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Abstract This paper surveys and develops links between polynomvatiants of fi-
nite groups, factorization theory of Krull domains, anddrot-one sequences over
finite groups. The goal is to gain a better understanding®hthltiplicative ideal
theory of invariant rings, and connections between the heretumber and the Dav-
enport constants of finite groups.
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1 Introduction

The goal of this paper is to deepen the links between the arehs title. Invariant
theory is concerned with the study of group actions on alggkand in the present
article we entirely concentrate on actions of finite groupgolynomial algebras
via linear substitution of the variables.

To begin with, let us briefly sketch the already existing $ifdletween the men-
tioned areas. For a finite-dimensional vector spdcever a fieldFF and a finite
groupG < GL(V), letF|V]® c FV] denote the ring of invariants. Since E. Noether
we know thafF[V]® c F[V] is an integral ring extension and tH&/]€ is a finitely
generated-algebra. In particulaff[V]® is an integrally closed noetherian domain
and hence a Krull domain. Bensof] fnd Nakajima 8] determined its class group.
Krull domains (their ideal theory and their class groupg) arcentral topic in mul-
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tiplicative ideal theory (see the monographis,[51] and the recent survey ). B.
Schmid [/ 3] observed that the Noether number of a finite abelian gf@epuals the
Davenport constant @b (a constant of central importance in zero-sum theory) and
this established a first link between invariant theory anth@auetic combinatorics.
Moreover, ideal and factorization theory of Krull domains anost closely linked
with zero-sum theory via transfer homomorphisms (s&& B7] and Subsection
3.2.

These links serve as our starting point. It is well-knownt thalomainR is a
Krull domain if and only if its monoidR® of nonzero elements is a Krull monoid if
and only ifR (resp.R*) has a divisor theory. To start with Krull monoids, a monoid
H is Krull if and only if its associated reduced mondiyH > is Krull, and every
Krull monoid H is a direct producH* x Hy whereHg is isomorphic toH /H*. A
reduced Krull monoid is uniquely determined (up to isomaspt) by its character-
istic (roughly speaking by its class gro@YH) and the distribution of the prime
divisors in its classes; see the end of Subsecfi@h By definition of the class
group, a Krull monoicH is factorial if and only if¢’(H) is trivial. Information on
the subse® (H)* C ¥ (H) of classes containing prime divisors is the crucial ingre-
dient to understand the arithmeticléf and hence in order to study the arithmetic of
Krull monoids the first and most important issue is to deteef#'(H)*. By far the
best understood setting in factorization theory are Kruhwids with finite class
groups where every class contains a prime divisor. Indéedethas been an abun-
dance of work on them and we refer the reader to the survey By $¢hmid in this
proceedings{7]. A canonical method to obtain information &(H )* is to identify
explicitly a divisor theory foH. A divisor theory of a monoid (or a domaih) is a
divisibility preserving homomorphism froid to a free abelian monoid which satis-
fies a certain minimality property (Subsecti®ri). The concept of a divisor theory
stems from algebraic number theory and it has found farhieggeneralizations in
multiplicative ideal theory (1]). Indeed, divisor-theoretic tools, together with ideal-
theoretic and valuation-theoretic ones, constitute alhigaveloped machinery for
the structural description of monoids and domains.

All the above mentioned concepts and problems from muttipive ideal theory
are studied for the ring of invariants. Theorén (in Subsectiont.2) provides an
explicit divisor theory of the ring of invarian®=F[V]®. The divisibility preserving
homomorphism fromR®* goes into a free abelian monoid which can be naturally
described in the language of invariant theory, and the &ssatccanonical transfer
homomorphisn®: R® — 2(¢'(R)*) from the multiplicative monoid of the ring
onto the monoid of zero-sum sequences over the class grdvpleb has a natural
invariant theoretic interpretation. In addition to recomg the result of Benson and
Nakajima on the class groug(IF[V]®) (our treatment is essentially self-contained),
we gain further information on the multiplicative strucuwf R, and we pose the
problem to determine its characteristic (Probl&min particular, whenever we can
show — for a given ring of invariants — that every class corgait least one prime
divisor, then all results of factorization theory (obtain®r Krull monoids with
finite class group and prime divisors in all classes) appth#oring of invariants.
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In Subsectiont.3 we specialize to abelian groups whose order is not divisible
by the characteristic df. The Noether numbeB(G) is the supremum over all fi-
nite dimensionaG-modulesV of the maximal degree of an element in a minimal
homogeneous generating systen¥f|®, and the Davenport constadtG) is the
maximal length of a minimal zero-sum sequence @aiVe start with a result on the
structural connection betwe&liv]® and the monoid of zero-sum sequences @&er
that lies behind the equalif§(G) = D(G). Clearly, the idea here is well known (as
far as we know, it was first used by B. Schmid], see also24]). The benefit of the
detailed presentation as given in Propositionis twofold. First, the past 20 years
have seen great progress in zero-sum theory (see Subsactifor a sample of
results) and Propositiof 7 allows to carry over all results on the structure of (long)
minimal zero-sum sequences to the structur@-afivariant monomials. Second, we
observe that the submonditf® of R* consisting of the invariant monomials is again
a Krull monoid, and restricting the transfer homomorphi8mR* — 2(¢'(R)*)
(mentioned in the above paragraphM§ we obtain essentially the canonical trans-
fer homomorphisnM® — (% (M®)*). This turns out to be rather close to the
transfer homomorphisny: M€ — %(é) into the monoid of zero-sum sequences
over the character group @ (see Propositiod.7), which is responsible for the
equalityB(G) = D(G). The precise statement is given in Propositio®) which ex-
plains how the transfer homomorphigpn(existing only for abelian groups) relates
to the more general transfer homomorphi@rtom the above paragraph which ex-
ists for an arbitrary finite group. In Propositidm we point out that every class of
% (F[V]®) contains a prime divisor which contributes to Problem

Let nowG be a finite non-abelian group. Until recently the precisaiealf the
Noether numbef(G) was known only for the dihedral groups and very few small
groups (such a8,). In the last couple of years the first two authors have detechi
the precise value of the Noether number for groups havingchiccgubgroup of
index two and for non-abelian groups of ordgr[3.3, 10, 17]. In this work results
on zero-sum sequences over finite abelian groups (for exammfbrmation on the
structure of long minimal zero-sum sequences and oktth®avenport constants)
were successfully applied. Moreover, a decisive step wasrtioduction of the
kth Noether numbers, a concept inspired byktieDavenport constants of abelian
groups. The significance of this concept is that it furniskese reduction lemmas
(listed in Subsectioh.1) by which the ordinary Noether number of a group can be
bounded via structural reduction in the group.

The concept of thkth Davenport constanBy (G) has been introduced by Halter-
Koch [50] for abelian groups in order to study the asymptotic behavi@rithmeti-
cal counting functions in rings of integers of algebraic memfields (see40, The-
orem 9.1.8], §7, Theorem 1]). They have been further studied’is, [30]. In the
last years the third author and Grynkiewié2]48] studied the (small and the large)
Davenport constant of non-abelian groups, and among otleéesmined their pre-
cise values for groups having a cyclic subgroup of index ttvwan be observed that
for these groups the Noether number is between the smalhanldrige Davenport
constant.
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This motivated a new and more abstract view at the Davenpadtants, namely
kth Davenport constants of BF-monoids (Subsecfidi). The goal is to relate the
Noether number with Davenport constants of suitable mamsch generalization of
the equatior3(G) = D(G) in the abelian case. Indeed, tkth Davenport constant
Dk(G) of an abelian groufs is recovered as oukth Davenport constant of the
monoid#(G) of zero-sum sequences ov@r

We apply the new concept of tHeéh Davenport constants to two classes of
BF-monoids. First, to the monoi#(G,V) associated to &moduleV in Subsec-
tion 4.4 (whenG is abelian we recover the mondid® of G-invariant monomials
from Subsectiod.3), whose Davenport constants provide a lower bound for the co
responding Noether numbers (see Proposilidi). Second, we study the monoid
of product-one sequences over finite groups (Subsectidnand 3.3). We derive
a variety of features of thkth Davenport constants of the monoid of product-one
sequences ovés and observe that they are strikingly similar to the corresiiag
features of thdth Noether numbers (see Subsectiohfor a comparison).

We pose a problem on the relationship between Noether nigaiberDavenport
constants of non-abelian groups (Probl2nand we illustrate the efficiency of the
above methods by Examplés?, 5.3, and5.4 (appearing for the first time), where
the explicit value of Noether numbers and Davenport cotstarsome non-abelian
groups are determined.

Throughout this paper, let G be a finite grodpbe a field, and
V be a finite dimensiondi-vector space endowed with a linear action of G.

2 Multiplicative Ideal Theory: Krull monoids, C-monoids, and
Class Groups

We denote byN the set of positive integers, and we fNg = NU {0}. For every
n € N, we denote by, a cyclic group withn elements. For real numbeaisb € R,
we seta,b] = {x € Z: a< x < b}. If A/B are sets, we writd C B to mean tha#A
is contained irB but may be equal t®. In Subsection®.1— 2.4 we gather basic
material on Krull monoids and C-monoids. In Subsectiofwe introduce a new
concept, namely Davenport constants of BF-monoids.

2.1 Monoids and Domains: Ideal theoretic and divisor theoretic
concepts

Our notation and terminology followst{] and [51] (note that the monoids in
[51] do contain a zero-element, whereas the monoidstiiy 4nd in the present
manuscript do not contain a zero-element). Byp@noid we mean a commutative,
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cancellative semigroup with unit element. Then the muttadlve semigroufR® =
R\ {0} of non-zero elements of a domain is a monoid. Following théopbphy
of multiplicative ideal theory we describe the arithmeticidhe theory of divisorial
ideals of domains by means of their multiplicative monoitlsus we start with
monoids.

