,ak ∈A we have maxL(a)>
k. Thus the producta1 . . .ak is divisible by an atomu∈ A (H) with |u|< e(H). We
setK = f(H)+ (k−1)e(H) and choosea∈ H with |a| ≥ K. Thena can be written
in the forma= a1 . . .akb wherea1, . . . ,ak,b∈ H and|ai | ≤ e(H) for all i ∈ [1,k]. If
there is somei ∈ [1,k] with |ai | < e(H), thenai is a divisor ofa with |ai| < e(H).
Otherwise,a1, . . . ,ak ∈ A and by our assumption the producta1 . . .ak and hence
a has a divisor of degree strictly smaller thane(H). This is a contradiction to the
definition ofe(H). ⊓⊔(Proof ofA)



Invariant Theory, Multiplicative Ideal Theory, and Arithmetic Combinatorics 13

Now letk≥ f(H)/e(H)−1. ThenA implies thatDk(H)+e(H)≥ (k+1)e(H)≥
f(H). Let a ∈ H with |a| > Dk(H)+ e(H). Then, by definition off(H), there are
b,c∈ H such thata= bc with |c| ≤ e(H) and hence|b|> Dk(H). This implies that
maxL(b) > k, whence maxL(a) > k+ 1 anda /∈ Mk+1(H). Therefore we obtain
thatDk+1(H)≤ Dk(H)+ e(H) and thus

0≤ Dk+1(H)− (k+1)e(H)≤ Dk(H)− ke(H) .

Since a non-increasing sequence of non-negative integers stabilizes, the assertion
follows.

3. Suppose thatD(H) < ∞. Let k ∈ N, a ∈ Mk+1(H) with |a| = Dk+1(H),
and setl = maxL(a). Then l ≤ k+ 1. If l ≤ k, thena ∈ Mk(H) andDk+1(H) ≥
Dk(H)≥ |a|=Dk+1(H) whenceDk(H) =Dk+1(H). Suppose thatl = k+1. We set
a = a1 . . .ak+1 with a1, . . . ,ak+1 ∈ A (H) and|a1| ≥ . . . ≥ |ak+1| whence|ak+1| ≤
(|a1|+ . . .+ |ak|)/k. It follows that

Dk+1(H)

k+1
=

|a1|+ · · ·+ |ak+1|

k+1
≤

|a1|+ · · ·+ |ak|

k
≤

Dk(H)

k
,

where the last inequality holds becausea1 . . .ak ∈ Mk(H).

4. Let p∈ H be a prime element. We assert that

Dk(H)≤ max
{
|a| : a∈ H, maxL(a) = k

}
. (∗)

Indeed, ifa∈ Mk(H) and maxL(a) = l ≤ k, thenapk−l ∈ Mk(H) and

|a| ≤ |apk−l | ≤ max
{
|a| : a∈ H, maxL(a) = k

}
,

and hence(∗) follows. Next we assert that

max
{
|a| : a∈ H, minL(a)≤ k

}
≤ kD(H) . (∗∗)

Let a∈ H with minL(a) = l ≤ k, saya= u1 . . .ul , whereu1, . . . ,ul ∈ A (H). Then
|a|= |u1|+ . . .+ |ul | ≤ lD(H)≤ kD(H), and thus(∗∗) follows. Using(∗) and(∗∗)
we infer that

Dk(H)≤ max
{
|a| : a∈ H, maxL(a) = k

}
≤ max

{
|a| : a∈ H, maxL(a)≤ k

}

= Dk(H) ≤ max
{
|a| : a∈ H, minL(a)≤ k

}

and that

kD(H) = max
{
|a| : a∈ H, k∈ L(a)

}
≤ max

{
|a| : a∈ H, minL(a)≤ k

}
≤ kD(H) .

Let F be a factorial monoid andH ⊂ F a submonoid such thatH× = H ∩F×.
ThenH is a BF-monoid by [40, Corollary 1.3.3]. Fork∈ N, let M ∗

k (H) denote the
set of alla ∈ F such thata is not divisible by a product ofk non-units ofH. The
restriction of the usual length function| · | : F → N0 on F (introduced in Subsec-
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tion 2.1) gives a degree function onH. We define thesmall kth Davenport constant
dk(H) as

dk(H) = sup{|a| : a∈ M
∗
k (H)} ∈ N0∪{∞}. (1)

In other words, 1+ dk(H) is the smallest integerℓ ∈ N such that everya ∈ F of
length|a| ≥ ℓ is divisible by a product ofk non-units ofH. We calld(H) = d1(H)
the small Davenport constantof H. Clearly we haveM ∗

k (H) ⊂ M ∗
k+1(H) hence

dk(H)≤ dk+1(H).
Furthermore, letη(H) denote the smallest integerℓ ∈ N∪{∞} such that every

a ∈ F with |a| ≥ ℓ has a divisorb ∈ H \H× with |b| ∈ [1,e(H)]. For p ∈ A (F)
denote byop the smallest integerℓ ∈ N∪{∞} such thatpop ∈ H. Clearly, we have
op ≤ η(H) for all p∈ A (F).

Proposition 2.8.Let F = F× ×F (P) be a factorial monoid and H⊂ F a sub-
monoid such that H× = H ∩F×, and let k∈N.

1. If for every a∈ F there is a prime p∈ F such that ap∈ H, then1+ dk(H) ≤
Dk(H).

2. Suppose that Hred is finitely generated and that for every a∈ F there is an na ∈H
such that ana ∈ H. Then H is aC-monoid and we have

(a) e(H) = max{op : p∈ P} andη(H)< ∞.
(b) dk(H)+1≥ ke(H) and there exist constants dH ∈ Z≥−1,kH ∈ N0 such that

dk(H) = ke(H)+dH for all k ≥ kH .

Proof. 1. Leta∈M ∗
k (H) such that|a|= dk(H). We choose a primep∈ F such that

ap∈ H. Take any factorizationap= u1 . . .uℓ whereui ∈ A (H). We may assume
that p|u1 in F . Thenu2 . . .uℓ |a in F and henceℓ− 1 < k. Thus it follows that
ap∈ Mk(H) andDk(H)≥ |ap|= |a|+1≥ dk(H)+1.

2.(a) By Proposition2.6.3, H is a C-monoid,P is finite and hencee(H) < ∞. If
p∈ P, thenpop ∈ A (H) and by the minimality ofop, pop does not have a divisor
b∈ H \H× such that|b|< op. Thus it follows thate(H)≥ max{op : p∈ P}. For the
reverse inequality, note that by Proposition2.4.2 there exists anα ∈ N such that for
all p∈ P and alla∈ pαF we havea∈ H if and only if pαa∈ H. Since any multiple
of α has the same property, we may assume thatα is divisible byop for all p∈ P.
Let b∈ H with |b|> |P|(2α −1). Then there exists ap∈ P such thatb∈ p2αF ∩H.
Henceb is divisible inH by pα , implying in turn thatpop ∈ A (H) dividesb in H.
Therefore we obtain thate(H)≤ max{op : p∈ P}.

If a∈ F with |a| ≥ ∑p∈P(op−1), then there is ap∈ P such thatpop dividesa in
F , and thusη(H)≤ 1+∑p∈P(op−1).

2.(b) Letp∈P with o(p)= e(H). Thenpkop−1 ∈M ∗
k (H) and|pkop−1|= ke(H)−

1, showing the inequalitydk(H)+1≥ ke(H) for all k ∈ N. Now letk ∈ N be such
that 1+dk(H)+e(H)≥ η(H), and leta∈ F with |a| ≥ dk(H)+e(H)+1. Then, by
definition ofη(H), there areb∈ F andc∈ H \H× such thata= bcwith |c| ≤ e(H)
and|b| > dk(H). This implies thatb is divisible by a product ofk non-units ofH
whencea is divisible by a product ofk+1 non-units ofH. Therefore it follows that
1+dk+1(H)≤ dk(H)+ e(H)+1 and hence
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0≤ dk+1(H)− ke(H)≤ dk(H)− (k−1)e(H) for all sufficiently large k.

Since a non-increasing sequence of non-negative integers stabilizes, the assertion
follows.

3 Arithmetic Combinatorics: Zero-Sum Results with a focus on
Davenport constants

This section is devoted to Zero-Sum Theory, a vivid subfield of Arithmetic Combina-
torics (see [32, 37, 49]). In Subsection3.1we give an algebraic study of the monoid
of product-one sequences over finite but not necessarily abelian groups. In Subsec-
tion 3.2 we put together well-known material on transfer homomorphisms used in
Subsections4.2and4.3. In Subsections3.3and3.4we consider thekth Davenport
constants of finite groups. In particular, we gather resultswhich will be needed in
Subsection5.2and results having relevance in invariant theory by Proposition 4.7.

3.1 The monoid of product-one sequences

Let G0 ⊂ G be a subset and letG′ = [G,G] = 〈g−1h−1gh: g,h∈ G〉 denote the
commutator subgroup ofG. A sequenceoverG0 means a finite sequence of terms
from G0 which is unordered and repetition of terms is allowed, and itwill be con-
sidered as an element of the free abelian monoidF (G0). In order to distinguish
between the group operation inG and the operation inF (G0), we use the sym-
bol · for the multiplication inF (G0), henceF (G0) =

(
F (G0), ·

)
—this coincides

with the convention in the monographs [40, 49]–and we denote multiplication in
G by juxtaposition of elements. To clarify this, ifS1,S2 ∈ F (G0) andg1,g2 ∈ G0,
then S1 ·S2 ∈ F (G0) has length|S1|+ |S2|, S1 · g1 ∈ F (G0) has length|S1|+ 1,
g1 · g2 ∈ F (G0) is a sequence of length 2, butg1g2 is an element ofG. Further-
more, in order to avoid confusion between exponentiation inG and exponentia-
tion in F (G0), we use brackets for the exponentiation inF (G0). So forg ∈ G0,
S∈ F (G0), andk∈ N0, we have

g[k] = g · . . . ·g︸ ︷︷ ︸
k

∈ F (G) with |g[k]|= k, and S[k] = S· . . . ·S︸ ︷︷ ︸
k

∈ F (G) .

Now let
S= g1 · . . . ·gℓ = ∏

g∈G0

gvg(S) ,

be a sequence overG0 (in this notation, we tacitly assume thatℓ∈N0 andg1, . . . ,gℓ ∈
G0). Then|S|= ℓ= 0 if and only ifS= 1F (G0) is the identity element inF (G0), and
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thenSwill also be called thetrivial sequence. The elements inF (G0) \ {1F (G0)}
are callednontrivial sequences. We use all notions of divisibility theory in general
free abelian monoids. Thus, for an elementg ∈ G0, we refer tovg(S) as themulti-
plicity of g in S. A divisor T of S will also be called a subsequence ofS. We call
supp(S) = {g1, . . . ,gℓ} ⊂ G0 the supportof S. WhenG is written multiplicatively
(with unit element 1G ∈ G), we use

π(S) = {gτ(1) . . .gτ(ℓ) ∈ G: τ a permutation of[1, ℓ]} ⊂ G

to denote theset of productsof S (if |S| = 0, we use the convention thatπ(S) =
{1G}). Clearly,π(S) is contained in aG′-coset. WhenG is written additively with
commutative operation, we likewise let

σ(S) = g1+ . . .+gℓ ∈ G

denote thesumof S. Furthermore, we denote by

Σ(S) = {σ(T) : T |Sand 16= T} ⊂ G and Π(S) =
⋃

T |S
16=T

π(T)⊂ G,

thesubsequence sumsandsubsequence productsof S. The sequenceS is called

• aproduct-one sequenceif 1G ∈ π(S),
• product-one freeif 1G /∈ Π(S).

Every map of finite groupsϕ : G1 →G2 extends to a homomorphismϕ : F (G1)→
F (G2) whereϕ(S) = ϕ(g1) · . . . ·ϕ(gℓ). If ϕ is a group homomorphism, thenϕ(S)
is a product-one sequence if and only ifπ(S)∩Ker(ϕ) 6= /0. We denote by

B(G0) = {S∈ F (G0) : 1G ∈ π(S)}

the set of all product-one sequences overG0, and clearlyB(G0) ⊂ F (G0) is a
submonoid. We will use all concepts introduced in Subsection 2.5 for the monoid
B(G0) with the degree function stemming from the length function on the free
abelian monoidF (G0). For all notations∗(H) introduced for a monoidH we write
– as usual –∗(G0) instead of∗(B(G0)). In particular, fork ∈ N, we setMk(G0) =
Mk(B(G0)), Dk(G0) = Dk(B(G0)), η(G0) = η(B(G0)), e(G0) = e(B(G0)), and
so on. By Proposition2.8.2(a),e(G0) = max{ord(g) : g∈ G0}. Note thatM ∗

1 (G0)
is the set of all product-one free sequences overG0. In particular,

D(G0) = sup{|S| : S∈ A (G0)} ∈ N∪{∞}

is thelarge Davenport constantof G0, and

d(G0) = sup{|S| : S∈ F (G0) is product-one free} ∈ N0∪{∞}

is thesmall Davenport constantof G0. Their study will be the focus of the Subsec-
tions3.3and3.4.
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Lemma 3.1.Let G0 ⊂ G be a subset.

1. B(G0)⊂F (G0) is a reduced finitely generated submonoid,A (G0) is finite, and
D(G0)≤ |G|. Furthermore,Mk(G0) is finite andDk(G0)< ∞ for all k ∈ N.

2. Let S∈ F (G) be product-one free.

a. If g0 ∈ π(S), then g−1
0 ·S∈ A (G). In particular,d(G)+1≤ D(G).

b. If |S|= d(G), thenΠ(S) = G\ {1G} and hence
d(G) = max{|S| : S∈ F (G) with Π(S) = G\ {1G}}.

3. If G is cyclic, thend(G)+1= D(G) = |G|.

Proof. 1. We assert that for everyU ∈ A (G) we have|U | ≤ |G|. ThenA (G0) ⊂
A (G) is finite andD(G0) ≤ D(G) ≤ |G|. As already mentioned,B(G0)⊂ F (G0)
is a submonoid, and clearlyB(G0)

× = {1F (G0)}. SinceF (G0) is factorial and
B(G0)

× = B(G0) ∩ F (G0)
×, B(G0) is atomic by [40, Corollary 1.3.3]. This

means thatB(G0) = [A (G0)∪B(G0)
×], and thusB(G0) is finitely generated.

SinceB(G0) is reduced and finitely generated, the setsMk(G0) are finite by Propo-
sition2.7.

Now let U ∈ B(G), sayU = g1 · . . . ·gℓ with g1g2 . . .gℓ = 1G. We suppose that
ℓ > |G| and show thatU /∈ A (G). Consider the set

M = {g1g2 . . .gi : i ∈ [1, ℓ]} .