LetH be a multiplicatively written monoid. An element H is called

e invertibleif there is an elemente H with uv= 1.

¢ irreducible(or anatom if uis not invertible and, for alh,b € H, u= abimplies
ais invertible orb is invertible.

¢ primeif uis not invertible and, for alh,b € H, u|abimpliesu|aor u|b.

We denote by (H) the set of atoms dfl, by H* the group of invertible elements,
and byHeq= {aH* : a€ H} the associated reduced monoid-bf\We say thaH is
reduced iffH*| = 1. We denote by(H) a quotient group ol with H C q(H), and
for a prime elemenp € H, letvy: q(H) — Z be thep-adic valuation. Each monoid
homomorphisng : H — D induces a group homomorphisitH): q(H) — q(D).
For a subseltly C H, we denote byHg] C H the submonoid generated big, and
by (Ho) < q(H) the subgroup generated bly. We denote byd = {xeaqH): x"e

H for somen € N} the root closure of H, and byH = {xe q(H) : there exists €

H such thatx" € H forallne N} thecomplete integral closuref H. BothH and
H are monoids, and we haw¢ c H c H c q(H). We say thaH is root closed
(completely integrally closed resp.)if = H (H = H resp.). For a se®, we denote
by #(P) the free abelian monoid with badfs Then evernya € % (P) has a unique
representation in the form

a= |'vap(a) , Wherevy(a) € Ng andvp(a) = 0 for almost allp € P.
pe

The monoicH is said to be

e atomicif everya e H\ H* is a product of finitely many atoms éf.

e factorial if everya € H\ H* is a product of finitely many primes &f (equiva-
lently, H = H* x .%(P) whereP is a set of representatives of primes9f

e finitely generated H = [E] for some finite subsdt c H.

If H=H> x.7(P) is factorial anda € H, then|a| = ¥ ,cpvp(a) € Np is called the
length ofa. If H is reduced, then it is finitely generated if and only if it i®@ic
and.«7 (H) is finite. Since every prime is an atom, every factorial mdrisiatomic.
For every non-unia € H,

Lu(a) = L(a) = {k e N: amay be written as a product kfatomg C N

denotes theet of lengthsf a. For convenience, we skfa) = {0} forac H*. We
say thatH is a BF-monoid if it is atomic and all sets of lengths are finkenonoid
homomorphisng : H — D is said to be

e adivisor homomorphisnif ¢ (a)| ¢ (b) implies thata|b for all a,b € H.
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o cofinalif for everya € D there is ara € H such thatr | ¢ (a).
e adivisor theory(for H) if D = #(P) for some seP, ¢ is a divisor homomor-
phism, and for everp € P, there exists a finite nonempty subXet H satisfying

p=gcd(¢(X)).

Obviously, every divisor theory is cofinal. Let ¢ D be a submonoid. Thed c D
is called

e saturatedf the embeddindd — D is a divisor homomorphism.
e divisor closedf ac H, b e D andb|aimpliesb € H.
e cofinalif the embeddindd — D is cofinal.

It is easy to verify thaH — D is a divisor homomorphism if and only H =
q(H) N D, and if this holds, thetd* = D*NH. If H C D is divisor closed, then
H C D is saturated.

For subsetsA,B C q(H), we denote by(A:B) = {x € q(H): xB C A}, by
A== (H:A), and byA, = (A"1)~1. A subseta C H is called ans-ideal of H if
aH = a. A subsetX C q(H) is called a fractional-ideal (or afractional diviso-
rial ideal) if there is ac € H such thacX c H andX, = X. We denote by#,(H)
the set of all fractional-ideals and by.#,(H) the set of allv-ideals ofH. Fur-
thermore.#; (H) is the monoid of-invertible v-ideals (withv-multiplication) and
Fy(H)* = q(A;(H)) is its quotient group of fractional invertibleideals. The
monoidH is completely integrally closed if and only if every non-emp-ideal
of H is v-invertible, andH is calledv-noetherian if it satisfies the ACC (ascending
chain condition) owv-ideals. IfH is v-noetherian, thehl is a BF-monoid. We denote
by X(H) the set of all minimal nonempty prineideals ofH.

The mapd: H — % (H), defined byd(a) = aH for eacha € H, is a cofinal
divisor homomorphism. Thus, i## = {aH: a € H} is the monoid of principal
ideals ofH, thens# C .#;(H) is saturated and cofinal.

2.2 Class groups and class semigroups

Let¢: H — D be a monoid homomorphism. The gradig¢ ) = q(D)/q(¢ (H))
is called theclass groupf ¢. Fora e q(D), we denote byaly =aq(¢(H)) € €(¢)
the class containing. We use additive notation fa£’(¢) and so[1]y is the zero
element of6’(¢).

Suppose thatl ¢ D and thatp = (H — D). Then%'(¢) = q(D)/q(H), and for
ac Dwe setlaly = [alp/y = aq(H). Then

D/H = {[alojn: ac D} C ()

is a submonoid with quotient growD /H) = €'(¢). Itis easy to check th&@/H is
agroupifandonly iH C Dis cofinal. In particular, iD/H is finite orifq(D) /q(H)
is a torsion group, theD /H = q(D)/q(H). LetH be a monoid. Ther# C .#;(H)
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is saturated and cofinal, and
G(H)= A (H)/H =F(H)"[q()

is thev-class groumf H.

We will also need the concept of class semigroups which aefiaement of
ordinary class groups in commutative algebra. Debe a monoid andd ¢ D a
submonoid. Two elemenisy < D are calledH-equivalent, ify *HND = )/’lH N
D. H-equivalence is a congruence relation DnFory € D, let [y]} denote the
congruence class gf and let

¢(H,D)={ly]R:yeD} and %*(H,D)={[y]3:ye (D\D*)u{1}}.

Then%(H,D) is a semigroup with unit elemeft]? (called theclass semigroup
of H in D) and%™*(H,D) C ¥ (H,D) is a subsemigroup (called theduced class
semigroupof H in D). The map

8: ¢(H,D)—D/H, definedby 6([a]ﬁ):[a]D/H forallae D,

is an epimorphism, and it is an isomorphism if and onl i€ D is saturated.

2.3 Krull monoids and Krull domains

Theorem 2.1. Let H be a monoid. Then the following statements are equitale

(a)H is v-noetherian and completely integrally closed,

(b)d: H — #;(H) is a divisor theory.

(c)H has a divisor theory.

(d)There is a divisor homomaorphispn H — D into a factorial monoid D.
(e)Heq is a saturated submonoid of a free abelian monoid.

If H satisfies these conditions, thenis called aKrull monoid.

Proof. See 10, Theorem 2.4.8] orq1, Chapter 22].

Let H be a Krull monoid. Then#;(H) is free abelian with basi&(H). Let
p € X(H). Thenv, denotes the-adic valuation of%,(H)*. For x € q(H), we
setvy(X) = vp(xH) and we callv, the p-adic valuation ofH. Thenv: H —
NG defined by v(a) = (vp(@)) is a divisor theory anH = {x €
a(H): vp(x) >0forallp € X(H)}.

If ¢: H— D =.%#(P)isadivisor theory, then there is an isomorphi&m . (H) —
D such that® o d = ¢, and it induces an isomorphisd: %,(H) — ¢(¢). Let
D = .Z(P) be such thaH,eq — D is a divisor theory. The® andP are uniquely
determined by,

peX(H)
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%(H) = %(Hred) = D/Hred

is called the(divisor) class groupf H, and its elements are called the classeld of
By definition, every clasg € ¢ (H) is a subset ofy(D) andPN g is the set of prime

divisors lying ing. We denote bys’'(H)* = {[p]p/H.,: P € P} C € (H) the subset

of classes containing prime divisors (for more details vierr® the discussion after
Definition 2.4.9 in §i(]).

Proposition 2.2.Let H be a Krull monoid, and lep : H — D = .% (P) be a divisor
homomorphism.

1. There is a submonoidy@ ¢ (¢) and an epimorphism&— %, (H).

2. Suppose that K D is saturated and thad(D)/q(H) is a torsion group. We set
Do = {gcch(X): X C H finite}, and for pe P define ép) = min{vp(h): h e
H with vy (h) > 0}.

(a)Dy is a free abelian monoid with bas{p®P : p € P}.
(b)The embedding - Dy is a divisor theory for H.

Proof. 1. follows from 40, Theorem 2.4.8], and 2. from7{,, Lemma 3.2].

Let R be a domain with quotient field. ThenR* = R\ {0} is a monoid, and
all notions defined for monoids so far will be applied for dansa To mention a
couple of explicit examples, we denote §§R) the quotient field oR and we have
q(R) = q(R*) U {0}, and for the complete integral closure we have: R* U {0}
(whereR is the integral closure dR in its quotient field). We denote h¥(R) the
set of all minimal nonzero prime ideals Bf by .%,(R) the set of divisorial ideals
of R, by .%/(R) the set ofv-invertible divisorial ideals ofR, and by.%#,(R) the
set of fractional divisorial ideals dR. Equipped withv-multiplication, #,(R) is a
semigroup, and the map

1°: AR — #(R°), definedby aw a\ {0},

is a semigroup isomorphism mapping(R) onto .%,(R*) and fractional principal
ideals ofR onto fractional principal ideals d®*. ThusR satisfies the ACC on divi-
sorial ideals oR if and only if R® satisfies the ACC on divisorial ideals Bf. Fur-
thermoreR is completely integrally closed if and onlyR® is completely integrally
closed. A domairR is a Krull domain if it is completely integrally closed andisa
fies the ACC on divisorial ideals &, and thusRis a Krull domain if and only ifR®
is a Krull monoid. IfRis a Krull domain, we se¥'(R) = ' (R*). The group%,(R)*

is the group ofv-invertible fractional ideals and the set/(R) = %, (R)* N A(R)
of all v-invertible v-ideals ofR is a monoid with quotient groug,(R)*. The em-
bedding of the non-zero principal idea§ (R) — .%/(R) is a cofinal divisor homo-
morphism, and the factor group

%(R) = 7R /{aR: ac K*} = 7/ (R)/#(R)



Invariant Theory, Multiplicative Ideal Theory, and Aritlatic Combinatorics 9

is called thev-class groupof R. The mapi® induces isomorphisms#,(R)* —
F(R)*, £F(R) = £(R), and%,(R) = %(R*), and in the sequel we shall
identify these monoids and groups.