Sinceℓ> |G|, there arei, j ∈ [1, ℓ]with i < j andg1 . . .gi = g1 . . .g j . Thengi+1 . . .g j =
1G and thusg1 . . .gig j+1 . . .gℓ = 1G which implies thatU is the product of two non-
trivial product-one subsequences.

2.(a) If g0 ∈ π(S), thenScan be written asS= g1 · . . . ·gℓ such thatg0 = g1 . . .gℓ,
which implies thatg−1

0 ·g1 · . . . ·gℓ ∈ A (G).
2.(b) If S is product-one free with|S| = d(G), and if there would be anh ∈

G\ {Π(S)∪ {1G}}, thenT = h−1 ·S would be product-one free of length|T| =
|S|+1> d(G), a contradiction. Thus every product-one free sequenceS of length
|S|= d(G) satisfiesΠ(S) = G\{1G}. If S is a sequence withΠ(S) = G\{1G}, then
S is product-one free and hence|S| ≤ d(G).

3. Clearly, the assertion holds for|G|= 1. Suppose thatG is cyclic of ordern≥ 2,
and letg ∈ G with ord(g) = n. Theng[n−1] is product-one free, and thus 1. and 2.
imply thatn≤ 1+d(G)≤ D(G)≤ n.

The next result gathers the algebraic properties of monoidsof product-one se-
quences and highlights the difference between the abelian and the non-abelian case.

Theorem 3.2.Let G0 ⊂ G be a subset and let G′ denote the commutator subgroup
of 〈G0〉.

1. B(G0)⊂F (G0) is cofinal andB(G0) is a finitely generatedC-monoid.B̃(G0)=

B̂(G0) is a finitely generated Krull monoid, the embeddinĝB(G0) →֒ F (G0) is
a cofinal divisor homomorphism with class groupF (G0)/B(G0), and the map
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Φ : F (G0)/B(G0) −→ 〈G0〉/G′

[S]F (G0)/B(G0) 7−→ gG′ for any g∈ π(S)

is a group epimorphism. Suppose that G0 = G. ThenΦ is an isomorphism, every

class ofC (B̂(G)) contains a prime divisor, and if|G| 6= 2, thenB̂(G) →֒ F (G)
is a divisor theory.

2. The following statements are equivalent:

(a) B(G0) is a Krull monoid.

(b) B(G0) is root closed.

(c) B(G0)⊂ F (G0) is saturated.

3. B(G) is a Krull monoid if and only if G is abelian.

4. B(G) is factorial if and only if|G| ≤ 2.

Proof. 1. B(G0) is finitely generated by Lemma3.1. If n= lcm{ord(g) : g∈ G0},

then S[n] ∈ B(G0) for eachS∈ F (G0). ThusB(G0) ⊂ F (G0) and B̂(G0) →֒
F (G0) are cofinal,F (G0)/B(G0) is a group and

F (G0)/B(G0) = q
(
F (G0)

)
/q

(
B(G0)

)
= q

(
F (G0)

)
/q

(
B̂(G0)

)

is the class group of the embeddinĝB(G0) →֒ F (G0). All statements on the struc-

ture ofB(G0) andB̂(G0) follow from Proposition2.6.3, and it remains to show the
assertions onΦ.

Let S,S′ ∈ F (G0), g ∈ π(S),g′ ∈ π(S′), and B ∈ B(G0). Then π(S) ⊂ gG′,
π(S′) ⊂ g′G′, π(B) ⊂ G′, and π(S· B) ⊂ gG′. We use the abbreviation[S] =
[S]F (G0)/B(G0), and note that[S] = [S′] if and only if there areC,C′ ∈ B(G0) such
thatS·C= S′ ·C′.

In order to show thatΦ is well-defined, suppose that[S] = [S′] and thatS·C =
S·C′ with C,C′ ∈ B(G0). Thenπ(S·C) = π(S′ ·C′)⊂ gG′∩g′G′ and hencegG′ =
g′G′. In order to show thatΦ is surjective, letg∈ 〈G0〉 be given. Clearly, there is an
S∈ F (G0) such thatg∈ π(S) whenceΦ([S]) = gG′.

Suppose thatG0 = G. First we show thatΦ is injective. LetS,S′ ∈ F (G) with
g∈ π(S), g′ ∈ π(S′) such thatgG′ = g′G′. Then there arek∈N, a1,b1, . . . ,ak,bk ∈G
such that

gg′−1
=

k

∏
i=1

(a−1
i b−1

i aibi) .

We defineT = ∏k
i=1(a

−1
i ·b−1

i ·ai ·bi) and obtain that

S· (S′ ·g−1 ·T) = S′ · (S·g−1 ·T) ∈ F (G) .

Since 1∈ π(T) andgg′−1 ∈ π(T), it follows that 1∈ π(S′ ·g−1 ·T) and 1∈ π(S·
g−1 ·T) which implies that[S] = [S′].
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If |G| ≤ 2, then 4. will show thatB(G) is factorial and clearly the trivial class

contains a prime divisor. Suppose that|G| ≥ 3. In order to show that̂B(G) →֒F (G)
is a divisor theory, letg ∈ G\ {1G} be given. Then there is anh ∈ G\ {g−1,1G},

U = g · g−1 ∈ A (G) ⊂ B̂(G), U ′ = g · h · (h−1g−1) ∈ A (G) ⊂ B̂(G), and g =

gcdF (G)(U,U ′). ThusB̂(G) →֒ F (G) is a divisor theory.
Let S∈ F (G) with g ∈ π(S). Theng ∈ F (G) is a prime divisor and we show

that [g] = [S]. Indeed, ifg= 1G, thenS∈ B(G), 1G ∈ B(G), S·1G = g ·Swhence
[g] = [S]. If ord(g) = n≥ 2, theng[n] ∈B(G), S·g[n−1] ∈B(G), S·g[n] = g·S·g[n−1]

whence[S] = [g].

2. (a)⇒ (b) Every Krull monoid is completely integrally closed and hence root
closed.

(b) ⇒ (c) Let S,T ∈ B(G0) with T |S in F (G0), sayS= T ·U whereU =
g1 · . . . · gℓ ∈ F (G0). If n = lcm

(
ord(g1), . . . ,ord(gℓ)

)
, then(T [−1] ·S)[n] = U [n] ∈

B(G0). SinceB(G0) is root closed, this implies thatU = T [−1] ·S∈ B(G0) and
henceT |S in B(G0).

(c) ⇒ (a) SinceF (G0) is free abelian,B(G0) is Krull by Theorem2.1.

3. If G is a abelian, then it is obvious thatB(G) ⊂ F (G) is saturated, and thus
B(G) is a Krull monoid by 2. Suppose thatG is not abelian. Then there areg,h∈ G
with gh 6= hg. Thenghg−1 6= h, S= g ·h ·g−1 · (ghg−1)−1 ∈ B(G), T = g ·g−1 ∈
B(G) dividesS in F (G) but T [−1] ·S= h · (ghg−1)−1 does not have product-one.
ThusB(G) ⊂ F (G) is not saturated and henceB(G) is not Krull by 2.

4. If G = {0}, thenB(G) = F (G) is factorial. If G = {0,g}, thenA (G) =
{0,g[2]}, each atom is a prime, andB(G) is factorial. Conversely, suppose that
B(G) is factorial. ThenB(G) is a Krull monoid by [40, Corollary 2.3.13], and
henceG is abelian by 3. Suppose that|G| ≥ 3. We show thatB(G) is not factorial.
If there is an elementg∈ G with ord(g) = n≥ 3, thenU = g[n],−U = (−g)[n],W =
(−g) ·g∈ A (G), andU · (−U) =W[n]. Suppose there is nog∈ G with ord(g)≥ 3.
Then there aree1,e2 ∈ G with ord(e1) = ord(e2) = 2 ande1+e2 6= 0. ThenU = e1 ·

e2 · (e1+e2),W1 = e[2]1 ,W2 = e[2]2 ,W0 = (e1+e2)
[2] ∈ A (G), andU [2] =W0 ·W1 ·W2.

For a subsetG0 ⊂ G, the monoidB(G0) may be Krull or just seminormal but it
need not be Krull. We provide examples for both situations.

Proposition 3.3.Let G0 ⊂ G be a subset satisfying the following propertyP :

P. For each two elements g,h∈ G0, 〈h〉 ⊂ 〈g,h〉 is normal or〈g〉 ⊂ 〈g,h〉 is normal.

ThenB(G0) is a Krull monoid if and only if〈G0〉 is abelian.

Proof. If 〈G0〉 is a abelian, then it is obvious thatB(G0)⊂F (G0) is saturated, and
thusB(G0) is Krull by Theorem3.2.2.

Conversely, suppose thatB(G0) is Krull and thatG0 satisfies PropertyP. In
order to show that〈G0〉 is abelian, it is sufficient to prove thatgh= hg for each two
elementsg,h∈ G0. Let g,h∈ G0 be given such that〈h〉 ⊂ 〈g,h〉 is normal, ord(g) =
m, ord(h) = n, and assume to the contrary thatghg−1 6= h. Sinceg〈h〉g−1 = 〈h〉, it
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follows thatghg−1 = hν for someν ∈ [2,n−1]. Thusghgm−1hn−ν = 1 andS= g·h·
g[m−1] ·h[n−ν] ∈B(G0). Clearly,T = g[m] ∈B(G0) butS·T [−1]= h[n−ν+1] /∈B(G0).
ThusB(G0)⊂ F (G0) is not saturated, a contradiction.

Proposition 3.4.Let G= D2n be the dihedral group, say G= 〈a,b〉=
{1,a, . . . ,an−1,b,ab, . . . ,an−1b}, whereord(a) = n ≥ 2, ord(b) = 2, and set G0 =
{ab,b}. ThenB(G0) is a Krull monoid if and only if n is even.

Proof. Clearly, we have ord(ab) = ord(b) = 2 and〈G0〉 = G. Suppose thatn is
odd and consider the sequenceS= (ab)[n] ·b[n]. Since

(
(ab)b

)n
= 1, it follows that

S is a product-one sequence. Obviously,S1 = (ab)[n−1] ·b[n−1] ∈ B(G0) andS2 =
(ab) ·b /∈ B(G0). SinceS= S1 ·S2, it follows thatB(G0)⊂ F (G0) is not saturated,
and henceB(G0) is not Krull by Theorem3.2.2.

Suppose thatn is even. ThenA (G0) = {(ab)[2],b[2]} andB(G0) = {(ab)[ℓ] ·
b[m] : ℓ,m∈N0 even}. This description ofB(G0) implies immediately thatB(G0)⊂
F (G0) is saturated, and henceB(G0) is Krull by Theorem3.2.2.

Remark.(Seminormality of B(G0)) A monoidH is called seminormal if for all
x∈ q(H) with x2,x3 ∈H it follows thatx∈ H. Thus, by definition, every root closed
monoid is seminormal.

1. Letn≡ 3 mod 4 andG= D2n the dihedral group, sayG= 〈a,b〉=
{1,a, . . . ,an−1,b,ab, . . . ,an−1b}, where ord(a) = n, ord(b) = 2, and

akbalb= ak−l for all k, l ∈ Z .

We consider the sequence

S= a
[

n−1
2

]
·b[2] ∈ F (G) .

Then

S[2] =
(
a
[

n−1
2

]
·b ·a

[
n−1

2

]
·b
)
· (b ·b) andS[3] = a[n] ·

(
a
[

n−3
4

]
·b ·a

[
n−3

4

]
·b
)
·b[4]

are both inB(G) whenceS∈ q
(
B(G)

)
, but obviouslyS /∈ B(G). ThusB({a,b})

andB(G) are not seminormal.

2. Let G = H8 = {E, I ,J,K,−E,−I ,−J,−K} be the quaternion group with the
relations

IJ =−JI = K, JK =−KJ = I , and KI =−IK = J ,

and setG0 = {I ,J}. By Theorem3.2, B(G) is not Krull and by Proposition3.3,
B(G0) is not Krull. However, we assert thatB(G0) is seminormal.

First, we are going to derive an explicit description ofB(G0). Since E =
(−E)(−E) = (KK)(II ) = (IJ)(IJ)(II ), it follows thatU = I [4] · J[2] ∈ B(G0). As-
sume thatU =U1 ·U2 with U1,U2 ∈A (G0) and|U1| ≤ |U2|. Then|U1| ∈ {2,3}, but
U does not have a subsequence with product one and length two orthree. ThusU ∈
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A (G0) and similarly we obtain thatI [2] ·J[4] ∈A (G0). SinceD(G0)≤D(G) = 6, it
is easy to check that

A (G0) = {I [4],J[4], I [2] ·J[2], I [4] ·J[2], I [2] ·J[4]} .

This implies that

B(G0) = {I [k] ·J[l ] : k= l = 0 ork, l ∈ N0 are both even withk+ l ≥ 4} .

In order to show thatB(G0) is seminormal, letx ∈ q
(
B(G0)

)
be given such

thatx[2],x[3] ∈ B(G0). We have to show thatx∈ B(G0). Sincex[2],x[3] ∈ B(G0)⊂
F (G0) andF (G0) is seminormal, it follows thatx∈F (G0). If x= I [k] with k∈N0,
thenI [3k] ∈ B(G0) implies that 4|3k, hence 4|k, and thusx∈ B(G0). Similarly, if
x = J[l ] ∈ B(G0) with l ∈ N0, thenx ∈ B(G0). It remains to consider the case
x = I [k] · J[l ] with k, l ∈ N. Sincex[3] = I [3k] · J[3l ] ∈ B(G0), it follows thatk, l are
both even, and thusx∈ B(G0). ThereforeB(G0) is seminormal.

3.2 Transfer Homomorphisms

A well-established strategy for investigating the arithmetic of a given monoidH
is to construct a transfer homomorphismθ : H → B, whereB is a simpler monoid
thanH and the transfer homomorphismθ allows to shift arithmetical results fromB
back to the (original, more complicated) monoidH. We will use transfer homomor-
phisms in Section4 in order to show that properties of the monoid ofG-invariant
monomials can be studied in a monoid of zero-sum sequences (see Propositions4.7
and4.9).

Definition 3.5. A monoid homomorphismθ : H → B is called a transfer homo-
morphism if it has the following properties:

(T 1) B= θ (H)B× and θ−1(B×) = H×.

(T 2) If u∈ H, b, c∈ B and θ (u) = bc, then there existv, w∈ H such thatu= vw,
θ (v)B× = bB× and θ (w)B× = cB×.