The above correspondence between domains and their masfaids-zero ele-
ments can be extended to commutative rings with zero-diwiand their monoids
of regular elements {[3, Theorem 3.5]), and there is an analogue for prime Goldie
rings ([38, Proposition 5.1]).

Examples 2.3.

1. (Domains) As mentioned above, the multiplicative mori®fidf a domairRis
a Krull monoid if and only ifRis a Krull domain. Thus Property (a) in Theoréni
implies that a noetherian domain is Krull if and only if it ismmal (i.e. integrally
closed in its field of fractions). In particular, rings of awvants are Krull, as we shall
see in Theorem. 1

2. (Submonoids of domains) Regular congruence submonbdidsuti domains
are Krull ([40, Proposition 2.11.6].

3. (Monoids of modules) LeR be a (possibly noncommutative) ring and 46t
be a class of finitely generated (riglhjmodules which is closed under finite direct-
sums, direct summands, and isomorphisms. Then theéet) of isomorphism
classes of modules is a commutative semigroup with operatdthiced by the direct
sum. If the endomorphism ring of each modulezinis semilocal, ther' (%) is a
Krull monoid ([19, Theorem 3.4]). For more information we refer &9 21, 1].

4. (Monoids of product-one sequences) In TheoBegwe will characterize the
monoids of product-one sequences which are Krull.

2.4 C-monoids and C-domains

A monoid H is called a Cmonoidif it is a submonoid of a factorial monoid
F such thatH NF* = H* and the reduced class semigrc@p(H,F) is finite. A
domain is called a Glomainif R* is a C-monoid.

Proposition 2.4.Let F be a factorial monoid and K- F a submonoid such that

HNF*=Hx.

1. If H is aC-monoid, then H is v-noetherian witft : H) #£0, and the complete
integral closureH is a Krull monoid with finite class groug’(H).

2. Suppose that A= is finitely generated, say E F* x [ps,..., ps] with pair-
wise non-associated prime elements.p., ps. Then the following statements
are equivalent

(a) H is a C-monoid defined in F.
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(b) There exist some € N and a subgroup WK F* such tha{F*:W) | a, W(H\
H*) C H, and for all j € [1,5 and a€ p{'F we have a H if and only if
pfae H.

Proof. For 1., see40, Theorems 2.9.11 and 2.9.13] and for 2. sé& [Theorems
2.9.7].

Examples 2.5.

1. (Krull monoids) A Krull monoid is a C-monoid if and only ihé class group
is finite ([40, Theorem 2.9.12]).

2. (Domains) LeR be a domain. Necessary conditions Rbeing a C-domain
are given in Propositior2.4. Thus suppose thaR is a Mori domain (i.e., av-
noetherian domain) with nonzero conducfer (R:R) and suppose tha'(R) is
finite. If R/f is finite, thenR is a C-domain by40, Theorem 2.11.9]. This result
generalizes to rings with zero-divisorglf]), and in special cases we know that
is a C-domain if and only iR/f is finite ([69]).

3. (Congruence monoids) LBtbe Krull domain with finite class groug(R) and
H C Ra congruence monoid such thaftf is finite wheref is an ideal of definition
for H. If Ris noetherian of is divisorial, thenH is a C-monoid ({0, Theorem
2.11.8]). For a survey on arithmetical congruence monadd3.

4. In Subsectior8.1 we shall prove that monoids of product-one sequences are
C-monoids (Theorer.2), and we will meet C-monoids again in Propositi®i 1
dealing with the monoid8(G,V).

Finitely generated monoids allow simple characterizatiohen they are Krull or
when they are C-monoids. We summarize these charactenzati the next lemma.

Proposition 2.6.Let H be a monoid such that& is finitely generated.
1. Then H is v-noetherian witfH : H) £0,H=H, H/HX is finitely generated,
andH is a Krull monoid. In particular, H is a Krull monoid if and dnif H = H.
2. H is aC-monoid if and only if¢'(H) is finite.
3. Suppose that H is a submonoid of a factorial monoid F* x . (P). Then the
following statements are equivalent
a. H is aC-monoid defined in F, F/H* is a torsion group, and for every P
there is an ac H such that/y(a) > 0.
b. For every ae F, there is an g € N with 8% € H.

If (a) and (b) hold, then P is finite anti = H = q(H) NF C F is saturated and
cofinal.

Proof. 1. follows from [0, 2.7.9 - 2.7.13], and 2. follows from![, Proposition
4.8].

3. (a)= (b) For everyp € P, we setdy, = gcd(vp(H)), and by assumption we
haved, > 0. We sethy = {p%: p € P} andFy = F* x .7 (Py). By [40, Theorem
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2.9.11]H is a C-monoid defined iRy and there is a divisor theod): H — .7 ().
By construction offy, it is sufficient to prove the assertion for ale Fy. Since
F>*/H* is a torsion group, it is sufficient to prove the assertiondiba € % (Py).
Let a € .Z(Py). Since%(H) is finite, there is am, € N such thata € H. Since
H = H, there is am, € N such tha{a")" e H.

(b)= (a) Foreveryp € Pthereis amp € N such thap™ € H whencev,(p™) =
np > 0. Clearly, we havél c F = F and hencél c q(H)NF = q(H)NF. Since for
eacha c F there is am, € Ng with a™ e H, we infer thatq(H)NF ¢ H = H and
henceH = q(H)NF. FurthermoreH c F andH c F are cofinal, and(F)/q(H) =
F/H is a torsion group. Clearlyy(H) "F C F is saturated, and thus is Krull.
SinceH* = HNF* andH* = H* NH, it follows thatH* = H NF* and then we
obtain thatF* /H* is a torsion group.

By 1., H/H* is finitely generated, sai /H* = {uiH*,...,u,H*}, and set
Po={peP: pdividesu; -...-uyin F}. ThenRy is finite, and we assert thB§ = P.

If there would exist some € P\ P, then there is amp € N such thatp™ < H
and hence"PH* is a product ofu;H*,...,uyH*, a contradiction. Therefore is
finite, F /F* is a finitely generated monoid(F)/F * is a finitely generated group,
and thereforey(F)/q(H)F* is a finitely generated torsion group and thus finite.
Since¢: H — F — F /F* is a divisor homomorphism ar(¢) = q(F) /q(H)F*,
Proposition2.2.1 implies that%(HA) is an epimorphic image of a submonoid of
q(F)/q(H)F* and thusz'(H) is finite. Thus 2. implies thatl is a C-monoid (in-
deed, Property 2.(b) of Propositi@m holds and hencH is a C-monoid defined in
F).

2.5 Davenport constants of BF-monoids

LetH be a BF-monoid. For evellyc N, we study the sets
M(H)={acH: maxL(a) <k} and .ZyH)={acH: maxL(a) =k}.

A monoid homomorphism- |: H — (Np,+) will be called adegree functioron
H. In this section we study abstract monoids having a degmtifin. The results
will be applied in particular to monoids of product-one segeces and to monoids
%(G,V) (see Subsectioris3and4.4). In all our applications the monold will be
a submonoid of a factorial monokland if not stated otherwise the degree function
onH will be the restriction of the length function dh

If 8: H— Bis a homomorphism and andB have degree functions, then we
say that is degree preserving |a|y = |0(a)|g for allac H. Suppose we are given
a degree function okl andk € N, then

Dk(H) =sup{|al: a€ .#(H)} € NoU{o}
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is called thelarge kth Davenport constardf H (with respect to| - |). Clearly,
AM1(H)=o/(H)UH*. We callD(H) =D1(H) =sup{|al: a€ &/ (H)} € NoU{e}
the Davenport constanbf H. For everyk € N, we have.#(H) C .#.1(H),
Dk(H) < Dyy1(H), andDg(H) < kD(H). Furthermore, we havii| = O for every
unit u € H*. Therefore the degree function éhinduces automatically a degree
function|-| : Hreq — (Np,+), and so théth Davenport constant ¢ieq is defined.
Obviously we havedy(H) = Dx(Hreq)- Lete(H) denote the smallegte NoU {0}
with the following property:

There is &K € Ng such that evern € H with |a] > K is divisible by an element
b e H\H* with |b| < /.

Clearly,e(H) < D(H).
Proposition 2.7.Let H be aBF-monoid and - |: H — (Np,+) be a degree function.

1. If Heq is finitely generated, then the se#(Hyeq) are finite andDy(H) < o for
every ke N,

2. If D(H) < o, then there exist constant$DKy € Ng such thaDy(H) =ke(H) +
Dy forall k > Ky.

3. If D(H) < =, then the map¥ — Q, k— w iS non-increasing.
4. Suppose that H has a prime element. Then

Dk(H) = max{|a|: a€ .#(H)} < kD(H)
and
kD(H) = max{|a]: ac H, minL(a) <k} = max{|a]: ac H, ke L(a)}.

Proof. 1. Suppose thaltleq is finitely generated. Thern? (Hyeq) is finite whence
A (H) is finite for everyk € N. It follows thatD(H) < c andDy(H) < kD(H) <
forallk e N.

2. Suppose thdD(H) < o and note that(H) < D(H). Letf(H) € Np be the
smallesK € Np such that everp € H with |a] > K is divisible by an elemeric H
with |b| < e(H). We defineA= {ae «/(H): |a| = e(H)}. Letk € N and continue
with the following assertion.

A. There existay,...,ax € A such thata; ...ax € .#k(H). In particular,Dy(H) >
|az...ax| =ke(H).

Proof of A. Assume to the contrary thatforal, ... ,ax € Awe have mak(a) >
k. Thus the produdd; . .. ay is divisible by an atonu € o/ (H) with |u] < e(H). We
setK =f(H) + (k—1)e(H) and choosa € H with |a] > K. Thena can be written
in the forma=a; ...axb whereay,...,a,b e H and|a;| < e(H) foralli € [1,K]. If
there is some € [1,k] with |aj| < e(H), theng; is a divisor ofa with |a| < e(H).
Otherwise,ay, ..., ax € A and by our assumption the prodwat...ax and hence
a has a divisor of degree strictly smaller thafiH). This is a contradiction to the
definition ofe(H). O(Proof ofA)
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Now letk > f(H)/e(H) — 1. ThenA implies thatDx(H) +e(H) > (k+1)e(H) >
f(H). Leta e H with |a] > Dx(H) +e(H). Then, by definition of (H), there are
b,c € H such thaia = bcwith |c| < e(H) and hencéb| > Dy(H). This implies that
maxL(b) > k, whence mak(a) > k+1 anda ¢ .#1(H). Therefore we obtain
thatDy1(H) < Dx(H) +e(H) and thus

0 < Dys1(H) — (K+1)e(H) < Dy(H) — ke(H).

Since a non-increasing sequence of non-negative intetpydizes, the assertion
follows.

3. Suppose thab(H) < ». Let k € N, a € 4 1(H) with |a] = Dgr1(H),
and setl = maxL(a). Thenl < k+ 1. If | <k, thena € .#(H) andDy;1(H) >
Dk(H) > |a| = Dx;1(H) whenceDy(H) = Dy, 1(H). Suppose thdt=k+ 1. We set
a=ay...a 1 With ay,...,a1 € &(H) and|ag| > ... > |ak 1| whencelay 1] <
(la1] + ...+ |ak|)/k. It follows that

Diya(H) _ Jaa| 4+ (& _ [aa]+--+[&] _ Dk(H)

k+1 k+1 - k - k

where the last inequality holds becaase. . ax € .Z«(H).
4. Letp € H be a prime element. We assert that

Dk(H) < max{|al: a€ H, maxL(a) = k}. (%)
Indeed, ifa € .#(H) and mas.(a) =1 <k, thenap*' € .#(H) and
la| < [ap*!| < max{|a: a€ H, maxL(a) =k},
and hencésx) follows. Next we assert that
max{|a|: a€ H, minL(a) <k} <kD(H). ()
Leta e H with minL(a

(
lal = ur|+...+[uf <
we infer that

a)=1 <k, saya=uz...u, whereu,...,u € &(H). Then
ID(H )gk (H), and thugxx) follows. Using(x) and (xx)

Dk(H) < max{|al: a€ H, maxL(a) =k} < max{|a|: a€ H, maxL(a) <k}
= Dy(H) < max{|al: aeH minL(a) <k}

and that
kD(H) =max{|a|: ac H, ke L(a)} <max{|a|: a€ H, minL(a) <k} <kD(H).

Let F be a factorial monoid anHl C F a submonoid such th&d* = HNF*.
ThenH is a BF-monoid by 40, Corollary 1.3.3]. Fok € N, let.#/(H) denote the
set of alla € F such thata is not divisible by a product ok non-units ofH. The
restriction of the usual length functign|: F — Np on F (introduced in Subsec-
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tion 2.1) gives a degree function dt. We define thesmall kth Davenport constant
dx(H) as
dx(H) =sup{jal: a€ .#;(H)} € NoU{eo}. (1)

In other words, } dx(H) is the smallest integef € N such that evera € F of
lengthl|a| > ¢ is divisible by a product ok non-units ofH. We calld(H) = d1(H)
the small Davenport constardf H. Clearly we have#|(H) C .4, ,(H) hence
de(H) < dira(H).

Furthermore, lef)(H) denote the smallest integée NU {} such that every
a € F with |a] > ¢ has a divisob € H\ H* with |b|] € [1,e(H)]. For p € &7 (F)
denote byop, the smallest integet € NU {o} such thatp® < H. Clearly, we have
op<n(H)forall pe «/(F).

Proposition 2.8.Let F = F* x .%(P) be a factorial monoid and H- F a sub-
monoid such that H = HNF*, and let ke N.

1. If for every ac F there is a prime pe F such that ape H, then1+dy(H) <
Dk(H).

2. Suppose that ks finitely generated and that for everyed- there isang € H
such that & € H. Then H is aC-monoid and we have

(@) e(H) =max{op: pe P} andn(H) < c.
(b) dk(H) +1 > ke(H) and there exist constants;de Z>_1,kn € Ng such that
dk(H) =ke(H) 4 dy for all k > ky.

Proof. 1. Letac .#,(H) such thata| = dx(H). We choose a primp € F such that
ap € H. Take any factorizatioap = u; ...u, whereuy; € o/ (H). We may assume
that pjus in F. Thenu,...u/Ja in F and hence — 1 < k. Thus it follows that
ape .#H) andDy(H) > |ap| = |a] + 1> dx(H) + 1.

2.(a) By Propositior2.6.3,H is a C-monoidP is finite and hence(H) < o. If
p € P, thenp® € &7 (H) and by the minimality ob,, p° does not have a divisor
b e H\ H* such thatb| < op. Thus it follows thae(H) > max{o,: p € P}. For the
reverse inequality, note that by Propositidd.2 there exists aor € N such that for
all pe Pand alla € pF we havea € H if and only if pPa € H. Since any multiple
of a has the same property, we may assume ¢hist divisible byoy, for all p € P.
Letb € H with |b| > |P|(2a — 1). Then there exists p€ P such thab € p?*F NH.
Henceb is divisible inH by p?, implying in turn thatp® € </ (H) dividesb in H.
Therefore we obtain tha(H) < max{op: p € P}.

If ac F with |a] > ¥ ,cp(0p — 1), then there is @ € P such thap®r dividesa in
F,and thus)(H) <1+ 3 cp(0p—1).

2.(b) Letp € Pwith o(p) =e(H). Thenp*®~—t € .2 (H) and|p*%~1| = ke(H) —
1, showing the inequalityy(H) + 1 > ke(H) for all k € N. Now letk € N be such
that 14-dy(H) +e(H) > n(H), and leta € F with |a| > dx(H) +e(H) + 1. Then, by
definition ofn(H), there ard € F andc € H \ H* such thata= bcwith |c| <e(H)
and|b| > di(H). This implies thab is divisible by a product ok non-units ofH
whenceais divisible by a product ok+ 1 non-units oiH. Therefore it follows that
1+diy1(H) < dk(H)+e(H)+1and hence
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0<dk;1(H)—ke(H) < dx(H)— (k—1)e(H) for all sufficiently large k.

Since a non-increasing sequence of non-negative intetpizes, the assertion
follows.

3 Arithmetic Combinatorics: Zero-Sum Results with a focus m
Davenport constants

This section is devoted to Zero-Sum Theory, a vivid subfiérihmetic Combina-
torics (see$2, 37, 49)). In Subsectior8.1we give an algebraic study of the monoid
of product-one sequences over finite but not necessariljgabgroups. In Subsec-
tion 3.2 we put together well-known material on transfer homomaspts used in
Subsectiong.2 and4.3. In Subsection8.3and3.4we consider théth Davenport
constants of finite groups. In particular, we gather resuhiich will be needed in
Subsectiorb.2 and results having relevance in invariant theory by Prdjoosit.7.

3.1 The monoid of product-one sequences

Let Go C G be a subset and I&' = [G,G] = (g~*hgh: g,h € G) denote the
commutator subgroup d&. A sequenc@ver Gy means a finite sequence of terms
from Gg which is unordered and repetition of terms is allowed, andlitbe con-
sidered as an element of the free abelian monBi@y). In order to distinguish
between the group operation @& and the operation i (Gp), we use the sym-
bol - for the multiplication in. (Go), henceZ (Go) = (.# (Go), -) —this coincides
with the convention in the monograph$) 49-and we denote multiplication in
G by juxtaposition of elements. To clarify this, $,S € . (Go) andgi, 92 € Go,
thenS;- S € #(Gop) has lengthS |+ ||, Si- 91 € #(Go) has length|S;| + 1,
01-02 € F(Gp) is a sequence of length 2, bgig, is an element of5. Further-
more, in order to avoid confusion between exponentiatio®iand exponentia-
tion in . (Gp), we use brackets for the exponentiation#(Gp). So forg € Go,
Se .Z(Gp), andk € Ny, we have

K_qg. . T i K| — K_g. . F
g¥=g-....ge Z(G) with |gK|=k, and I Sk Se #(G).
k

Now let
S=g-....0 = [] g9,

9elo

be a sequence ovEy (in this notation, we tacitly assume tifat Ng andgs,...,gr €
Go). Then|S = ¢=0ifand only if S= 15, is the identity element i (Go), and
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thenSwill also be called therivial sequenceThe elements i (Go) \ {1 (g, }
are calledhontrivial sequencedNe use all notions of divisibility theory in general
free abelian monoids. Thus, for an elemgret Go, we refer tovg(S) as themulti-
plicity of g in S. A divisor T of Swill also be called a subsequence®fWe call
suppS) = {g1,-.-,9¢} C Go the supportof S. WhenG is written multiplicatively
(with unit element ¢ € G), we use

1(S) = {9r(1)--- Yr(¢) € G: T a permutation ofl, (]} C G

to denote theset of productof S (if |§ = 0, we use the convention tha(S) =
{1s}). Clearly, ni(S) is contained in &'-coset. WherG is written additively with
commutative operation, we likewise let

oS =01+...+9€G
denote thesumof S. Furthermore, we denote by

5(§={o(T): T|Sand1#£T}cG and M(S=|Jn(T)CG,
T|S
1£T

thesubsequence sunandsubsequence produat§ S. The sequenc8is called

e aproduct-one sequendelc € m1(S),
e product-one fredf 1 ¢ 1(9).