We will use the simple fact that, ifθ : H → B andθ ′ : B→ B′ are transfer homo-
morphisms, then their compositionθ ′ ◦θ : H → B′ is a transfer homomorphism too.
The next proposition summarizes key properties of transferhomomorphisms.

Proposition 3.6.Let θ : H → B be a transfer homomorphism and a∈ H.

1. a is an atom of H if and only ifθ (a) is an atom of B.

2. LH(a) = LB
(
θ (a)

)
, whenceθ

(
Mk(H)

)
= Mk(B) andθ−1

(
Mk(B)

)
= Mk(H).

3. If θ is degree preserving, thenDk(H) = Dk(B) for all k ∈N.



22 Kálmán Cziszter and Mátyás Domokos and Alfred Geroldinger

Proof. 1. and 2. follow from [40, Proposition 3.2.3]. In order to prove 3., note that
for all k∈ N we have

Dk(H) = sup{|a|H : a∈ Mk(H)}= sup{|θ (a)|B : θ (a) ∈ Mk(B)}

= sup{|b|B : b∈ Mk(B)}= Dk(B) .

The first examples of transfer homomorphisms in the literature starts from a
Krull monoid to its associated monoid of zero-sum sequenceswhich is a Krull
monoid having a combinatorial flavor. These ideas were generalized widely, and
there are transfer homomorphisms from weakly Krull monoidsto (simpler) weakly
Krull monoids (having a combinatorial flavor) and the same istrue for C-monoids.

Proposition 3.7.Let H be a Krull monoid,ϕ : H → F (P) be a cofinal divisor ho-
momorphism with class group G= C (ϕ), and let G∗ ⊂ G denote the set of classes
containing prime divisors. Let̃θ : F (P) → F (G∗) denote the unique homomor-
phism defined bỹθ (p) = [p] for all p ∈ P, and setθ = θ̃ ◦ϕ : H → B(G∗).

1. θ is a transfer homomorphism.
2. For a∈ H, we set|a| = |ϕ(a)| and for S∈ B(G∗) we set|S| = |S|F (G∗). Then

|a|= |θ (a)| for all a ∈ H, θ (M ∗
k (H)) =M ∗

k (G
∗) andθ−1(M ∗

k (G
∗)) =M ∗

k (H)
for all k ∈N. Furthermore,e(H) = e(G∗), η(H) = η(G∗), andDk(H) =Dk(G∗)
for all k ∈ N.

Proof. 1. follows from [40, Section 3.4]. By definition, we have|a|= |θ (a)| for all
a∈H. Thus the assertions onDk(H) follow from Proposition2.7, and the remaining
statements can be derived in a similar way.

The above transfer homomorphismθ : H → B(G∗) constitutes the link between
the arithmetic of Krull monoids on the one side and zero-sum theory on the other
side. In this way methods from Arithmetic Combinatorics canbe used to obtain
precise results for arithmetical invariants describing the arithmetic ofH. For an
overview of this interplay see [37].

There is a variety of transfer homomorphisms from monoids ofzero-sum se-
quences to monoids of zero-sum sequences in order to simplify specific structural
features of the involved subsets of groups. Below we presenta simple example of
such a transfer homomorphism which we will meet again in Proposition 4.9 (for
more of this nature we refer to [74] and to [40, Theorem 6.7.11]). LetG be abelian
and letG0 ⊂ G be a subset. Forg∈ G0 we define

e(G0,g) = gcd
(
{vg(B) : B∈ B(G0)}

)
,

and it is easy to check that (for details see [45, Lemma 3.4])

e(G0,g) = gcd
(
{vg(A) : A∈ A (G0)}

)

=min
(
{vg(A) : vg(A)> 0,A∈ A (G0)}

)
= min

(
{vg(B) : vg(B)> 0,B∈ B(G0)}

)

=min
(
{k∈N : kg∈ 〈G0 \ {g}〉}

)
= gcd

(
{k∈ N : kg∈ 〈G0\ {g}〉}

)
.
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Proposition 3.8.Let G be abelian and G0,G1,G2 ⊂ G be subsets such that G0 =
G1⊎G2. For g∈ G0 we set e(g) = e(G0,g) and we define G∗0 = {e(g)g: g∈ G1}∪
G2. Then the map

θ : B(G0) −→ B(G∗
0)

B= ∏
g∈G0

g[vg(B)] 7−→ ∏
g∈G1

(e(g)g)[vg(B)/e(g)] ∏
g∈G2

g[vg(B)]

is a transfer homomorphism.

Proof. Clearly,θ is a surjective homomorphismsatisfyingθ−1(1F (G0))= {1F (G0)}.
In order to verify property(T2) of Definition3.5, letB∈B(G0) andC1,C2 ∈B(G∗

0)
be such thatθ (B) = C1 ·C2. We have to show that there areB1,B2 ∈ B(G0) such
thatB= B1 ·B2, θ (B1) =C1, andθ (B2) =C2. This can be checked easily.

3.3 The kth Davenport constants: the general case

Let G0 ⊂ G be a subset, andk ∈ N. Recall thate(G) = max{ord(g) : g∈ G}. If
G is nilpotent, thenG is the direct sum of itsp-Sylow subgroups and hencee(G) =
lcm{ord(g) : g∈ G}= exp(G). Let

• E(G0) be the smallest integerℓ ∈ N such that every sequenceS∈ F (G0) of
length|S| ≥ ℓ has a product-one subsequence of length|G|.

• s(G0) denote the smallest integerℓ ∈ N such that every sequenceS∈ F (G0) of
length|S| ≥ ℓ has a product-one subsequence of lengthe(G).

The Davenport constants, together with the Erdős-Ginzburg-Ziv constants(G),
the constantsη(G) andE(G), are the most classical zero-sum invariants whose study
(in the abelian setting) goes back to the early 1960s. Thekth Davenport constants
Dk(G) were introduced by Halter-Koch [50] and further studied in [40, Section 6.1]
and [30] (all this work is done in the abelian setting). First results in the non-abelian
setting were achieved in [15].

If G is abelian, then W. Gao proved thatE(G)= |G|+d(G). For cyclic groups this
is the Theorem of Erdős-Ginzburg-Ziv which dates back to 1961 ([40, Proposition
5.7.9]). W. Gao and J. Zhuang conjectured that the above equality holds true for all
finite groups ([82, Conjecture 2]), and their conjecture has been verified in a variety
of special cases [3, 36, 34, 53]. For more in the non-abelian setting see [80, 79].

We verify two simple properties occurring in the assumptions of Propositions2.7
and2.8.

• If S∈ F (G) andg0 ∈ π(S), thenh = g−1
0 ∈ G is a prime inF (G) andh ·S∈

B(G).
• Clearly, 1G ∈ B(G) is a prime element ofB(G).
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Therefore all properties proved in Propositions2.7 and2.8 for Dk(H) anddk(H)
hold for the constantsDk(G) anddk(G) (the linearity properties as given in Proposi-
tion 2.7.2 and Proposition2.8.2.(b) were first proved by Freeze and W.A. Schmid in
case of abelian groupsG [30]). We continue with properties which are more specific.

Proposition 3.9.Let H≤ G be a subgroup, N⊳G be a normal subgroup, and k, ℓ ∈
N.

1. dk(N)+dℓ(G/N)≤ dk+ℓ−1(G).

2. dk(G)≤ ddk(N)+1(G/N).

3. dk(G)+1≤ [G:H](dk(H)+1).

4. dk(G)+1≤ k(d(G)+1).

5. Dk(G)≤ [G:H]Dk(H).

Proof. 1. Let S= (g1N) · . . . · (gsN) ∈ M ∗
ℓ (G/N) with |S| = s= dℓ(G/N) and let

T = h1 · . . . ·ht ∈M ∗
k (N) with t = dk(N). We consider the sequenceW = g1 · . . . ·gs·

h1 · . . . ·ht ∈ F (G) and suppose that it is divisible byS1 · . . . ·Sa ·T1 · . . . ·Tb where
Si ,Tj ∈ B(G) \ {1F (G)}, supp(Si)∩{g1, . . . ,gs} 6= /0 andT1 · . . . ·Tb |h1 · . . . ·ht for
all i ∈ [1,a] and all j ∈ [1,b]. For i ∈ [1,a], let Si ∈ F (G/N) denote the sequence
obtained fromSi by replacing eachgν by gνN and by omitting the elements ofSi

which lie in {h1, . . . ,ht}. ThenS1, . . . ,Sa ∈ B(G/N) \ {1F (G)} andS1 · . . . ·Sa |S
whencea ≤ ℓ−1. By construction, we haveb ≤ k− 1 whencea+ b < k+ ℓ− 1,
W ∈ M ∗

k+ℓ−1(G), and|W|= s+ t = dk(N)+dℓ(G/N)≤ dk+ℓ−1(G).

2. We setm= ddk(N)+1(G/N)+1. By (1), we have to show that every sequence
SoverG of length|S| ≥ m is divisible by a product ofk nontrivial product-one se-
quences. Letf : G→G/N denote the canonical epimorphism and letS∈F (G) be a
sequence of length|S| ≥m. By definition ofm, there exist sequencesS1, . . . ,Sdk(N)+1
such thatS1 · . . . ·Sdk(N)+1 |S and f (S1), . . . , f (Sdk(N)+1) are product-one sequences
overG/N. Thus, for eachν ∈ [1,dk(N)+ 1], there are elementshν ∈ N such that
hν ∈ π(Sν). ThenT = h1 · . . . ·hdk(N)+1 is a sequence overN, and it hask nontrivial
product-one subsequencesT1, . . . ,Tk whose productT1 · . . . ·Tk dividesT. Therefore
we obtaink nontrivial product-one sequences whose product dividesS.

3. We setm= [G:H] and start with the following assertion.

A. If S∈ F (G) with |S| ≥ m, thenΠ(S)∩H 6= /0.

Proof of A. Let S= g1 · . . . · gn ∈ F (G) with |S| = n ≥ m. We consider the
left cosetsg1H,g1g2H, . . . , g1 . . .gmH. If one of these cosets equalsH, then we
are done. If this is not the case, then there arek, ℓ ∈ [1,m] with k < ℓ such that
g1 . . .gkH = g1 . . .gkgk+1 . . .gℓH which implies thatgk+1 . . .gℓ ∈ H. ⊓⊔(Proof ofA)

Now let S∈ F (G) be a sequence of length|S| = [G : H](dk(H)+ 1). We have
to show thatS is divisible by a product ofk nontrivial product-one sequences. By
A, there aredk(H)+1 sequencesS1, . . . ,Sdk(H)+1 and elementsh1, . . . ,hdk(H)+1 ∈ H
such thatS1 · . . . ·Sdk(H)+1 |Sandhν ∈ π(Sν) for eachν ∈ [1,dk(H)+1]. By defini-
tion, the sequenceh1 · . . . ·hdk(H)+1 ∈ F (H) is divisible by a product ofk nontrivial
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product-one sequences. ThereforeS is divisible by a product ofk nontrivial product-
one sequences.

4. Let S∈ F (G) be a sequence of length|S| = k(d(G) + 1). ThenS may be
written as a productS= S1 · . . . ·Sk whereS1, . . . ,Sk ∈ F (G) with |Sν | = d(G)+1
for everyν ∈ [1,k]. Then eachSν is divisible by a nontrivial product-one sequence
Tν and henceS is divisible byT1 · . . . ·Tk. Thus by (1) we infer thatdk(G) + 1 ≤
k(d(G)+1).

5. LetA= g1 · . . . ·gℓ ∈ B(G) with g1 . . .gℓ = 1 andℓ > [G : H]Dk(H). We show
that ℓ > Dk(G). We setd = Dk(H) and consider the leftH-cosetsCj = g1 . . .g jH
for each j ∈ [1, ℓ]. By the pigeonhole principle there exist 1≤ i1 < · · · < id+1 ≤ ℓ
such thatCi1 = · · · = Cid+1. We seths = gis+1 . . .gis+1 for each s ∈ [1,d] and
hd+1 = gid+1+1 . . .gℓg1 . . .gi1−1. Clearlyh1, . . . ,hd+1 ∈ H, andg1 · · ·gℓ = 1 implies
h1 · · ·hd+1 = 1 whenceh1 · . . . · hd+1 ∈ B(H). The inequalityd+ 1 > Dk(H) im-
plies thath1 · . . . ·hd+1 = S1 · . . . ·Sk+1, where 1F (H) 6= Si ∈ B(H) for i ∈ [1,k+1].
Let Ti ∈ F (G) denote the sequence obtained fromSi by replacing each occurrence
of hs by gis+1 · . . . · gis+1 for s∈ [1,d] and hd+1 by gid+1+1 · . . . · gℓ · g1 · . . . · gi1−1.
ThenT1, . . . ,Tk+1 ∈ B(G) andA = g1 · . . . · gℓ = T1 · . . . ·Tk+1, which implies that
ℓ > Dk(G).

Much more is known for the classical Davenport constantsD1(G) = D(G) and
d1(G) = d(G). We start with metacyclic groups of index two. The followingresult
was proved in [39, Theorem 1.1].

Theorem 3.10.Suppose that G has a cyclic, index2 subgroup. Then

D(G) = d(G)+ |G′| and d(G) =

{
|G|−1 if G is cyclic
1
2|G| if G is non-cyclic,

where G′ = [G,G] is the commutator subgroup of G.

The next result gathers upper bounds for the large Davenportconstant (ford(G)
see [35]).

Theorem 3.11.Let G′ = [G,G] denote the commutator subgroup of G.

1. D(G)≤ d(G)+2|G′|−1, and equality holds if and only if G is abelian.

2. If G is a non-abelian p-group, thenD(G)≤ p2+2p−2
p3 |G|.

3. If G is non-abelian of order pq, where p,q are primes with p< q, thenD(G) = 2q
andd(G) = q+ p−2.

4. If N⊳G is a normal subgroup with G/N ∼=Cp⊕Cp for some prime p, then

d(G)≤ (d(N)+2)p−2≤
1
p
|G|+ p−2.

5. If G is non-cyclic and p is the smallest prime dividing|G|, thenD(G)≤ 2
p|G|.

6. If G is neither cyclic nor isomorphic to a dihedral group oforder 2n with odd n,
thenD(G)≤ 3

4|G|.
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Proof. All results can be found in [48]: see Lemma 4.2, Theorems 3.1, 4.1, 5.1,7.1,
7.2, and Corollary 5.7.

Corollary 3.12. The following statements are equivalent:

(a) G is cyclic or isomorphic to a dihedral group of order2n for some odd n≥ 3.

(b) D(G) = |G|.