Every map of finite groupg : G; — G, extends to ahomomorphign #(Gy) —
F(Gy) whered (S)=¢(g1) -...- ¢(gr). If ¢ is a group homomorphism, then(S)
is a product-one sequence if and onlytfS) " Ker(¢) # 0. We denote by

c%’(Go) = {SE y(Go): 1c € T[(S)}

the set of all product-one sequences o@gr and clearly%(Gg) C #(Gp) is a
submonoid. We will use all concepts introduced in Subsadié for the monoid
PB(Gp) with the degree function stemming from the length functiontbe free
abelian monoid# (Gp). For all notations:(H) introduced for a monoitl we write
—as usual -(Gp) instead of«(A(Gp)). In particular, fork € N, we set #(Go) =

A(%(Go)), Dk(Go) = Dk(#(Go)), N(Go) = N(%(CGo)), e(Go) = e(#(Go)), and
so on. By Propositio2.8.2(a),e(Gp) = max{ord(g): g € Go}. Note that#; (Go)

is the set of all product-one free sequences &gin particular,

D(Go) =sup{|S: Se & (Gp)} € NU{eo}
is thelarge Davenport constarmf Gy, and
d(Gp) =sup{|9]: Se .Z(Gyp) is product-one frepe NoU {0}

is thesmall Davenport constamf Gg. Their study will be the focus of the Subsec-
tions3.3and3.4
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Lemma 3.1.Let & C G be a subset.

1. #(Go) C .Z(Gy) is a reduced finitely generated submonait|,Go) is finite, and
D(Gop) < |G|. Furthermore, #(Go) is finite andDy(Gp) < o for all k € N.
2. Let Se .#(G) be product-one free.

a. If go € 11(S), then g - S€ 7 (G). In particular,d(G) + 1 < D(G).
b. If|§ =d(G), thenl1(S) = G\ {1s} and hence
d(G) = max{|S: S Z(G) with 11(S) = G\ {1a}}.

3. If Gis cyclic, therd(G) + 1= D(G) = |G|.

Proof. 1. We assert that for evety € o7 (G) we have|U| < |G|. Then.«Z(Gp) C
</ (G) is finite andD(Gg) < D(G) < |G|. As already mentioned?(Gg) C .#(Go)
is a submonoid, and clearl$(Go)* = {1z(q,)}- Since.#(Gp) is factorial and
B(Gp)* = B(Go) N.F(Co)*, $(Gop) is atomic by B0, Corollary 1.3.3]. This
means that”#(Gp) = [« (Go) U #(Co)*], and thus#(Gp) is finitely generated.
Since#(Gp) is reduced and finitely generated, the setg(Gp) are finite by Propo-
sition 2.7.

Now letU € #(G), sayU =0;-...-g¢ With g102...9r = 1g. We suppose that
£ > |G| and show tha) ¢ <7 (G). Consider the set

M={0102...Gi: i €[1,4]}.

Sincel > |G|, there aré, j € [1, /] withi < jandg;...gi=0;1...9;. Thengi11...9; =
1g and thuss ... gigj+1...9¢ = 1g which implies that) is the product of two non-
trivial product-one subsequences.

2.(a) Ifgp € n(S), thenScan be written aS8=g; - ...-g, such thagp =0:...9,
which implies thagy - g1 -...- g € 7(G).

2.(b) If Siis product-one free withS| = d(G), and if there would be ah €
G\ {M(S)u{lc}}, thenT = h~t.Swould be product-one free of lengtfi| =
|S|+ 1> d(G), a contradiction. Thus every product-one free sequ&milength
|S| = d(G) satisfied1(S) = G\ {1c}. If Sis a sequence withl (S) = G\ {1}, then
Sis product-one free and hen(® < d(G).

3. Clearly, the assertion holds f§8| = 1. Suppose thd is cyclic of ordem > 2,
and letg € G with ord(g) = n. Theng™ Y is product-one free, and thus 1. and 2.
imply thatn <1+ d(G) < D(G) <n.

The next result gathers the algebraic properties of monafiggoduct-one se-
quences and highlights the difference between the abelidthe non-abelian case.

Theorem 3.2.Let G C G be a subset and let’@enote the commutator subgroup
of <G0>

—_—~

1. #(Go) C Z#(Gp) is cofinal and#(Cyp) is a finitely generate@-monoid.%A(Gop) =

" —

PB(Gy) is a finitely generated Krull monoid, the embeddi#(Go) — .7 (Go) is
a cofinal divisor homomorphism with class gragf{Go)/%(Gp), and the map



18 Kalman Cziszter and Matyas Domokos and Alfred Gengler

(O y(Go)/%(Go) — <Go>/G/
[S7(co)/ 269 — 9G foranyge m(S)

is a group epimorphism. Suppose that-&G. Then® is an isomorphism, every
class of¢(#(G)) contains a prime divisor, and j5| # 2, then#(G) — % (G)
is a divisor theory.

2. The following statements are equivalent

(a) B(Gp) is a Krull monoid.
(b) B(Gy) is root closed.
(c) B(Gg) C .F#(Cp) is saturated.

3. #(G) is a Krull monoid if and only if G is abelian.
4. B(G) is factorial if and only if|G| < 2.

Proof. 1. 2(Go) is finitely generated by Lemma 1 If n=Icm{ord(g): g € Go},

then 9" € %(Gy) for eachS e .Z(Gp). Thus B(Gy) C .Z(Gp) and B(Gp) —
F(Gp) are cofinal,# (Gp)/#(Go) is a group and

F(Go)/B(Go) = (-7 (Go)) /a(#(Go)) = a(-F (Go)) /a(Z(Go))

—

is the class group of the embeddit®Gp) — % (Gp). All statements on the struc-

ture of #(Gp) and#(Gp) follow from Propositior2.6.3, and it remains to show the
assertions om.

Let S, S € #(Gyp), g € 1(S),d € n(S), andB € #(Gp). Thenm(S) C gG,
n(S) c gG, n(B) ¢ G, and n(S-B) € gG. We use the abbreviatiof§ =
[S].#(co)/#(c0)» @nd Note thatS| = [S] if and only if there areC,C' € #(Go) such
thats-C=8-C.

In order to show thatp is well-defined, suppose thi] = [S] and thatS-C =
S-C' with C,C’' € 8B(Gp). Thenm(S-C) = (S -C') c gG Ng' G and hencgG =
g'G'. In order to show tha® is surjective, leg € (Gp) be given. Clearly, there is an
Se .7 (Gop) such thag € n(S) whence®([g) = gG.

Suppose thaBy = G. First we show that is injective. LetS, S € .#(G) with
ge n(S),d € n(S) suchthayG =g'G'. Thenthere arke N, a3,b;, ..., a, bk € G
such that )

od = [ (e "ty o).

1
We defineT = 1K, (a1-b ! & -bj) and obtain that
S (S-gtT)=S-(SgtT)eZ(G).

Since 1¢ m(T) andgg ~* € m(T), it follows that 1€ m(S-g~*-T) and 1€ n(S-
g~1-T) which implies tha{g = [S].
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If |G| < 2, then 4. will show that(G) is factorial and clearly the trivial class

T —

contains a prime divisor. Suppose that > 3. In order to show tha¥(G) — .7 (G)
is a divisor theory, leg € G\ {1} be given. Then there is amc G\ {g~*, 1},

U=g-gte(G) C #(G), U =g-h-(hg) e #(G) C #(G) andg—
gcdz ) (U,U'). Thus% — .Z(G) is a divisor theory.

Let Se .#(G) with g € 1(S). Theng € .#(G) is a prime divisor and we show
that[g] = [§. Indeed, ifg = 1, thenSe #(G), 1c € #(G), S- 1 = g- Swhence
[0 =[S. Iford(g) = n>2, theng" € #(G),S-¢g" ¥ € #(G),S-¢g" =g-S-g" ¥
whencelS = [g].

2. (a)= (b) Every Krull monoid is completely integrally closed anehite root
closed.

(b) = (c) LetST € #(Gp) with T|Sin .#(Gp), sayS=T -U whereU =
Oi-... O € F(Go). If n=lcm(ord(gy),...,ord(g,)), then(TEH. g)iN =yl ¢
PB(Go). SinceZ(Gy) is root closed, this implies that = TI-Y. Se %(Gp) and
henceT |Sin Z(Go).

(c) = (a) Since#(Gy) is free abelian#(Go) is Krull by Theorem2.1.

3. If G is a abelian, then it is obvious tha&t(G) C .# (G) is saturated, and thus
#(G) is a Krull monoid by 2. Suppose th@tis not abelian. Then there agegh € G
with gh# hg. Thenghg ! #h,S=g-h-g1-(ghg!) 1€ #(G), T=g-g e
2(G) dividesSin .Z(G) but T4 .S=h- (ghg 1)~ does not have product-one.
Thus#(G) C .Z(G) is not saturated and heng&(G) is not Krull by 2.

4. If G = {0}, thenAB(G) = .#(G) is factorial. If G = {0,9}, then</(G) =
{0,912}, each atom is a prime, an#(G) is factorial. Conversely, suppose that
A(G) is factorial. Then#(G) is a Krull monoid by {0, Corollary 2.3.13], and
henceG is abelian by 3. Suppose thi&| > 3. We show thatZ(G) is not factorial.