Proof. If G is not as in (a), thenD(G)≤ 3
4|G| by Theorem3.11.6. If G is cyclic, then

D(G) = |G| by Lemma3.1.3. If G is dihedral of order 2n for some oddn≥ 3, then
the commutator subgroupG′ of G has ordern and henceD(G) = |G| by Theorem
3.10.

3.4 The kth Davenport constants: The abelian case

Throughout this subsection, all groups are abelian and willbe written additively.

We haveG∼=Cn1 ⊕ . . .⊕Cnr , with r ∈N0 and 1< n1 | . . . |nr , r(G) = r is therank
of G andnr = exp(G) is theexponentof G. We define

d∗(G) =
r

∑
i=1

(ni −1) .

If G= {0}, thenr = 0= d∗(G). An s-tuple(e1, . . . ,es) of elements ofG\{0} is said
to be a basis of G if G= 〈e1〉⊕ . . .⊕〈es〉. First we provide a lower bound for the
Davenport constants.

Lemma 3.13.Let G be abelian.

1. Dk(G) = 1+dk(G) for every k∈ N.

2. d∗(G)+ (k−1)exp(G)≤ dk(G).

Proof. 1. Letk∈ N. By Proposition2.8.1, we have 1+dk(G)≤ Dk(G). Obviously,
the map

ψ : M
∗
k (G)→ Mk(G)\ {1} , given by ψ(S) = (−σ(S)) ·S,

is surjective and we have|ψ(S)|= 1+ |S| for everyS∈ M ∗
k (G). Therefore we have

1+dk(G) = Dk(G).

2. Suppose thatG∼=Cn1 ⊕ . . .⊕Cnr , with r ∈N0 and 1< n1 | . . . |nr . If (e1, . . . ,er)
is a basis ofG with ord(ei) = ni for all i ∈ [1, r], then

S= e[nr (k−1)]
r

r

∏
i=1

e[ni−1]
i

is not divisible by a product ofk nontrivial zero-sum sequences whenced∗(G) +
(k−1)exp(G) = |S| ≤ dk(G).
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We continue with a result on thekth Davenport constant which refines the more
general results in Subsection2.5. It provides an explicit formula fordk(G) in terms
of d(G) (see [40, Theorem 6.1.5]).

Theorem 3.14.Let G be abelian,exp(G) = n, and k∈N.

1. Let H≤ G be a subgroup such that G= H ⊕Cn. Then

d(H)+ kn−1≤ dk(G)≤ (k−1)n+max{d(G),η(G)−n−1} .

In particular, if d(G) = d(H)+n−1 and η(G)≤ d(G)+n+1, then dk(G) =
d(G)+ (k−1)n.

2. If r(G)≤ 2, then dk(G) = d(G)+ (k−1)n.

3. If G is a p-group andD(G)≤ 2n−1, then dk(G) = d(G)+ (k−1)n.

For the rest of this section we focus on the classical Davenport constantD(G).
By Lemma3.13.2, there is the crucial inequality

d∗(G)≤ d(G) .

We continue with a list of groups for which equality holds. The list is incomplete
but the remaining groups for whichd∗(G) = d(G) is known are of a similar special
nature as those listed in Theorem3.15.3 (see [76] for a more detailed discussion).
In particular, it is still open whether equality holds for all groups of rank three (see
[76, Section 4.1]) or for all groups of the formG=Cr

n (see [47]).

Theorem 3.15.We haved∗(G) = d(G) in each of the following cases:

1. G is a p-group or has rankr(G)≤ 2.
2. G= K ⊕Ckm where k,m∈ N, p∈ P a prime, m a power of p and K≤ G is a

p-subgroup withd(K)≤ m−1.
3. G=C2

m⊕Cmn where m∈ {2,3,4,6} and n∈ N.

Proof. For 1. see [40] (in particular, Theorems 5.5.9 and 5.8.3) for proofs and his-
torical comments. For 2. see [37, Corollary 4.2.13], and 3. can be found in [5] and
[76, Theorem 4.1].

There are infinite series of groupsGwith d∗(G)< d(G). However, the true reason
for the phenomenond∗(G) < d(G) is not understood. Here is a simple observation.
Suppose thatG=Cn1 ⊕ . . .⊕Cnr with 1< n1 | . . . |nr , I ⊂ [1, r], and letG′ =⊕i∈ICni .
If d∗(G′)< d(G′), thend∗(G)< d(G). For series of groupsG which have rank four
and five and satisfyd∗(G) < d(G) we refer to [44, 42]. A standing conjecture for
an upper bound onD(G) states thatd(G) ≤ d∗(G)+ r(G). However, the available
results are much weaker ([40, Theorem 5.5.5], [6]).

The remainder of this subsection is devoted to inverse problems with respect to
the Davenport constant. Thus the objective is to study the structure of zero-sum free
sequencesSwhose lengths|S| are close to the maximal possible valued(G).
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If G is cyclic of ordern≥ 2, then an easy exercise shows thatS is zero-sum free
of length|S|= d(G) if and only if S= g[n−1] for someg∈ G with ord(g) = n. After
many contributions since the 1980s, S. Savchev and F. Chen could finally prove a
(sharp) structural result. In order to formulate it we need some more terminology. If
g∈ G is a nonzero element of order ord(g) = n and

S= (n1g) · . . . · (nℓg), where ℓ ∈ N0 and n1, . . . ,nℓ ∈ [1,n] ,

we define
‖S‖g =

n1+ . . .+nℓ
n

.

Obviously,Shas sum zero if and only if‖S‖g ∈ N0, and theindex of Sis defined as

ind(S) = min{‖S‖g : g∈ G with G= 〈g〉} ∈Q≥0 .

Theorem 3.16.Let G be cyclic of order|G|= n≥ 3 .

1. If S is a zero-sum free sequence over G of length|S| ≥ (n+1)/2, then there exist
g∈ G with ord(g) = n and integers1= m1, . . . ,m|S| ∈ [1,n−1] such that

• S= (m1g) · . . . · (m|S|g)
• m1+ . . .+m|S| < n andΣ(S) = {νg: ν ∈ [1,m1+ . . .+m|S|]}.

2. If U ∈ A (G) has length|U | ≥ ⌊n
2⌋+2, thenind(U) = 1.

Proof. 1. See [71] for the original paper. For the history of the problem and a proof
in the present terminology see [37, Chapter 5.1] or [49, Chapter 11].

2. This is a simple consequence of the first part (see [37, Theorem 5.1.8]).

The above result was generalized to groups of the formG = C2 ⊕C2n by S.
Savchev and F. Chen ([72]). Not much is known about the number of all minimal
zero-sum sequences of a given group. However, the above result allows to give a
formula for the number of minimal zero-sum sequences of length ℓ≥ ⌊n

2⌋+2 (this
formula was first proved by Ponomarenko [66] for ℓ > 2n/3).

Corollary 3.17. Let G be cyclic of order|G|= n≥ 3, and letℓ ∈
[
⌊n

2⌋+2,n
]
. Then

the number of minimal zero-sum sequences U∈A (G) of lengthℓ equalsΦ(n)pℓ(n),
whereΦ(n) = |(Z/nZ)×| is Euler’s Phi function andpℓ(n) is the number of integer
partitions of n intoℓ summands.

Proof. Clearly, every generating elementg ∈ G and every integer partitionn =
m1 + . . .+mℓ gives rise to a minimal zero-sum sequenceU = (m1g) · . . . · (mℓg).
Conversely, ifU ∈ A (G) of length|U |= ℓ, then Theorem3.16.2 implies that there
is an elementg∈ G with ord(g) = n such that

U =(m1g) · . . . ·(mℓg) where m1, . . . ,mℓ ∈ [1,n−1]with n=m1+ . . .+mℓ . (∗)

SinceG has preciselyΦ(n) generating elements, it remains to show that for every
U ∈ A (G) of length|U | = ℓ there is precisely one generating elementg∈ G with
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‖U‖g = 1. LetU be as in(∗), and assume to the contrary that there area∈ [2,n−1]
with gcd(a,n) = 1 andm′

1, . . . ,m
′
ℓ ∈ [1,n] such thatm′

1+ . . .+m′
ℓ = n and

U =
(
m′

1(ag)
)
· . . . ·

(
m′
ℓ(ag)

)
.

Let a′ ∈ [2,n−1] such thataa′ ≡ 1 (mod n). Since

n= m1+ . . .+mℓ ≥ vg(U)+avag(U)+2(ℓ− vg(U)− vag(U))

= 2ℓ− vg(U)+ (a−2)vag(U) and

n= m′
1+ . . .+m′

ℓ ≥ a′vg(U)+ vag(U)+2(ℓ− vg(U)− vag(U))

= 2ℓ+(a′−2)vg(U)− vag(U) ,

it follows that

(a−1)n= n+(a−2)n

≥ 2ℓ− vg(U)+ (a−2)vag(U)+ (a−2)(2ℓ+(a′−2)vg(U)− vag(U))

= (a−1)2ℓ+((a−2)(a′−2)−1)vg(U) ,

whencea= 2,a′ = n+1
2 or a′ = 2,a= n+1

2 becauseℓ ≥ ⌊n
2⌋+2. By symmetry, we

may assume thata = 2. Thenvg(U) ≥ 2ℓ− n ≥ 2⌊n
2⌋+ 4− n ≥ 3, and thusn ≥

a′vg(U)≥ 3n+1
2 , a contradiction.

The structure of all minimal zero-sum sequences of maximal lengthD(G) has
been completely determined for rank two groups ([31, 33, 75, 68]), for groups of
the formG=C2⊕C2⊕C2n with n≥ 2 ([76, Theorem 3.13]), and for groups of the
form G=C4

2 ⊕C2n with n≥ 70 ([8, Theorems 5.8 and 5.9]).

4 Multiplicative Ideal Theory of Invariant Rings

After gathering basic material from invariant theory in Subsection4.1we construct
an explicit divisor theory for the algebra of polynomial invariants of a finite group
(see Subsection4.2). In Subsection4.3 we present a detailed study of the abelian
case as outlined in the Introduction. In Subsection4.4 we associate a BF-monoid
to aG-module whosekth Davenport constant is a lower bound for thekth Noether
number.

4.1 Basics of invariant theory

Let n= dimF(V) and letρ : G→ GL(n,F) be a group homomorphism. Consider
the action ofG on the polynomial ringF[x1, . . . ,xn] viaF-algebra automorphisms in-
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duced byg·x j = ∑n
i=1 ρ(g−1) ji xi . Taking a slightly more abstract point of departure,

we suppose thatV is aG-module (i.e. we suppose thatV is endowed with an action
of G via linear transformations). Choosing a basis ofV, V is identified withFn, the
group GL(n,F) is identified with the group GL(V) of invertible linear transforma-
tions ofV, andF[V] = F[x1, . . . ,xn] can be thought of as the symmetric algebra of
V∗, the dualG-module ofV, in which(x1, . . . ,xn) is a basis dual to the standard ba-
sis inV. The action onV∗ is given by(g·x)(v) = x(ρ(g−1)v), whereg∈ G, x∈V∗,
v ∈ V. Note that, ifF is infinite, thenF[V] is the algebra of polynomial functions
V → F, and the action ofG onF[V] is the usual action on functionsV → F induced
by the action ofG onV via ρ . Denote byF(V) the quotient field ofF[V], and extend
theG-action onF[V] to F(V) by

g ·
f1
f2

=
g · f1
g · f2

for f1, f2 ∈ F[V] andg∈ G.

We define

F(V)G = { f ∈F(V) : g· f = f for all g∈G}⊂F(V) and F[V]G=F(V)G∩F[V] .

ThenF(V)G ⊂ F(V) is a subfield andF[V]G ⊂ F[V] is anF-subalgebra ofF[V],
called thering of polynomial invariantsof G (the group homomorphismρ : G →
GL(V) giving theG-action onV is usually suppressed from the notation). Since
every element ofF(V) can be written in the formf1 f−1

2 with f1 ∈ F[V] and f2 ∈
F[V]G, it follows thatF(V)G is the quotient field ofF[V]G. Next we summarize some
well-known ring theoretical properties ofF[V]G going back to E. Noether [64].

Theorem 4.1.Let all notations be as above.

1. F[V]G ⊂ F[V] is an integral ring extension andF[V]G is normal.

2. F[V] is a finitely generatedF[V]G-module, andF[V]G is a finitely generatedF-
algebra(hence in particular a noetherian domain).

3. F[V]G is a Krull domain with Krull dimensiondimF(V).

Proof. 1. To show thatF[V]G is normal, consider an elementf ∈ F(V)G which is
integral overF[V]G. Then f is integral overF[V] as well, and sinceF[V] is normal,
it follows that f ∈ F[V]∩F(V)G = F[V]G.

To show thatF[V]G ⊂ F[V] is an integral ring extension, consider an element
f ∈ F[V] and the polynomial

Φ f = ∏
g∈G

(X−g f) ∈ F[V][X] . (2)

The coefficients ofΦ f are the elementary symmetric functions (up to sign) evaluated
at(g f)g∈G, and hence they are inF[V]G. Thusf is a root of a monic polynomial with
coefficients inF[V]G.

2. For i ∈ [1,n], we consider the polynomialsΦxi (X) (cf. (2)), and denote by
A ⊂ F[V]G ⊂ F[V] theF-algebra generated by the coefficients ofΦx1, . . . ,Φxn. By
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definition,A is a finitely generatedF-algebra and hence a noetherian domain. Since
x1, . . . ,xn are integral overA, F[V] = A[x1, . . . ,xn] is a finitely generated (and hence
noetherian)A-module. Therefore theA-submoduleF[V]G is a finitely generatedA-
module, and hence a finitely generatedF-algebra.

3. By 1. and 2.,F[V]G is an normal noetherian domain, and hence a Krull do-
main by Theorem2.1. SinceF[V]G ⊂ F[V] is an integral ring extension, the Theo-
rem of Cohen-Seidenberg implies that their Krull dimensions coincide, and hence
dim(F[V]G) = dim(F[V]) = dimF(V).

The algebraF[V] is graded in the standard way (namely, deg(x1)= . . .= deg(xn)=
1), and the subalgebraF[V]G is generated by homogeneouselements. ForF-subspaces
S,T ⊂ F[V] we writeST for theF-subspace inF[V] spanned by all the productsst
(s∈ S, t ∈ T), and writeSk = S. . .S (with k factors). The factor algebra ofF[V] by
the ideal generated byF[V]G+ is usually called thealgebra of coinvariants. It inherits
the grading ofF[V] and is finite dimensional.

Definition 4.2. Let k∈ N.

1. Let βk(G,V) be the top degree of the factor spaceF[V]G+/(F[V]G+)
k+1, where

F[V]G+ is the maximal ideal ofF[V]G spanned by the positive degree homoge-
neous elements. We call

βk(G) = sup{βk(G,W) : W is aG-module overF}

thekth Noether numberof G.
2. Letbk(G,V) denote the top degree of the factor algebraF[V]/(F[V]G+)

kF[V] and
set

bk(G) = sup{bk(G,W) : W is aG-module overF} .

In the special casek= 1 we set

β (G,V) = β1(G,V) ,β (G) = β1(G) , b(G,V) = b1(G,V) ,andb(G) = b1(G) ,

andβ (G) is theNoether numberof G. If { f1, . . . , fm} and{h1, . . . ,hl} are two min-
imal homogeneous generating sets ofF[V]G, thenm= l and, after renumbering if
necessary, deg( fi) = deg(hi) for all i ∈ [1,m] ([61, Proposition 6.19]). Therefore by
the Graded Nakayama Lemma ([61, Proposition 8.31]) we have

β (G,V) = max{deg( fi) : i ∈ [1,m]} ,

where{ f1, . . . , fm} is a minimal homogeneous generating set ofF[V]G. Again by the
Graded Nakayama Lemma,b(G,V) is the maximal degree of a generator in a mini-
mal system of homogeneous generators ofF[V] as anF[V]G-module. If char(F) ∤ |G|,
then by [11, Corollary 3.2] we have

βk(G) = bk(G)+1 and β (G,V)≤ b(G,V)+1, (3)

where the second inequality can be strict. IfG is abelian, thenβk(G,V) andbk(G,V)
will be interpreted askth Davenport constants (see Proposition4.7).
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The regular G-module Vreg has a basis{eg : g ∈ G} labelled by the group ele-
ments, and the group action is given byg ·eh = egh for g,h∈ G. More conceptually,
one can identifyVreg with the space ofF-valued functions onG, on whichG acts
linearly via the action induced by the left multiplication action ofG on itself. In this
interpretation the basis elementeg is the characteristic function of the set{g} ⊂ G.
It was proved in [73] that, if char(F) = 0, thenβ (G) = β (G,Vreg). If F is alge-
braically closed, each irreducibleG-module occurs inVreg as a direct summand with
multiplicity equal to its dimension.

Theorem 4.3.

1. If char(F) ∤ |G|, thenβ (G)≤ |G|.
2. If char(F) | |G|, thenβ (G) = ∞.

Proof. 1. The case char(F) = 0 was proved by E. Noether [63] in 1916, and her
argument works as well when the characteristic ofF is greater than|G|. The general
case was shown independently by P. Fleischmann [25] and J. Fogarty [28] (see also
[62, Theorem 2.3.3] and [57]. For 2. see [70].

Bounding the Noether number has always been an objective of invariant theory
(for recent surveys we refer to [81, 60]; degree bounds are discussed in [17, 78,
26, 10, 54]; see [16] for algorithmic aspects). Moreover, the main motivation to
introduce thekth Noether numbersβk(G) ([11, 12, 13]) was to bound the ordinary
Noether numberβ (G) via structural reduction (see Subsection5.1).

4.2 The divisor theory of invariant rings

Let G⊂ GL(V) andχ ∈ Hom(G,F•). Then

F[V]G,χ = { f ∈ F[V] : g · f = χ(g) f for all g∈ G}

denotes the space ofrelative invariants of weightχ , and we set

F[V]G,rel =
⋃

χ∈Hom(G,F•)

F[V]G,χ .

Clearly, we haveF[V]G ⊂ F[V]G,rel ⊂ F[V], and to simplify notation, we set

H = (F[V]G\ {0})red, D = (F[V]G,rel \ {0})red, and E = (F[V]\ {0})red.

SinceF[V] is a factorial domain withF• as its set of units,E = F (P) is the free
abelian monoid generated byP= {F• f : f ∈ F[V] is irreducible}. The action ofG
on F[V] is via F-algebra automorphisms, so it induces a permutation actionof G
on E andP. Denote byP/G the set ofG-orbits in P. We shall identifyP/G with
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a subset ofE as follows: assign to theG-orbit { f1, . . . , fr} the elementf1 . . . fr ∈ E
(here f1, . . . , fr ∈ P are distinct).

We say that a non-identity elementg ∈ G ⊂ GL(V) is a pseudoreflectionif a
hyperplane inV is fixed pointwise byg, andg is not unipotent (this latter condi-
tion holds automatically if char(F) does not divide|G|, since then a non-identity
unipotent transformation cannot have finite order). We denote by Hom0(G,F•) ≤
Hom(G,F•) the subgroup of the character group consisting of the characters that
contain all pseudoreflections in their kernels. For eachp∈ P, choose a representa-
tive p̃∈ F[V] in the associate classp= F• p̃. We haveX(F[V]) = {p̃F[V] : p ∈ P}
becauseF[V] is factorial. We setvp̃ = vp : q(F[V]•) = F(V)• → Z, and for a subset
X ⊂ F(V) we writevp(X) = inf{vp( f ) : f ∈ X \{0}}. Theramification indexof the
prime ideal ˜pF[V] overF[V]G is e(p) = vp(p̃F[V]∩F[V]G). The ramification index
e(p) can be expressed in terms of theinertia subgroup

Ip = {g∈ G: g · f − f ∈ p̃F[V] for all f ∈ F[V]} .

SinceV⋆ is a G-stable subspace inF[V], the inertia subgroupIp acts trivially on
V⋆/(V⋆∩ p̃F[V]). On the other handIp acts faithfully onV⋆. So if Ip is non-trivial,
thenV⋆ ∩ p̃F[V] 6= 0, implying p̃ ∈ V⋆. Clearly Ip must act trivially on the hyper-
planeV (p̃) = {v ∈ V : p̃(v) = 0}, and hence acts via multiplication by a charac-
ter δp ∈ Hom(Ip,F•) on the 1-dimensional factor spaceV/V (p̃). So ker(δp) is
a normal subgroup ofIp (necessarily unipotent hence trivial if char(F) ∤ |G|) and
Ip = ker(δp)Z decomposes as a semi-direct product of ker(δp) and a cyclic sub-
groupZ consisting of pseudoreflections fixing pointwiseV (p̃). SoZ ∼= Ip/ker(δp)
is isomorphic to a finite subgroup ofF•.

The next Lemma4.4is extracted from Nakajima’s paper [58].

Lemma 4.4.

1. We have the equality e(p) = |Z|.
2. vp(F[V]G,χ)< e(p) for all χ ∈ Hom(G,F•).
3. vp(F[V]G,χ) = 0 for all χ ∈ Hom0(G,F•).

Proof. 1. By [59, 9.6, Proposition (i)], we have thate(p) = vp(p̃F[V]∩F[V]Ip), the
ramification index of the prime ideal ˜pF[V] over the subring ofIp-invariants. Thus
if Ip is trivial, thene(p) = 1, and of course|Z| = 1. If Ip is non-trivial, then as it
was explained above, ˜p is a linear form, which is a relativeIp-invariant with weight
δ−1

p , hence ˜p|Z| is anIp-invariant, implyingvp(p̃F[V]∩F[V]Ip) ≤ |Z|. On the other
handF[V]Ip is contained inF[V]Z, and the algebra of invariants of the cyclic group
Z fixing pointwise the hyperplaneV (p̃) is generated by ˜p|Z| and a subspace ofV∗

complementary toFp̃. Thusvp(p̃F[V]∩F[V]Ip) ≥ vp(p̃F[V]∩F[V]Z) = |Z|, imply-
ing in turn thate(p) = |Z|.

2. Take anh∈F[V]G with e(p)= vp(h). Note thatvq(h)= vp(h) andvq(F[V]G,χ)=
vp(F[V]G,χ) holds for allq ∈ G · p, sinceF[V]G,χ is aG-stable subset inF[V]. Set
S= { f

t : f ∈ F[V], t ∈ F[V]G\ p̃F[V]}. This is aG-stable subring inq(F[V]) con-
tainingF[V]. ConsiderSχ = S∩q(F[V])χ , whereq(F[V])χ = {s∈ q(F[V]) : g ·s=
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χ(g)s for all g ∈ G}. Thenvq(Sχ) = vq(F[V]G,χ) for all q ∈ G · p, since for any
denominatort of an elementft of Swe havevq(t) = 0. Now suppose that contrary
to our statement we havee(p) ≤ vp(F[V]G,χ), and hencevq(h) ≤ vq(Sχ) for all
q∈ G· p. In particular this means thatF[V]G,χ 6= {0}. Thenvq(h−1Sχ)≥ 0 holds for
all q∈ G· p. Now S is a Krull domain withX(S) = {q̃S: q∈ G· p}, thush−1Sχ ⊂ S
(see the discussion after Theorem2.1), implying thatSχ ⊂ hS. ClearlyhS∩Sχ =hSχ ,
so we conclude in turn thatSχ ⊂ hSχ . Iterating this we deduce{0} 6= Sχ ⊂∩∞

n=1hnS,
a contradiction.

3. It is well known thatF[V]G,χ 6= {0} (see the proof ofA4. below). Write
v = vp(F[V]G,χ). Take f ∈ F[V]G,χ with vp( f ) = v, say f = p̃vh, whereh ∈ F[V].
Note that both f and p̃ are relative invariants ofIp, hence so ish. Therefore
g·h∈ F•h, andp̃ |F[V] (g·h−h) for all g∈ Ip, implying thath is anIp-invariant. Any
χ ∈ Hom0(G,F•) containsIp in its kernel (the unipotent normal subgroup ker(δp)
of Ip has no non-trivial characters at all, andZ = Ip/ker(δp) consists of pseudore-
flections). Thusf is Ip-invariant as well. Therefore ˜pv is Ip-invariant, so its weight
δ v

p is trivial. Consequently the order|Z| of δp in Hom(Ip,F•) dividesv. We have
e(p) = |Z| by 1., and on the other handv< e(p) by 2., forcingv= 0.

For a relative invariantf , we denote byw( f ) the weight of f . This induces
a homomorphismw: D → Hom(G,F•) assigning toF• f ∈ D the weightw( f ) of
the relative invariantf . Clearly,w extends to a group homomorphismw: q(D) →
Hom(G,F•). The kernel ofw consists of elements of the form(F•h)−1F• f , where
f ,h∈ F[V]G,χ for some characterχ . Now f/h belongs toF(V)G, which is the field
of fractions ofF[V]G, so there existf1,h1 ∈ F[V]G with f/h = f1/h1, implying
(F•h)−1F• f = (F•h1)

−1F• f1 ∈ q(H). Thus ker(w) = q(H). Thereforew induces a
monomorphismw: q(D)/q(H)→ Hom(G,F•).

Theorem 4.5. Let G⊂ GL(V), H = (F[V]G\{0})red, and D= (F[V]G,rel \{0})red.

1. The embeddingsF[V]G \ {0}
ϕ
→֒ F[V]G,rel \ {0}

ψ
→֒ F[V]• are cofinal divisor

homomorphisms.

2. D is factorial, P/G⊂ E is the set of prime elements in D, andC (ϕ) is a torsion
group.

3. The monoid D0 = {gcdD(X) : X ⊂ H finite} ⊂ D is free abelian with basis
{qe(q) : q ∈ P/G}, where e(q) = min{vq(h) : q |D h ∈ H}, and the embedding
H →֒ D0 is a divisor theory.

4. We have D0 = { f ∈ D : w( f ) ∈ Hom0(G,F•)} and w |q(D0)/q(H) : C (F[V]G) =

q(D0)/q(H)→ Hom0(G,F•) is an isomorphism.

Theorem4.5immediately implies the following corollary which can be found in
Benson’s book ([4, Theorem 3.9.2]) and which goes back to Nakajima [58] (see also
[27] for a discussion of this theorem).

Corollary 4.6 (Benson-Nakajima). The class group ofF[V]G is isomorphic to
Hom0(G,F•), the subgroup of the character group consisting of the characters that
contain all pseudoreflections in their kernels.
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Proof (of Theorem4.5). 1. SinceF[V]G=F(V)G∩F[V], the embeddingψ ◦ϕ : F[V]G →֒
F[V] is a divisor homomorphism, and henceϕ is a divisor homomorphism. Further-
more, if the quotient of two relative invariants lies inF[V], then it is a relative invari-
ant whenceψ is a divisor homomorphism. In order to show that the embeddings are
cofinal, let 06= f ∈ F[V] be given. Thenf ∗ = ∏g∈Gg f ∈ F[V]G and f | f ∗, so the
embeddingψ ◦ϕ is cofinal and henceϕ andψ are cofinal.

2. Suppose that{ f1, . . . , fr} ⊂ F[V] represents aG-orbit in P. Theng · ( f1 . . . fr)
is a non-zero scalar multiple off1 . . . fr , hencef1 . . . fr ∈ F[V]G,rel. This shows that
P/G⊂E is in fact contained inD. Conversely, take an irreducible elementF• f in the
monoidD (so f is a relative invariant). Take any irreducible divisorf1 of f in F[V].
Sinceg· f ∈F• f , the polynomialg· f1 is also the divisor off . Denoting byf1, . . . , fr
polynomials representing theG-orbit ofF• f1 in P, we conclude thatf1 . . . fr divides
f in F[V], henceF• f1 . . . fr dividesF• f in D as well, soF• f1 . . . fr = F• f . This
implies thatD is the submonoid ofE = F (P) generated byP/G.

In order to show thatC (ϕ) is a torsion group, letf ∈D be given. We have to find
anm∈N such thatf m∈H. Clearly, this holds withmbeing the order in Hom(G,F•)
of the weight of the relative invariant corresponding tof .

3. SinceC (ϕ) is a torsion group, Proposition2.2 implies that the embedding
H →֒ D0 is a divisor theory, and thatD0 is free abelian with basis{qe(q) : q∈ P/G},
wheree(q) = min{vq(h) : q |D h∈ H} (note that ifq∈ P/G is theG-orbit of p∈ P,
thenvq(h) = vp(h), where the latter is the exponent ofp in h∈ E = F (P)).

4. It remains to prove the following three assertions.

A1. D0 = { f ∈ D : w( f ) ∈ Hom0(G,F•)}.

A2. w(D0) = Hom0(G,F•).

A3. w |q(D0)/q(H) : q(D0)/q(H)→ w(D0) is an isomorphism.