If there is an elemerg € G with ord(g) = n> 3, thenU =g, —U = (—g)l",w =
(—g)-ge€ «7(G), andU - (—U) = W' Suppose there is rpe G with ord(g) > 3.
Then there are;, e, € Gwith ord(e;) = ord(e;) =2 ande; + € # 0. ThenU =e; -

& (er+6), Wy =2 Wo = &2 Wp = (&1 + &) € #7(G), andU @ =Wp- W, - Wb,

For a subseGg C G, the monoid#(Gp) may be Krull or just seminormal but it
need not be Krull. We provide examples for both situations.

Proposition 3.3.Let G C G be a subset satisfying the following propdrty
P. For each two elements g e Gy, (h) C (g,h) is normal or(g) C (g,h) is normal.
Then%(Gp) is a Krull monoid if and only if Go) is abelian.

Proof. If (Gp) is a abelian, then it is obvious that(Gg) C .#(Go) is saturated, and
thus#(Go) is Krull by Theoren.2.2.

Conversely, suppose tha&(Gp) is Krull and thatGy satisfies Propert. In
order to show tha{Gy) is abelian, it is sufficient to prove thgh = hgfor each two
elementsg), h € Go. Letg,h € Gy be given such thah) C (g, h) is normal, ordg) =
m, ord(h) = n, and assume to the contrary tightg™ # h. Sinceg(h)g~! = (h), it
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follows thatghg™t = h¥ for somev € [2,n— 1]. Thusghd™ th"~V =1 andS=g-h-
g™ U.h=vl e B(Gy). Clearly,T = g™ € B(Gp) butS- T4 = hin-v+1l ¢ 2(Gy).
Thus#(Gg) C Z(Gop) is not saturated, a contradiction.

Proposition 3.4.Let G= Dy, be the dihedral group, say & (a,b) =
{1,a,...,a" 1 b,ab,...,a" b}, whereord(@) = n > 2, ord(b) = 2, and set G =
{ab,b}. Then#(Gy) is a Krull monoid if and only if n is even.

Proof. Clearly, we have or@b) = ord(b) = 2 and (Gp) = G. Suppose that is
odd and consider the sequerie (ab)" - bi". Since((ab)b)" = 1, it follows that
Sis a product-one sequence. ObviouSy= (ab)™.bl"1 € B(Gy) andS; =
(ab)-b¢ Z(Gp). SinceS= S, - S, it follows thatZ(Gp) C .#(Gp) is not saturated,
and hence’(Gp) is not Krull by Theoren8.2.2.

Suppose than is even. Thene (Gp) = {(ab)/?,bl?} and #(Gy) = {(ab)!’ -
biM: ¢, me No ever}. This description 0f2(Go) implies immediately tha#(Go) C
F(Gp) is saturated, and henc@(Gy) is Krull by Theorem3.2.2.

Remark. (Seminormality of %(Gp)) A monoidH is called seminormal if for all
x € q(H) with x2,x3 € H it follows thatx € H. Thus, by definition, every root closed
monoid is seminormal.

1. Letn=3 mod 4 ands = Dy, the dihedral group, sag = (a,b) =
{1,a,...,a" 1 b,ab,...,a" b}, where orda) = n, ordb) = 2, and

abadb=ak" forallkl cZ.

We consider the sequence

Then

g2 _ (a[ﬂi—l} .b.a[%—l] -b) - (b-b) andg?d = 3. (a[”—74—3] .b.a[“i—s} -b)- 4
are both in%(G) whenceSe q(#(G)), but obviouslyS¢ #(G). Thus#({a,b})
andZ#(G) are not seminormal.

2. LetG=Hg = {E,I,J,K,—E,—1,—J,—K} be the quaternion group with the
relations

J=-Jl=K,JK=-KJ=1I, and Kl=—IK=J,

and setGp = {I,J}. By Theorem3.2, #(G) is not Krull and by Propositior3.3
PB(Gp) is not Krull. However, we assert tha#(Gg) is seminormal.

First, we are going to derive an explicit description #f(Gp). SinceE =
(—E)(—=E) = (KK)(I1) = (13)(13)(11), it follows thatU = 114. 3@ ¢ 2(Gy). As-
sume thatl = Uy -U, with U1, U; € o7 (Gp) and|U1| < |Uz|. Then|Uq| € {2,3}, but
U does not have a subsequence with product one and length tiveer Thud) €
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27 (Gp) and similarly we obtain thadt? - J1 € o7 (Gy). SinceD(Go) < D(G) = 6, it
is easy to check that

o (Go) = {114,914 12 512 4. 2] 412 gl4ly
This implies that
B(Go) = {IM.J1: k=1 =0ork,| € Ng are both even with+ | > 4} .

In order to show thatZ(Go) is seminormal, lek € q(#(Go)) be given such
thatx?,x% € 2(Gp). We have to show thate %(Go). Sincex?, x3 € %(Go) ¢
F(Gp) and.Z (Gop) is seminormal, it follows that € .7 (Go). If x=1¥ with k € Np,
then! 3 € #(Gy) implies that 43k, hence 4k, and thusx € %(Go). Similarly, if
x = JI € B(Gy) with | € No, thenx € Z(Gp). It remains to consider the case
x = 1. 301 with k,1 € N. Sincex® = 1134 381 ¢ 2(Gy), it follows thatk,| are
both even, and thuse %(Gy). Therefore(Gop) is seminormal.

3.2 Transfer Homomorphisms

A well-established strategy for investigating the aritticief a given monoidd
is to construct a transfer homomorphi$mH — B, whereB is a simpler monoid
thanH and the transfer homomorphisrallows to shift arithmetical results froB
back to the (original, more complicated) monéld We will use transfer homomor-
phisms in Sectior in order to show that properties of the monoid@invariant
monomials can be studied in a monoid of zero-sum sequenee®(spositions.7
and4.9).

Definition 3.5. A monoid homomorphism8: H — B is called a transfer homo-
morphismif it has the following properties:

(T1) B=6(H)B* and 871(B*) = H*.
(T2) IfueH, b,ceB and 6(u) = bc, then there exist, w e H such thatu = vw,
6(v)B* =bB* and 6(w)B* =cB*.

We will use the simple fact that, #: H — B and6’: B — B’ are transfer homo-
morphisms, then their compositiétio 6: H — B’ is a transfer homomorphism too.
The next proposition summarizes key properties of trartefenomorphisms.

Proposition 3.6.Let8: H — B be a transfer homomorphism aneta.

1. ais an atom of H if and only #(a) is an atom of B.

2.Ly(a) = Lg(6(a)), whenced (#(H)) = #(B) and 0 (.#(B)) = #(H).
3. If 6 is degree preserving, thdh(H) = Dy(B) for all k € N.
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Proof. 1. and 2. follow from {10, Proposition 3.2.3]. In order to prove 3., note that
for all k e N we have

Dk(H) =sup{|alu: a€ .#(H)} =sup{|6(a)|s: B(a) € #«(B)}
=sup{|bls: b .#(B)} = Dk(B).

The first examples of transfer homomorphisms in the liteeasiarts from a
Krull monoid to its associated monoid of zero-sum sequendgsh is a Krull
monoid having a combinatorial flavor. These ideas were gdiged widely, and
there are transfer homomorphisms from weakly Krull mondid&impler) weakly
Krull monoids (having a combinatorial flavor) and the samius for C-monoids.

Proposition 3.7.Let H be a Krull monoidg: H — .% (P) be a cofinal divisor ho-
momorphism with class group £ %(¢), and let G C G denote the set of classes
containing prime divisors. Le6: .Z(P) — .#(G*) denote the unique homomor-
phism defined bg(p) = [p] forall p € P, and se = 8o ¢: H — B(G").

1. 6 is a transfer homomorphism.

2. For a€ H, we setja| = [¢(a)| and for Se #(G*) we set|S| = S| #+). Then
la|=|6(a)|forallaeH, 8(.#;(H)) =.#;(G*) and0 (.4 (G*)) = 4 (H)
forall k € N. Furthermoreg(H) = e(G*), n(H) = n(G*), andDx(H) = D (G*)
forall k € N.

Proof. 1. follows from [0, Section 3.4]. By definition, we hava| = |6(a)| for all
ac H. Thus the assertions @y(H) follow from Propositior2.7, and the remaining
statements can be derived in a similar way.

The above transfer homomorphigh H — 2(G*) constitutes the link between
the arithmetic of Krull monoids on the one side and zero-sueoty on the other
side. In this way methods from Arithmetic Combinatorics ¢@nused to obtain
precise results for arithmetical invariants describing #rithmetic ofH. For an
overview of this interplay seeJ].

There is a variety of transfer homomorphisms from monoidgeyb-sum se-
quences to monoids of zero-sum sequences in order to singpiécific structural
features of the involved subsets of groups. Below we preseithple example of
such a transfer homomorphism which we will meet again in Bsdjpn 4.9 (for
more of this nature we refer td{]] and to 40, Theorem 6.7.11]). Le® be abelian
and letGy C G be a subset. Fay € Gy we define

&(Go,9) = gcd({vg(B): BE #(Go)}),
and it is easy to check that (for details ség,[Lemma 3.4])
&(Go,9) = ged({vg(A): A€ o/ (Go)})
=min ({vg(A): vg(A) > 0,A€ o (Gp)}) = min({vg(B): vg(B) > 0,B € #(Go)})
=min({ke N: kge (Go\ {g})}) = ged({ke N: kge (Go\ {g})}).
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Proposition 3.8.Let G be abelian and EG1,G, C G be subsets such thalyG
G1 W Gy. For g € Go we set ég) = e(Gp,g) and we define = {e(g)g: g€ G1} U
Gy. Then the map

0: #(G) — (G
B= g[Vg(B)] — I_GI (e(g)g)["g(B)/e(g)] g["Q(B)]
9c61

9eGo geGo
is a transfer homomorphism.