Proof of A1. SetD0 = { f ∈ D : w( f ) ∈ Hom0(G,F•)}. We show firstD0 ⊂ D0.
Let χ be a character ofG, and assume thatχ(g) 6= 1 for some pseudoreflection
g∈ G. Let f be a relative invariant withw( f ) = χ . Then for anyv with gv= v we
have f (v) = f (g−1v) = (g f)(v) = χ(g) f (v), hencef (v) = 0. Sol |F[V] f , wherel
is a non-zero linear form onV that vanishes on the reflecting hyperplane ofg. De-
noting byl = l1, . . . , lr representatives of theG-orbit ofF•l , we find that the relative
invariantq= l1 . . . lr divides f . Thus gcdD{ f ∈D |w( f ) = χ} 6= 1. Now suppose that
for someF•k ∈ D0 we have thatw(k) does not belong to Hom0(G,F•). By defini-
tion of D0 there existh1, . . . ,hn ∈ D with gcdD(h1, . . . ,hn) = 1 andkh1, . . . ,khn ∈
H. Clearly w(hi) = w(k)−1 /∈ Hom0(G,F•), hence by the above considerations
gcdD(h1, . . . ,hn) 6= 1, a contradiction.

Next we showD0 ⊂ D0. Let d be an element in the monoidD0. By Lemma4.4.3
for any prime divisorp ∈ P of d there exists anhp ∈ D such thatw(hp) = w(d)−1

andp ∤E hp. Denote bym> 1 the order ofw(d) in the group of characters. Clearly
dm ∈ H anddhp ∈ H. Moreover, gcdE(d

m,dhp : p∈ P, p |E d) = d.
Proof of A2. The statement follows fromA1, as soon as we show thatF[V]G,χ 6=

0 for all χ ∈ Hom(G,F•). For any characterχ ∈ Hom(G,F•) the groupḠ =
G/ker(χ) is isomorphic to a cyclic subgroup ofF•, hence its order is not divisible by
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char(F). Moreover,Ḡ acts faithfully on the fieldT = F(V)ker(χ), with TḠ = F(V)G.
By the Normal Basis Theorem,T as aḠ-module overTḠ is isomorphic to the regu-
lar representation of̄G, hence contains the representationχ as a summand with mul-
tiplicity 1. This shows in particular thatTḠ contains a relative invariant of weightχ .
Multiplying this by an appropriate element ofTḠ∩F[V] = F[V]G we get an element
of F[V]G,χ . So all characters ofG occur as the weight of a relative invariant inF[V].

Proof of A3. Sincew: q(D)/q(H) → Hom(G,F•) is a monomorphism, the
mapw |q(D0)/q(H) : q(D0)/q(H) → w(q(D0)) is an isomorphism. Note finally that
w(q(D0)) = q(w(D0)) = w(D0).

As already mentioned, not only the class group but also the distribution of prime
divisors in the classes is crucial for the arithmetic of the domain. Moreover, the class
group together with the distribution of prime divisors in the classes are characteristic
(up to units) for the domain. For a precise formulation we need one more definition.

Let H be a Krull monoid,Hred →֒F (P) a divisor theory, and letG be an abelian
group and(mg)g∈G be a family of cardinal numbers. We say thatH hascharac-
teristic (G,(mg)g∈G) if there is a group isomorphismΦ : G → C (H) such that
mg = |P ∩Φ(g)|. Two reduced Krull monoids are isomorphic if and only if they
have the same characteristic ([40, Theorem 2.5.4]). We pose the following problem.

Problem 1. Let G be a finite group,F be a field, andV be a finite dimensional
F-vector space endowed with a linear action ofG. Determine the characteristic of
F[V]G.

Let all assumptions be as in Problem1 and suppose further thatG acts trivially
on one variable. ThenF[V]G is a polynomial ring in this variable and hence every
class contains a prime divisor by [29, Theorem 14.3].

4.3 The abelian case

Throughout this subsection, suppose that G is abelian,F is algebraically closed,
andchar(F) ∤ |G|.

The assumption on algebraic closedness is not too restrictive, since for any field
F the setF[V]G spans the ring of invariants over the algebraic closureF as a vector
space overF. The assumption on the characteristic guarantees that every G-module
is completely reducible (i.e. is the direct sum of irreducible G-modules). The dual
spaceV∗ has a basis{x1, . . . ,xn} consisting ofG-eigenvectors whenceg·xi = χi(g)xi

for all i ∈ [1,n] whereχ1, . . . ,χn ∈ Hom(G,F•). We setĜ = Hom(G,F•), ĜV =

{χ1, . . . ,χn}⊂ Ĝ, and note thatG∼= Ĝ. Recall that a completely reducibleH-module
W (for a not necessarily abelian groupH) is calledmultiplicity freeif it is the direct
sum of pairwise non-isomorphic irreducibleH-modules. In our caseV is multiplicity
free if and only if the charactersχ1, . . . ,χn are pairwise distinct.
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It was B. Schmid ([73, Section 2]) who first formulated a correspondence be-
tween a minimal generating system ofF[V]G and minimal product-one sequences
over the character group (see also [24]). The next proposition describes in detail
the structural interplay. In particular, Proposition4.7.2 shows that all (direct and
inverse) results on minimal zero-sum sequences overĜV (see Subsections3.3 and
3.4) carry over toA (MG).

Proposition 4.7.Let M⊂ F[x1, . . . ,xn] be the multiplicative monoid of monomials,
ψ : M → F (ĜV) be the unique monoid homomorphism defined byψ(xi) = χi for
all i ∈ [1,n], and let MG ⊂ M denote the submonoid of G-invariant monomials.

1. F[V]G has MG as anF-vector space basis, andF[V]G is minimally generated as
anF-algebra byA (MG).

2. The homomorphismψ : M → F (ĜV) and its restrictionψ |MG : MG → B(ĜV)
are degree-preserving transfer homomorphisms. Moreover,MG is a reduced
finitely generated Krull monoid, andA (MG) = ψ−1

(
A (ĜV)

)
.

3. ψ |MG is an isomorphism if and only if V is a multiplicity free G-module.
4. βk(G,V) = Dk(MG) = Dk(ĜV) andβk(G) = Dk(G) for all k ∈ N.

Proof. 1. Each monomial spans aG-stable subspace inF[V], hence a polynomial is
G-invariant if and only if all its monomials areG-invariant, soMG spansF[V]G. The
elements ofMG are linearly independent, thereforeF[V]G can be identified with the
monoid algebra ofMG overF, which shows the second statement.

2.M andF (ĜV) are free abelian monoids andψ maps primes onto primes. Thus
ψ : M → F (ĜV) is a surjective degree-preserving monoid homomorphism andit is
a transfer homomorphism. Letπ : F (Ĝ) → Ĝ be the monoid homomorphism de-
fined byπ(χ) = χ for all χ ∈ Ĝ. Then ker(π) = B(Ĝ). Taking into account that for
a monomialm∈ M G acts on the spaceFmvia the characterπ(ψ(m)), we conclude
that for a monomialm∈ M we have thatm∈ MG if and only if ψ(m) ∈ B(ĜV).
This implies that the restrictionψ |MG of the transfer homomorphismψ is also a
transfer homomorphism. ThereforeMG is generated byA (MG) = ψ−1

(
A (ĜV)

)
.

SinceA (ĜV) is finite, andψ has finite fibers, we conclude that the monoidMG is
finitely generated. SinceM is factorial andF[V]G ⊂ F[V] is saturated by Theorem
4.5, it follows that

M∩q(MG)⊂ M∩F[V]∩q(F[V]G)⊂ M∩F[V]G = MG

whenceMG ⊂ M is saturated and thusMG is a Krull monoid.
3.V is a multiplicity freeG-module if and only ifχ1, . . . ,χn are pairwise distinct.

Sinceψ : M → F (ĜV) maps the primesx1, . . . ,xn of M onto the primesχ1, . . . ,χn

of F (ĜV), ψ is an isomorphism if and only ifχ1, . . . ,χn are pairwise distinct.
4. Let k ∈ N and MG

+ = MG \ {1}. Then MG \ (MG
+)

k+1 = Mk(MG). Since
ψ |MG : MG →B(ĜV) is degree-preserving transfer homomorphism, Proposition3.6.3
implies thatDk(MG) = Dk(ĜV). SinceF[V]G is spanned byMG, (F[V]G+)

k+1 is
spanned by(MG

+)
k+1. Therefore the top degree of a homogeneousG-invariant not
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contained in(F[V]G+)
k+1 coincides with the maximal degree of a monomial in

MG
+ \ (MG

+)
k+1 = Mk(MG). Thusβk(G,V) = Dk(MG). For thekth Noether number

βk(G) we have

βk(G) = sup{βk(G,W) : W is aG-module overF}

= sup{Dk(ĜW) : W is aG-module overF}= Dk(Ĝ)

because for the regular representationVreg we haveĜVreg = Ĝ.

Recalling the notation of Theorem4.5, we have

H =(F[V]G\{0})red and D0 = {gcd
D
(X) : X ⊂H finite}⊂D=(F[V]G,rel\{0})red.

Furthermore,M ⊂ F[V] = F[x1, . . . ,xn] is the monoid of monomials,MG = M ∩
F[V]G, and we can viewM as a submonoid ofH and thenMG = M ∩H. Since
M ⊂ H is saturated,M = q(M)∩H, and

q(M)/q(MG)= q(M)/q(M∩H)= q(M)/(q(M)∩q(H))∼= q(M)q(H)/q(H)⊂ q(D)/q(H) ,

we considerq(M)/q(MG) as a subset ofq(D)/q(H).

Proposition 4.8. Let all notation be as above and set M0 = M∩D0.

1. M0 ⊂ D0 is divisor closed whence M0 is free abelian, andA (M0) = M ∩

A (D0) = {xe(x1)
1 , . . . ,xe(xn)

n }.
2. We have e(xi) = min{k∈ N : χk

i ∈ 〈χ j | j 6= i〉}.

3. Hom0(ρ(G),F•) is generated by{χe(x1)
1 , . . . ,χe(xn)

n } and F[xe(x1)
1 , . . . ,xe(xn)

n ] =
F[V]G1, where G1 denotes the subgroup ofρ(G) generated by the pseudoreflec-
tions inρ(G).

4. The embedding MG →֒ M0 is a divisor theory,

w |q(M0)/q(MG) : C (MG) = q(M0)/q(M
G)→ Hom0(ρ(G),F•)

is an isomorphism, andw(C (MG)∗) = {χe(x1)
1 , . . . ,χe(xn)

n }.

Proof. 1. If the product of two polynomials inF[V] has a single non-zero term, then
both polynomials must have only one non-zero term. Thus, ifab∈ M for some
a,b∈ D, then botha andb belong toM. HenceM ⊂ D is divisor closed implying
thatM0 ⊂ D0 is divisor-closed. ThereforeA (M0) = M∩A (D0).

By Theorem4.5.3, A (D0) = {qe(q) : q ∈ A (D)}. The divisor closedness ofM
in D implies that ifqe(q) ∈ M, thenq ∈ M ∩A (D) = A (M) = {x1, . . . ,xn}. Thus

M∩A (D0) = {xe(x1)
1 , . . . ,xe(xn)

n }.
2. Fori ∈ [1,n], we have

e(xi) = min{vxi (h) : xi |D h,h∈ H}= min{vxi (m) : xi |D m,m∈ MG} ,



Invariant Theory, Multiplicative Ideal Theory, and Arithmetic Combinatorics 39

where the second equality holds because for allh∈ H we have
vxi (h) = min{vxi (m) : m ranges over the monomials ofh}. Note that a monomial

m= ∏n
i=1xai

i lies in MG if and only if ∏n
i=1 χ [ai ]

i is a product-one sequence over

Ĝ if and only if χai
i = ∏ j 6=i χ−a j

j . Thus min{vxi (m) : xi |D m,m∈ MG} = min{k ∈

N : χk
i ∈ 〈χ j | j 6= i〉}.

3. By Theorem4.5.4, Hom0(ρ(G),F•) = w(D0) and hence Hom0(ρ(G),F•)
is generated byw(A (D0)). Thus by 1., it remains to show that〈w(A (D0))〉 =
〈w(A (M0))〉. SinceA (M0)⊂ A (D0), it follows that〈w(A (D0))〉 ⊃ 〈w(A (M0))〉.
To show the reverse inclusion, leta∈ A (D0). For any monomialm occurring ina,
we havew(m) = w(a). By Theorem4.5.4,D0 = { f ∈ D : w( f ) ∈ Hom0(ρ(G),F•)}
whencem∈ M∩D0 = M0 and clearlyw(m) ∈ 〈w(A (M0))〉.

Recall that each monomial inF[V] spans aG-invariant subspace. Thusf ∈ F[V]
is G1-invariant if and only if all monomials off areG1-invariant. Furthermore, a
monomialm is G1-invariant if and only ifw(m) containsG1 in its kernel; equiva-
lently (by the characterization ofD0) m∈ M∩D0 = M0. ThusF[V]G1 is generated
by A (M0) and hence the assertion follows from 1.

4. SinceM ⊂ D, M0 ⊂ D0 andMG ⊂ H are divisor closed and since the embed-
ding H ⊂ D0 is a divisor theory (Theorem4.5.4), MG →֒ M0 is a divisor homomor-
phism into a free abelian monoid. Letm∈ M0. Thenm∈ D0 and there is a finite
subsetY ⊂ H such thatm= gcdD0

(Y). Let X ⊂ D0∩M = M0 be the set of all mono-
mials occurring in somey ∈ Y. Thenm= gcdD0

(X) = gcdM0
(X), where the last

equality holds becauseM0 ⊂ D0 is divisor closed.
Restricting the isomorphism

w |q(D0)/q(H) : C (F[V]G) = q(D0)/q(H)→ Hom0(ρ(G),F•)

from Theorem4.5, we obtain a monomorphism

w |q(M0)/q(MG) : C (MG) = q(M0)/q(M
G)→ Hom0(ρ(G),F•) .

By 1. and 3., the image contains the generating set{χe(x1)
1 , . . . ,χe(xn)

n } of the group
Hom0(ρ(G),F•) and hence the above monomorphism is an isomorphism. The last
statement follows from 1. byw(C (MG)∗) = w(A (M0)).

Proposition 4.9. Let M⊂ F[x1, . . . ,xn] be the multiplicative monoid of monomials,
and MG ⊂ M the submonoid of G-invariant monomials.

1. Every class ofC (F[V]G) contains a prime divisor.
2. We have the following commutative diagram of monoid homomorphisms
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H
θ1

// B(C (H))
w1

∼=
// B(Hom0(ρ(G),F•))

B(ĜV)

ν
44
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥

MG θ2
//

ψ |MG
66
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

?�

OO

B(C (MG)∗)
?�

w2

OO

where

• θ1 andθ2 are transfer homomorphisms of Krull monoids as given in Proposi-
tion 3.7.