Proof. Clearly,6 is a surjective homomorphism satisfyiﬁgl(lﬂem) ={lzcy}
In order to verify propertyT2) of Definition3.5, letB € #(Gp) andCy,C; € #(Gj)
be such that(B) = C; - C,. We have to show that there dBg,B, € #(Gp) such
thatB = B; - By, 6(B1) = C1, and8(B;) = C,. This can be checked easily.

3.3 The kth Davenport constants: the general case

Let Go C G be a subset, arkie N. Recall thaie(G) = max{ord(g): g € G}. If
G is nilpotent, therG is the direct sum of itg-Sylow subgroups and henegG) =
lcm{ord(g): g € G} = exp(G). Let

e E(Gp) be the smallest integere N such that every sequen&s .7 (Gg) of
length|S| > ¢ has a product-one subsequence of lenGih

e s(Gp) denote the smallest integée N such that every sequen8es .7 (Gg) of
length|S| > ¢ has a product-one subsequence of lerg®).

The Davenport constants, together with the Erdés-Girgeliiv constant(G),
the constantg (G) andE(G), are the most classical zero-sum invariants whose study
(in the abelian setting) goes back to the early 1960s.Kkihdavenport constants
Dk(G) were introduced by Halter-Kocl ()] and further studied in40, Section 6.1]
and 3] (all this work is done in the abelian setting). First restttthe non-abelian
setting were achieved irLf].

If Gis abelian, then W. Gao proved tH&{G) = |G| +d(G). For cyclic groups this
is the Theorem of Erd8s-Ginzburg-Ziv which dates back t611340, Proposition
5.7.9]). W. Gao and J. Zhuang conjectured that the abovdiggnalds true for all
finite groups (B2, Conjecture 2]), and their conjecture has been verified iaraty
of special cases3[ 36, 34, 53]. For more in the non-abelian setting s€é,[79)].

We verify two simple properties occurring in the assumpiofPropositiong.7
and2.8

o If Se #(G) andgo € 1(S), thenh = gy € G is a prime in.#(G) andh-S¢
B(G).
e Clearly, Ic € %4(G) is a prime element 08(G).
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Therefore all properties proved in Propositich§ and 2.8 for Dx(H) anddy(H)

hold for the constant®y(G) anddy(G) (the linearity properties as given in Proposi-
tion 2.7.2 and Propositiod.8.2.(b) were first proved by Freeze and W.A. Schmid in
case of abelian grous[30]). We continue with properties which are more specific.

Proposition 3.9.Let H < G be a subgroup, NG be a normal subgroup, andke
N.

1. di(N) +dy(G/N) < dx;¢-1(G).
2. dk(G) < dg,ny+1(G/N).
3.dk(G) + 1< [G:H](dk(H) +1).
4. dg(G) +1 < k(d(G) +1).

5. Dk(G) < [G:H]Dk(H).

Proof. 1. LetS= (1N)-...- (gsN) € .#;(G/N) with |§ = s=d;(G/N) and let
T=hy-...-hy € 25 (N) with t = di(N). We consider the sequerndé=g;-...-gs-

.-ht € #(G) and suppose that it is divisible 1 -...- S Ty - ... - Ty where
S, Tj € (G)\{1z(G)}, SUPAS) N {01, .-,9s} # 0 andTy-... - Tp|hy-... - for
alli € [1,a and allj € [1,b]. Fori € [1,a], letS € .#(G/N) denote the sequence
obtained fromS by replacing eacly, by gyN and by omitting the elements &
which lie in {hy,...,l}. ThenS,,...,.S € A(G/N)\ {1z} andS;-...- S|S
whencea < ¢ —1. By constructmn we have< k—1 whencea+ b < k+ /-1,
We ¢, 1(G), and|W| = s+t =dx(N) +d¢(G/N) < dk1 - 1(G).

2. We setm = dg, n)+1(G/N) + 1. By (1), we have to show that every sequence
SoverG of length|S > mis divisible by a product ok nontrivial product-one se-
quences. Lef : G— G/N denote the canonical epimorphism and3et.%# (G) be a
sequence of lengti$ > m. By definition ofm, there exist sequenc8s ..., S, (n)+1
such thatS; -...- S (N1 |Sand f(Sy), ..., f(Syn)+1) are product-one sequences
over G/N. Thus, for eactv € [1,dx(N) + 1], there are elements, € N such that
hy € (Sy). ThenT =hy -...-hy ()41 IS @ sequence ovéN, and it hask nontrivial
product-one subsequenchis. .., Ty whose producT; - ... - Ty dividesT. Therefore
we obtaink nontrivial product-one sequences whose product div@les

3. We seim= [G:H] and start with the following assertion.
A. If Se #(G) with |§ > m, then7(S)NH # 0.

Proof of A. LetS=g;-... - gn € .#(G) with |§ = n > m. We consider the
left cosetsgiH,g102H, ..., 01...9wH. If one of these cosets equdts then we
are done. If this is not the case, then there laee [1,m] with k < ¢ such that
O1...0kH=01...0kGk+1-..9/H which implies that,1...g, € H. 0O(Proof ofA)

Now let Se #(G) be a sequence of length| = [G:H](dk(H) + 1). We have
to show thatSis divisible by a product ok nontrivial product-one sequences. By
A, there arely(H) + 1 sequenceS, . .., §; )41 and elementhy, ..., hy, 1)1 € H
such thats, -...- § )41/ Sandh, € 1(S,) for eachv € [1,dk(H) + 1]. By defini-
tion, the sequende, - ... - hy ()41 € 7 (H) is divisible by a product ok nontrivial
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product-one sequences. TherefSie divisible by a product ok nontrivial product-
one sequences.

4. LetSe Z(G) be a sequence of lengtB| = k(d(G) + 1). ThenS may be
written as a produc®=S; - ...- S whereS, ..., S € .Z#(G) with |S,| =d(G)+ 1
for everyv € [1,k]. Then eacl$, is divisible by a nontrivial product-one sequence
T, and henceSis divisible byT; - ... T. Thus by @) we infer thatdy(G) + 1 <
k(d(G) +1).

5.LetA=0p-...-gr € Z(G) withg;...g, =1 andl > [G: H|Dy(H). We show
that¢ > Dy(G). We setd = Dy(H) and consider the letdl-cosetsC; = g;...g;H
for eachj € [1,/]. By the pigeonhole principle there existli; < -+ <igi1 < /¢
such thatG, = --- = Gi,,,. We seths = gi;y1...0i,,, for eachs e [1,d] and
hgi 1= gidHH...gggl...gil,l. Clearlyhy,...,hq,1 € H, andg; --- g, = 1 implies
hi---hgy1 =1 whenceh; -...-hq 1 € Z(H). The inequalityd + 1 > Dy(H) im-
plies thathy-...-hg 1 =S -...- Scy1, where L) # S € B(H) fori € [1k+1].
LetTi € #(G) denote the sequence obtained erntny replacing each occurrence
of hs by gigy1-...- G, for se [1,d] andhg,1 bY Gig, 41+ Qe- Q1. - Qi1
ThenTs,...,Tky1 € #(G) andA=g1-...-9r = T1- ... Tgr1, Which implies that
> Dk(G).

Much more is known for the classical Davenport constént&s) = D(G) and
d1(G) = d(G). We start with metacyclic groups of index two. The followirggult
was proved in$9, Theorem 1.1].

Theorem 3.10.Suppose that G has a cyclic, ind2subgroup. Then

|G| - 1if Gis cyclic

D(G) =d(G) +|G| and d(G)= {2|G| if G is non-cyclic

where G = [G, G]| is the commutator subgroup of G.

The next result gathers upper bounds for the large Daverposgtant (ford(G)

see BY)).
Theorem 3.11.Let G = [G, G] denote the commutator subgroup of G.

1. D(G) < d(G) +2|G'| — 1, and equality holds if and only if G is abelian.

2. If G is a non-abelian p-group, théd(G) < F’2%3F”2|G|.

3. If G is non-abelian of order pq, wheregare primes with p< g, thenD(G) = 2q
andd(G) =q+p—2.

4. If N« G is a normal subgroup with N =2 C,, & C, for some prime p, then

d(G) < (d(N) +2)p—2< —;|G|+p—z.

5. If G is non-cyclic and p is the smallest prime dividi®j, thenD(G) < 2|G|.
6. If G is neither cyclic nor isomorphic to a dihedral groupcntiean wnﬁ odd n,
thenD(G) < 2|G|.
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Proof. All results can be found inJg]: see Lemma 4.2, Theorems 3.1, 4.1,5.1,7.1,
7.2, and Corollary 5.7.

Corollary 3.12. The following statements are equivalent
(a) Gis cyclic or isomorphic to a dihedral group of ord2m for some odd > 3.
(b) D(G) =G|

Proof. If Gis notasin (a), theB(G) < §1|G| by TheorenB.116. If Gis cyclic, then
D(G) = |G| by Lemma3.13. If G is dihedral of order @ for some oddh > 3, then
the commutator subgroup’ of G has ordein and henced(G) = |G| by Theorem
3.10

3.4 The kth Davenport constants: The abelian case

Throughout this subsection, all groups are abelian and béllwritten additively.
We haveG=Cy, @...®Cy,, withr e Ngand 1< ny | ... |ny, r(G) =r is therank
of G andn, = exp(G) is theexponenbf G. We define

r

d*(G) = i;(ni ~1).