• w1 is the extension to the monoid of product-one sequences of the group iso-
morphismw |q(D0)/q(H) given in Theorem4.5.4

• w2 is the extension to the monoid of product-one sequences of the restriction
to C (MG)∗ of the group isomorphismw |q(M0)/q(MG) given in Proposition4.8

• ψ is given in Proposition4.7.
• ν will be defined below (indeed,ν is a transfer homomorphism as given in

Proposition3.8).

3. If ĜV = Ĝ, then every class ofC (MG) contains a prime divisor.

Proof. 1. By Proposition4.7.1,F[V]G is the monoid algebra ofMG overF. Thus, by
[7, Theorem 8], every class ofF[V]G contains a prime divisor.

2. In order to show that the diagram is commutative, we fix anm∈ MG. We
consider the divisor theoryMG →֒ M0 from Proposition4.8 and factorizem in M0,

say m= ∏n
i=1

(
xe(xi)

i

)ai wherea1, . . . ,an ∈ N0. Sincew(xe(xi )
i ) = χe(xi)

i for all i ∈
[1,n], it follows that

(w2 ◦θ2)(m) = (χe(x1)
1 )[a1] · . . . · (χe(xn)

n )[an] ∈ B(Hom0(ρ(G),F•)) .

Next we viewm as an element inH and consider the divisor theoryH →֒ D0. Since

M0 ⊂D0 is divisor closed,m=∏n
i=1

(
xe(xi)

i

)ai is a factorization ofm in D0. Therefore
(w1 ◦θ1)(m) = (w2 ◦θ2)(m).

By definition ofψ , we infer that

ψ(m) = χ [e(x1)a1]
1 · . . . ·χ [e(xn)an]

n .

We define a partition of̂GV =G1∪G2, whereG2 = {χi : χi = χ j for some distincti, j ∈
[1,n]} andG1 = ĜV \G2. Let ν : B(ĜV) → B(Hom0(ρ(G),F•)) be defined as in
Proposition3.8 (with respect to the partitionG0 = G1⊎G2). By Proposition4.8.2,
e(xi) = 1 if χi ∈ G2, ande(xi) equals the numbere(χi) in Proposition3.8if χi ∈ G1.
Therefore it follows that

ν(ψ(m)) = (χe(x1)
1 )[a1] · . . . · (χe(xn)

n )[an] ,
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and hence the diagram commutes.
3. In a finite abelian group all elements are contained in the subgroup generated

by the other elements, with the only exception of the generator of a 2-element group.
Therefore unlessG is the 2-element group and the non-trivial character occurswith
multiplicity one in the sequenceχ1 · . . . · χn, all thee(xi) = 1 by Proposition4.8.3,
and the elementsxi are all prime inM0, so they represent all the divisor classes,
asi varies in[1,n]. In the missing case we haveF[V]G = F[x1, . . . ,xn−1,x2

n] (after a
renumbering of the variables if necessary), hence both class groups are trivial, and
x1 andx2

2 are prime elements in the unique class.

Thus Proposition4.9.1 gives a partial answer to Problem1. Using that notation
it states thatmg ≥ 1 for all g∈ C (F[V]G).

Example 4.10.The setC (MG)∗ may be a proper subset ofC (MG), and conse-
quently the monoid homomorphismν : B(ĜV )→ B(Hom0(ρ(G),F•)) is not sur-
jective in general.

1. Indeed, letG be cyclic of order 3,g ∈ G with ord(g) = 3, and the action
onF[x1,x2,x3] is given byg ·xi = ωxi , whereω is a primitive cubic root of 1. Then
χ1 = χ2 = χ3 = χ , soe(x1) = e(x2) = e(x3) = 1, implyingw(C (MG)∗) = {χ} (each
of thexi is a prime element in the classχ), whereasw(C (MG)) = {χ ,χ2,χ3 = 1},
the 3-element group. ThusB(ĜV) = {χ [3k] : k ∈ N0}, andν(B(ĜV )) is the free
abelian monoidF ({χ3}) generated byχ3 = 1∈ Ĝ. The polynomialsx2

1+x2x3 and
x3

1+ x2
2x3 are irreducible, they are relative invariants of weightχ2 andχ3, so they

represent prime elements ofD0 in the remaining classesχ2 andχ3 = 1.
2. To provide an example with a multiplicity free module, letG be cyclic

of order 5, g ∈ G with ord(g) = 5, and the action onF[x1,x2,x3] is given by
g · x1 = ωx1, g · x2 = ω2x2, g · x3 = ω3x3, whereω is a primitive fifth root of 1.
Then settingχ = χ1, we haveχ2 = χ2, χ3 = χ3 andw(C (MG)) = 〈χ〉 is the 5-
element group, soV is multiplicity free. Still we havee(x1) = e(x2) = e(x3) = 1,
sow(C (MG)∗) = {χ ,χ2,χ3} (andx1,x2,x3 are the prime elements ofM0 in these
classes). The remaining classesχ4 and χ5 = 1 contain the prime elements ofD0

represented byx2
2+ x1x3 andx5

1+ x2x3.

4.4 A monoid associated withG-modules

Throughout this subsection, suppose thatchar(F) ∤ |G|.

In this subsection we discuss a monoid associated with representations of not
necessarily abelian groups which in the case of abelian groups recovers the monoid
of G-invariant monomials. DecomposeV into the direct sum ofG-modules:

V =V1⊕ ...⊕Vr (4)
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and denote byρi : G→ GL(Vi) the corresponding group homomorphisms. Then (4)
induces a decomposition ofF[V] into multihomogeneous components as follows.
The coordinate ringF[V] is the symmetric algebra Sym(V∗) =

⊕∞
n=0Symn(V∗).

Writing F[V]a = Syma1(V∗
1 )⊗ ...⊗Symar (V∗

r ) we have Symn(V∗) = ⊕|a|=nF[V]a,
and henceF[V] =⊕a∈Nr

0
F[V]a. The summandsF[V]a areG-submodules inF[V], and

F[V]aF[V]b ⊂ F[V]a+b, soF[V] is aNr
0-graded algebra. Moreover,F[V]G is spanned

by its multihomogeneous componentsF[V]Ga = F[V]G ∩F[V]a. For f ∈ F[V]a we
call a themultidegreeof f . We are in the position to define

B(G,V) = {a∈ Nr
0 : F[V]Ga 6= {0}} (5)

the set of multidegrees of multihomogeneousG-invariants. We give precise infor-
mation onB(G,V) in terms of quantities associated to the direct summandsVi of V.
For i ∈ [1, r] denote byci the greatest common divisor of the elements ofB(G,Vi),
andFi the Frobenius number of the numerical semigroupB(G,Vi) ⊂ N0, soFi is
the minimal positive integerN such thatB(G,Vi) containsN+ kci for all k∈N0.

Proposition 4.11.

1. B(G,V)⊂ Nr
0 is a reduced finitely generatedC-monoid.

2. For each i∈ [1, r] and all a∈ Nr
0 satisfying ai ≥ b(G,Vi)+Fi we have

a∈ B(G,V) if and only if ciei +a∈ B(G,V) . (6)

3. For each i∈ [1, r] we have ci = |ρi(G)∩F•idVi |.

Proof. 1. Takea,b ∈ B(G,V), so there exist non-zerof ∈ F[V]Ga andh ∈ F[V]Gb .
Now 0 6= f h∈ F[V]Ga+b, hencea+b∈ B(G,V). This shows thatB(G,V) is a sub-
monoid ofN0. Moreover, the multidegrees of a multihomogeneousF-algebra gen-
erating system ofF[V]G clearly generate the monoidB(G,V). ThusB(G,V) is
finitely generated by Theorem4.1.

To show thatB(G,V) is also a C-monoid, recall that by Proposition2.6.3 a
finitely generated submonoidH of Nr

0 is a C-monoid if and only if each standard
basis elementei ∈ Nr

0 has a multiple inH. Now this condition holds forB(G,V),
since by Theorem4.1.2F[Vi ]

G ⊂ F[V]G contains a homogeneous element of positive
degree for eachi ∈ [1, r].

2. By symmetry it is sufficient to verify (6) in the casei = 1. Supposea ∈
B(G,V), so there is a non-zeroG-invariant f ∈ Syma1(V∗

1 )⊗ . . .⊗Symar (V∗
r ). De-

compose Syma1(V∗
1 ) =

⊕
j Wj into a direct sum of irreducibleG-modules. This

gives a direct sum decomposition Syma1(V∗
1 )⊗ . . .⊗Symar (V∗

r )=
⊕

j(Wj ⊗Syma2(V∗
2 )⊗

. . .⊗Symar (V∗
r )). It follows that Syma1(V∗

1 ) contains an irreducibleG-module di-
rect summandW such thatW⊗Syma2(V∗

2 )⊗ . . .⊗Symar (V∗
r ) contains a non-zero

G-invariant. By definition ofb(G,V1) we know thatF[V1] is generated as anF[V1]
G

module by its homogeneous components of degree≤ b(G,V1). Therefore there ex-
ists ad ≤ b(G,V1) such that the degreed homogeneous component ofF[V] con-
tains aG-submoduleU ∼= W, anda1 ∈ d+B(G,V1). Now for any homogeneous
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h ∈ F[V1]
G we havehU ⊗ Syma2(V∗

2 )⊗ . . .⊗ Symar (V∗
r )) ⊂ F[V](d+deg(h),a2,...,ar )

contains a non-zeroG-invariant, since it is isomorphic toW⊗Syma2(V∗
2 )⊗ . . .⊗

Symar (V∗
r )). It follows that (k,a2, . . . ,ar) ∈ B(G,V) for all k ∈ d+B(G,V1), in

particular, for allk∈ {d+F1,d+F1+ c1,d+F1+2c1, . . .}.
3. Let i ∈ [1, r], and to simplify notation setW = Vi , c = ci , andφ = ρi . Recall

thatF[W]A = F[W]B for some finite subgroupsA,B ⊂ GL(W) implies thatA = B.
Indeed, the condition implies equalityF(W)A = F(W)B of the corresponding quo-
tient fields, and so bothA andB are the Galois groups of the field extensionF(W)
overF(W)A = F(W)B, implying A= B. Now denote byZ ⊂ GL(W) the subgroup
of scalar transformationsZ = {ω idW : ωc = 1}, soZ is a central cyclic subgroup
of GL(W) of orderc. Clearly every homogeneous element ofF[W] whose degree
is a multiple ofc is invariant underZ. It follows thatF[W]G ⊂ F[W]Z, hence de-
noting byG̃ the subgroupφ(G)Z of GL(W), we haveF[W]G = F[W]G̃. It follows
that φ(G) = G̃, i.e. Z ⊂ φ(G), and soc = |Z| divides the order ofφ(G)∩F•idW.
Conversely, ifλ idW belongs toρ(G), then every element ofF[W]G must be invari-
ant under the scalar transformationλ idW, whence all homogeneous components of
F[W]G have degree divisible by the order ofλ , so the order of the cyclic group
φ(G)∩F•idW must dividec.

In generalB(G,V) is not a Krull monoid. To provide an example, consider the
two-dimensional irreducible representationV of the symmetric groupS3 = D6. Its
ring of polynomial invariants is generated by an element of degree 2 and 3, hence
B(G,V) = 〈2,3〉 ⊂ (N0,+) , which is not Krull.

Proposition 4.12.For every k∈ N we haveDk(B(G,V))≤ βk(G,V).

Proof. Let k ∈ N. Take a ∈ B(G,V) such that|a| > βk(G,V). By (5) a multi-
homogeneous invariantf ∈ F[V]Ga exists. As deg( f ) = |a| > βk(G,V) it follows
that f = ∑N

i=1 fi,1 . . . fi,k+1 for some non-zero multihomogeneous invariantsfi, j
of positive degree. Denoting byai, j ∈ Nr

0 the multidegree offi, j , we have that
a= ai,1+ . . .+ai,k+1, where 06= ai, j ∈ B(G,V). This shows that alla ∈ B(G,V)
with |a| > βk(G,V) factor into the product of more thank atoms, implying the de-
sired inequality.

Remarks. 1. Let G be abelian and suppose thatF is algebraically closed. Then
we may take in (4) a decomposition ofV into the direct sum of 1-dimensional sub-
modules and soV∗

i , is spanned by a variablexi as in Subsection4.3. ThenF[V]a
is spanned by the monomialxa1

1 · · ·xar
r and a ∈ B(G,V) holds if and only if the

corresponding monomial isG-invariant. So in this caseB(G,V) can be naturally
identified withMG and the transfer homomorphismψ |MG of Proposition4.7 can
be thought of as a transfer homomorphismB(G,V) → B(ĜV), which is an iso-
morphism ifV is multiplicity free. However, this transfer homomorphismdoes not
seem to have an analogues for non-abelianG (i.e. the study ofB(G,V) can not be
reduced to the multiplicity free case), as it is shown by the example below.

2. The binary tetrahedral groupG= Ã4
∼=SL2(F3) of order 24 has a 2-dimensional

complex irreducible representationV such thatF[V]G is minimally generated by
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elements of degree 6,8,12 (see for example [4, Appendix A]), henceB(G,V) =
{0,6,8,12,14,16,18, . . .}. On the other hand under this representationG is mapped
into the special linear group ofV, so onV⊕V the function maping((x1,x2),(y1,y2)) 7→

det

(
x1 y1

x2 y2

)
is aG-invariant of multidegree(1,1), implying that(1,1)∈ B(G,V ⊕

V). This shows that the transfer homomorphismτ : N2
0 → N0, (a1,a2) 7→ a1 +a2

does not mapB(G,V ⊕V) into B(G,V), asτ(1,1) = 2 /∈ B(G,V).

Recall that the multigraded Hilbert series ofF[V]G in r indeterminatesT =
(T1, ...,Tr) is

H(F[V]G,T) = ∑
a∈Nr

0

dimF(F[V]Ga )T
a1
1 · · ·Tar

r , and hence

B(G,V) = {a∈ Nr
0 : the coefficient ofTa in H(F[V]G,T) is nonzero}.

By this observation Proposition4.12can be used for finding lower bounds on the
Noether numberβ (G,V), thanks to the following classical result of Molien (see for
example [4, Theorem 2.5.2]):

Proposition 4.13.Given a G-module V= V1⊕ ...⊕Vr overC, let ρi(g) ∈ GL(Vi)
be the linear transformation defining the action of g∈ G on Vi . Then we have

H(C[V]G,T) =
1
|G| ∑

g∈G

r

∏
i=1

1
det(idVi −ρi(g) ·Ti)

.

Example 4.14 (see p. 54-55 in [62]). Consider the alternating groupA5 and its 3-
dimensional representation overC3 as the group of symmetries of an icosahedron.
The Hilbert series then equals

1+T15

(1−T2)(1−T6)(1−T10)

whence it is easily seen thatB(A5,C3) = 〈2,6,10,15〉 and consequentlyβ (A5) ≥
D(B(A5,C3)) = 15. Note that this lower bound is stronger than what we could get
from β (G)≥ maxH(G β (H), sinceβ (H)≤ |H| ≤ 12 for any proper subgroupH of
A5.

5 Constants from Invariant Theory and their counterparts in
Arithmetic Combinatorics

In Subsection5.1 we compare known reduction lemmas for the Noether number
with reduction lemmas for the Davenport constants achievedin previous sections.
We demonstrate how to use them to determine the precise valueof Noether num-
bers and Davenport constants in new examples. In Subsection5.2 we consider an
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invariant theoretic analogue of the constantη(G) (for the definition ofη(G) see the
discussions before Proposition2.8and Lemma3.1).

Throughout this section, suppose thatchar(F) ∤ |G|.

5.1 The Noether number versus the Davenport constant

In the non-abelian case no structural connection (like Proposition4.7) is known
between theG-invariant polynomials and the product-one sequences overG. Nev-
ertheless, a variety of features of thekth Noether numbers and thekth Davenport
constants are strikingly similar, and we offer a detailed comparison.

Recall thatβk(G) = bk(G) + 1 ((3)) and thatdk(G) + 1 ≤ Dk(G) (Proposi-
tion 2.8.1).

1. The inequalities

(a) βk(G)≤ kβ (G) (b) dk(G)+1≤ k(d(G)+1) (c) Dk(G)≤ kD(G)
(7)

2. Reduction lemma for normal subgroupsN⊳G:

(a) βk(G)≤ ββk(G/N)(N) (b) dk(G)≤ ddk(N)+1(G/N) (8)

3. Reduction lemma for arbitrary subgroupsH ≤ G with indexl = [G : H]:

(a) βk(G)≤ βkl(H)≤ lβk(H) (b) dk(G)+1≤ l(dk(H)+1) (c) Dk(G)≤ lDk(H)
(9)

4. Supra-additivity: for a normal subgroupN⊳G we have

(a) bk+r−1(G)≥ bk(N)+br(G/N) if G/N is abelian (10)

(b) dk+r−1(G)≥ dk(N)+dr(G/N)

5. Monotonicity: for an arbitrary subgroupH ≤ G we have

(a) βk(G)≥ βk(H) (b) dk(G)≥ dk(H) (c) Dk(G)≥ Dk(H) (11)

6. Almost linearity ink: there are positive constantsC,C′,C′′,k0,k′0,k
′′
0 depending

only onG such that

(a) βk(G) = kσ(G)+C for all k> k0 if char(F) = 0 (b) dk(G) = ke(G)+C′

(12)

for all k> k′0 and (c) Dk(G) = ke(G)+C′′ for all k> k′′0

7. The following functions are non-increasing ink:
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(a) βk(G)/k if char(F) = 0 (b) Dk(G)/k (13)

The inequality (7) (a) is observed in [12], (b) is shown in Proposition3.9.4,
whereas (c) is observed in the beginning of Subsection2.5.

For the proof of (8) (a) see [12, Lemma 1.5] and for part (b) see Proposition3.9.2.
Note that the roles ofN andG/N are swapped in the formulas (a) respectively (b),
but in the abelian case they amount to the same.

The first inequality in part (a) of (9) is proved in [12, Corollary 1.11] for cases
when (i) char(F) = 0 or char(F) > [G : H]; (ii) H is normal inG and char(F) ∤
[G : H]; (iii) char(F) does not divide|G|. It is conjectured, however that it holds in
fact whenever char(F) ∤ [G : H] (see [55]). By [11, Lemma 4.3], we haveβkl(H)≤
lβk(H) for all positive integersk, l , implying the second inequality in part (a). Parts
(b) and (c) of (9) appear in Proposition3.9(3. and 5.)

Part (a) of (10) appears in [13, Theorem 4.3 and Remark 4.4] while part (b) is
proved in Proposition3.9.1.

Parts (b) and (c) of (11) are immediate from the definitions, while part (a) fol-
lows from an argument of B. Schmid ([73, Proposition 5.1]) which also shows that
βk(G, IndG

HV)≥ βk(H,V) for all k≥ 1 (see [13, Lemma 4.1]).
Part (a) of (12) is proved in [11, Proposition 4.5] (the constantσ(G) will be

discussed in Subsection5.2, and for (12) (b) and (c) we refer to Proposition2.7.2
and Proposition2.8.2.

Part (a) of (13) is proved in [11, Section 4] and for (13) (b) we refer to Proposi-
tion 2.7.3.

Furthermore, for a normal subgroupN⊳G we have

(a) β (G)≤ β (G/N)β (N) (b) D(G)≤ D(N)D(G/N) , (14)

where in (b) we assume thatN∩G′ = {1}. Here part (a) is originally due to B.
Schmid ([73, Lemma 3.1]) and it is an immediate consequence of (7) (a) and (8) (a)
while part (b) is proven in [39, Theorem 3.3].

The above reduction lemmas on the Noether numbers are key tools in the proof
of the following theorem.

Theorem 5.1. Let k∈N.

1. βk(A4) = 4k+2 andβ (Ã4) = 12, where A4 is the alternating group of degree4
andÃ4 is the binary tetrahedral group.

2. If G is a non-cyclic group with a cyclic subgroup of index two, then

βk(G) =
1
2
|G|k+

{
2 if G = Dic4m, m> 1;

1 otherwise.

where Dic4m = 〈a,b : a2m = 1,b2 = am,bab−1 = a−1〉 is the dicyclic group.

3.
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β (G)≥
1
2
|G| if and only if G has a cyclic subgroup of index at most two or

G is isomorphic to C3⊕C3, C2⊕C2⊕C2, A4 or Ã4

Proof. For 1. see [12, Theorem 3.4 and Corollary 3.6], for 2. see [13, Theorem 10.3],
and 3. can be found in [12, Theorem 1.1].

It is worthwhile to compare Theorem5.1.3 with the statement from [65] asserting
thatd(G)< 1

2|G| unlessG has a cyclic subgroup of index at most two. IfG is abelian,
then Lemma3.13and Proposition4.7imply d(G)+1= β (G) =D(G). Combining
Theorems3.10and5.1we obtain that all groupsG having a cyclic subgroup of index
at most two satisfy the inequalityd(G)+ 1 ≤ β (G) ≤ D(G). Moreover, for these
groupsβ (G) = d(G)+ 1, except for the dicyclic groups, whereβ (G) = d(G)+ 2.
On the other hand, it was shown in [14] that for the Heisenberg groupH27 of order
27 we haveD(H27)< β (H27).

Problem 2. Study the relationship between the invariantsd(G), β (G), andD(G).
In particular,

• Characterize the groupsG satisfyingd(G)+1≤ β (G).
• Characterize the groupsG satisfyingβ (G)≤ D(G).

In the following examples we demonstrate how the reduction results presented at
the beginning of this section do work. This allows us to determine Noether numbers
and Davenport constants of non-abelian groups, for which they were not known
before.

Example 5.2.Let p,q be primes such thatq | p−1.
1. Consider the non-abelian semi-direct productG = Cp ⋊Cq. A conjecture at-

tributed to Pawale ([81]) states thatβ (Cp⋊Cq) = p+q−1 and many subsequent
research was done in this direction ([17], [12]). Currently it is fully proved only
for the casesq= 2 in [73] andq= 3 in [10] whereas for arbitraryq we have only
upper bounds in [12], proved using known results related to the Olson constant of
the cyclic group of orderp. Theorem3.11.3 implies thatd(G)+1= p+q−1 and
henced(G)+1 coincides with the conjectured value forβ (G).

2. In view of the great difficulties related to Pawale’s conjecture it is quite remark-
able that we can determine the exact value of the Noether number for the non-abelian
semidirect productCpq⋊Cq. Indeed, this group contains an indexp subgroup iso-
morphic toCq⊕Cq, henceβ (Cpq⋊Cq) ≤ βp(Cq ⊕Cq) by (9). By Proposition4.7
4. we haveβp(Cq⊕Cq) = Dp(Cq ⊕Cq), and finally,Dp(Cq ⊕Cq) = pq+q−1 by
Theorem3.14. Thus we haveβ (Cpq⋊Cq)≤ pq+q−1. The reverse inequality also
holds, sinceβ (Cpq⋊Cq) contains a normal subgroupN ∼= Cpq with G/N ∼= Cq, so
by (10) and (3) we haveβ (Cpq⋊Cq) ≥ β (Cpq)+ β (Cq)− 1= pq+ q− 1. So we
haveβ (Cpq⋊Cq) = pq+q−1.

Next we determine the small Davenport constant of this group. SinceCpq is a
normal subgroup and the corresponding factor group isCq, we have by Proposition
3.9.1 thatd(Cpq⋊Cq)≥ d(Cpq)+d(Cq) = p+q−2. The reverse inequalityd(Cpq⋊
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Cq)≤ p+q−2 follows from Theorem3.11.4, sinceCpq⋊Cq contains also a normal
subgroupN ∼=Cp such thatG/N ∼=Cq⊕Cq. Consequently, by Lemma3.1.2.(a) we
have

D(Cpq⋊Cq)≥ d(Cpq⋊Cq)+1= pq+q−1.

Example 5.3.The symmetric groupS4 has a normal subgroupN ∼= C2 ⊕C2 such
thatS4/N ∼= D6. We know thatβ (D6) = 4 (say by Theorem5.12.). Thus by (8) and
Theorem3.14we haveβ (S4)≤ ββ (D6)(C2⊕C2) = D4(C2⊕C2) = 2 ·4+1= 9.

Now let V be the standard 4-dimensional permutation representationof S4 and
sign :S4 → {±1} the sign character. It is not difficult to prove the algebra isomor-
phismF[V ⊗sign]S4 ∼= F[V]S4

even⊕∆4F[V]S4
odd where∆4 is the Vandermonde determi-

nant in 4 variables,F[V]S4
evenis the span of the even degree homogeneous components

of F[V]S4, andF[V]S4
odd is the span of the odd degree homogeneous components of

F[V]S4. Moreover, the algebraF[V]S4
even⊕∆4F[V]S4

odd is easily seen to be minimally
generated byσ2,σ2

1 ,σ1σ3,σ4,σ2
3 ,σ1∆4,σ3∆4, whereσi is thei-th elementary sym-

metric polynomial. As a resultβ (S4,V ⊗ sign) = deg(σ3∆4) = 3+
(4

2

)
= 9. So we

conclude thatβ (S4) = 9 (and not 10, as it is claimed on page 14 of [56]).

Example 5.4.Let G be the group generated by the complex Pauli matrices
(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
.

This is a pseudoreflection group, hence the ring of invariants onV = C2 is gener-
ated by two elements, namelyC[x,y]G = C[x4+ y4,x2y2]. Moreover,b(G,V) is the
sum of the degrees of the generators minus dim(V) (again becauseG is a pseudore-
flection group, see [9]), so b(G,V) = 6. It follows by (3) that β (G) = b(G)+1≥
b(G,V)+1= 7.

On the other hand,G is a non-abelian semi-direct product(C4⊕C2)⋊C2. There-
foreG has a normal subgroupN such thatN ∼= G/N ∼=C2⊕C2 and thus

β (G)≤ ββ (C2⊕C2)(C2⊕C2) = D3(C2⊕C2) = 7.

So we conclude thatβ (G) = 7.

5.2 The constantsσ(G,V) and η(G,V)

Definition 5.5.

1. Let σ(G,V) denote the smallestd ∈ N0∪{∞} such thatF[V]G is a finitely gen-
erated module over a subringF[ f1, . . . , fr ] such that max{deg( fi) : i ∈ [1, r]}= d.
We defineσ(G) = sup{σ(G,W) : W is aG-module}.
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2. LetS⊂ F[V]G be theF-subalgebra ofF[V]G generated by its elements of degree
at mostσ(G,V). Thenη(G,V) denotes the maximal degree of generators of
F[V]G+ as anS-module.

One motivation to studyσ(G,V) andη(G,V) is that by a straightforward induc-
tion argument ([11, Section 4]) we have

βk(G,V)≤ (k−1)σ(G,V)+η(G,V) .

By [11, Proposition 6.2],σ(Cp⋊Cq) = p (this is also true in characteristicq, see
[18, Proposition 4.5]).

If F is algebraically closed, then, by Hilbert’s Nullstellensatz, σ(G,V) is the
smallestd such that there exist homogeneous invariants of degree at most d whose
common zero locus is the origin. It is shown in Lemma 5.1, 5.4 and 5.6 of [11]
(some extensions to the modular case and for linear algebraic groups are given in
[18]) that

• σ(G)≤ σ(G/N)σ(N) if N⊳G;
• σ(H)≤ σ(G)≤ [G : H]σ(H) if H ≤ G;
• σ(G) = max{σ(G,V) : V is an irreducibleG-module}.

Proposition 5.6.Let G be abelian.

1. σ(G) = exp(G) = e(G).
2. η(G) = sup{η(G,W) : W is a G-module}.

Proof. For 1. see [11, Corollary 5.3]. To prove 2., letT ∈F (Ĝ)with |T|=η(G)−1
such thatT has no product-one subsequenceU with |U | ∈ [1,e(G)]. Let V be the
regular representation ofG, and denote bySthe subalgebra ofF[V]G generated by its
elements of degree at mostσ(G) = e(G). Now ψ : M → F (Ĝ) is an isomorphism
(see the proof of Proposition4.7.3.). Thusψ−1(T) ∈ M is not divisible by aG-
invariant monomial of degree smaller thane(G). Since bothSandF[V] are spanned
by monomials, it follows thatψ−1(T) ∈ M is not contained in theS-submodule of
F[V]G+ generated by elements of degree less than deg(ψ−1(T)). This shows that for
the regular representationV of G we haveη(G,V)≥ η(Ĝ).

On the other hand letW be an arbitraryG-module, andm∈ M a monomial with
deg(m) > η(G). Thenψ(m) has a product-one subsequence with length at most
e(G) = σ(G), hencem is divisible by aG-invariant monomial of length at most
σ(G) (see the beginning of the proof of Proposition4.7.2). This shows the inequality
η(G,W)≤ η(Ĝ). Taking into account the isomorphism̂G∼= G we are done.

For the state of the art onη(G) (in the abelian case) we refer to [40, Theorem
5.8.3], [22, 23]. Proposition5.6 inspires the following problem.

Problem 3. LetGbe a finite non-abelian group. Is sup{η(G,W) : W is aG-module}
finite? Is it related toη(B(G)) (see Subsection2.5and3.1)?
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