If G={0}, thenr =0=d*(G). An stuple(ey,...,es) of elements of5\ {0} is said
to be abasisof Gif G= (e1) ®...® (es). First we provide a lower bound for the
Davenport constants.

Lemma 3.13.Let G be abelian.
1. Dk(G) = 1+ dk(G) for every ke N.
2.d*(G) + (k—1)exp(G) < dk(G).
Proof. 1. Letk € N. By Proposition2.81, we have 4 dy(G) < Dy(G). Obviously,
the map
Y M (G) = #(G)\ {1}, givenby ¢(S) =(-0(9)-S,
is surjective and we haJ@/(S)| = 1+ [S| for everySe .#(G). Therefore we have
1+ dy(G) = Dx(G).

2. Suppose thd = C,, @...®Cy,, withr e Npand 1< ny| ... [n. If (er,...,€&)
is a basis of5 with ord(g) = n; for all i € [1,r], then

r
5= g k-1l [t
i

is not divisible by a product ok nontrivial zero-sum sequences whentéG) +
(k—1)exp(G) = |9 < dk(G).
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We continue with a result on tHeh Davenport constant which refines the more
general results in Subsecti@rb. It provides an explicit formula fody(G) in terms
of d(G) (see 0, Theorem 6.1.5]).

Theorem 3.14.Let G be abelianexp(G) = n, and ke N.
1. Let H< G be a subgroup such that&H @ C,,. Then

d(H)+kn—1< dy(G) < (k—1)n+maxd(G),n(G) —n—1}.

In particular, if d(G) =d(H)4+n—1 and n(G) <d(G)+n+1, then dy(G) =
d(G)+ (k—1)n.

2. If r(G) <2, then dy(G) =d(G) + (k— 1)n.

3. If Gisa p-group andD(G) < 2n—1, then dy(G) = d(G) + (k— 1)n.

For the rest of this section we focus on the classical DavergomstantD (G).
By Lemma3.132, there is the crucial inequality

d*(G) < d(G).

We continue with a list of groups for which equality holds.€Tlfst is incomplete
but the remaining groups for whiai(G) = d(G) is known are of a similar special
nature as those listed in Theoréhii3 (see [6] for a more detailed discussion).
In particular, it is still open whether equality holds fol gtoups of rank three (see
[76, Section 4.1]) or for all groups of the for@ = C], (see 7).

Theorem 3.15.We havel*(G) = d(G) in each of the following cases

1. Gis a p-group or has ranKG) < 2.

2. G=K&Cm where kme N, pe P a prime, m a power of pand K G is a
p-subgroup withd(K) < m—1.

3. G=CZ®CmnWhere me {2,3,4,6} and ne N.

Proof. For 1. see4(] (in particular, Theorems 5.5.9 and 5.8.3) for proofs argd hi
torical comments. For 2. se&7, Corollary 4.2.13], and 3. can be found & pnd
[76, Theorem 4.1].

There are infinite series of grou@swith d*(G) < d(G). However, the true reason

for the phenomenod*(G) < d(G) is not understood. Here is a simple observation.
Supposethas =Cpn, @...®Cq with1<nq|...|n, | C [1,r], and letG’ = @jc|Cy,.
If d*(G') < d(G'), thend*(G) < d(G). For series of groupS which have rank four
and five and satisfd*(G) < d(G) we refer to {4, 42]. A standing conjecture for
an upper bound ob(G) states that(G) < d*(G) + r(G). However, the available
results are much weaker(], Theorem 5.5.5],4]).

The remainder of this subsection is devoted to inverse problwith respect to
the Davenport constant. Thus the objective is to study tletstre of zero-sum free
sequenceSwhose length$S are close to the maximal possible val(€).
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If Gis cyclic of ordem > 2, then an easy exercise shows tB& zero-sum free
of length|S = d(G) if and only if S= g™~ for someg € G with ord(g) = n. After
many contributions since the 1980s, S. Savchev and F. Chdd finally prove a
(sharp) structural result. In order to formulate it we nemahe more terminology. If
g € Gis anonzero element of order ¢gj = n and

S=(mg)-...-(n,g), where £eNy and ny,...,n; €[1,n],

we define
N+...4+Ny
—

Obviously,Shas sum zero if and only |fS|g € No, and thendex of Ss defined as

1Slg =

ind(S) = min{||S)|g: g € Gwith G=(g)} € Q0.

Theorem 3.16.Let G be cyclic of ordefG| =n> 3.

1. If Sis a zero-sum free sequence over G of lef§jth (n+1)/2, then there exist
g € G withord(g) = n and integerd = my,...,mg € [1,n— 1] such that

e S= (mlg)(m‘ag)
e M+...+mg<nandX(S)={vg: ve[l,m+...+mgl}.

2.1fU € &7(G) has lengthU| > | 5] + 2, thenind(U) = 1.

Proof. 1. See T1] for the original paper. For the history of the problem andeob
in the present terminology se&7, Chapter 5.1] or49, Chapter 11].

2. This is a simple consequence of the first part (8&eTheorem 5.1.8]).

The above result was generalized to groups of the f@m C, ® Cy, by S.
Savchev and F. Chen7f]). Not much is known about the number of all minimal
zero-sum sequences of a given group. However, the abovk aflsws to give a
formula for the number of minimal zero-sum sequences oftteAg | 5| + 2 (this
formula was first proved by Ponomarenkd] for ¢ > 2n/3).

Corollary 3.17. Let G be cyclic of ordefG| =n> 3, and let/ € Ug] +2, n} . Then
the number of minimal zero-sum sequencesds (G) of length? equals®(n)p,(n),
where®(n) = |(Z/nZ)*| is Euler's Phi function angy(n) is the number of integer
partitions of n into/ summands.

Proof. Clearly, every generating elemegte G and every integer partition =
my + ...+ my gives rise to a minimal zero-sum sequette= (mMg) - ... - (Mg).
Conversely, iU € o7(G) of length|U| = ¢, then Theoren3.162 implies that there
is an elemeng € G with ord(g) = n such that

U=(mg)-...-(myg) where my,....mye[ln—1withn=m+...4+m,. (%)

SinceG has precisely®(n) generating elements, it remains to show that for every
U € &7(G) of length|U| = ¢ there is precisely one generating elemgrt G with
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lU|lg=1. LetU be asin(x), and assume to the contrary that thereaaeg[2,n — 1]
with gcd(a,n) = 1 andm, ..., m, € [1,n] such that; +...+m, = nand

U= (my(ag))-...- (m(ag)).
Leta € [2,n—1] suchthatd =1 (modn). Since

N=m+...+m >vg(U)+avag(U)+2(¢ —vg(U) —vag(U))
=20 —vg(U)+ (a—2)vag(U) and

n=nt+...+n > avg(U)+vag(U) +2(¢ —vg(U) — vag(V))
=20+ (d —2)vg(U) —vag(V),

it follows that

(a—1)n=n+(a-2)n
> 20 —vg(U) + (a—2)vag(U) + (a— 2)(2¢ 4 (& — 2)vg(U) — vag(U))
= (a—-1)20+ ((a—2)(d~2) —1)vg(V),

whencea= 2,8’ = ™! or & = 2,a= "! because > | J] + 2. By symmetry, we
may assume that = 2. Thenvg(U) > 2/ —n > ZLgJ +4—n> 3, and thus >
avg(U) > 321, a contradiction.

The structure of all minimal zero-sum sequences of maxieraythD(G) has
been completely determined for rank two groupgsl([33, 75, 68]), for groups of
the formG = C, & C, ® Cyn With n > 2 ([76, Theorem 3.13]), and for groups of the
formG = CS@CZn with n > 70 ([8, Theorems 5.8 and 5.9]).

4 Multiplicative Ideal Theory of Invariant Rings

After gathering basic material from invariant theory in Settion4.1we construct
an explicit divisor theory for the algebra of polynomial @mants of a finite group
(see Subsection.?). In Subsectiont.3we present a detailed study of the abelian
case as outlined in the Introduction. In Subsectiofwe associate a BF-monoid
to aG-module whoséth Davenport constant is a lower bound for #ile Noether
number.

4.1 Basics of invariant theory

Letn=dimp(V) and letp: G — GL(n,F) be a group homomorphism. Consider
the action ofG on the polynomial rind[x, . .., Xs] viaFF-algebra automorphisms in-
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duced byg-x; = 3, p(g~1)jix. Taking a slightly more abstract point of departure,
we suppose that is aG-module (i.e. we suppose thatis endowed with an action
of G via linear transformations). Choosing a basi¥/o¥ is identified withF", the
group GL(n,F) is identified with the group G{V) of invertible linear transforma-
tions ofV, andF[V] = F[xy,...,Xs| can be thought of as the symmetric algebra of
V*, the dualG-module ofV, in which (x,...,Xy) is a basis dual to the standard ba-
sis inV. The action oV* is given by(g- x)(v) = x(p(g~1)v), whereg € G, x € V¥,
v € V. Note that, ifF is infinite, thenF[V] is the algebra of polynomial functions
V — T, and the action o6 onF[V] is the usual action on functiods— F induced
by the action of5 onV via p. Denote byF (V) the quotient field oF V], and extend
theG-action onF[V] to F(V) by

fi_g-f1

g-—=-—~ forfy,f, €FV] andgeG.
f g-f2

We define
F(V)¢={feF(V):g-f=fforalgeG}cF(V) and F|V|®=FV)°nNFV].

ThenF(V)® c F(V) is a subfield and®|V]® c F[V] is anF-subalgebra off|V],
called thering of polynomial invariantof G (the group homomorphisp : G —
GL(V) giving the G-action onV is usually suppressed from the notation). Since
every element oF (V) can be written in the fornfy f, 1 with f; € F[V] and f, €
FV]C, it follows thatF (V)€ is the quotient field o]F[V]%. Next we summarize some
well-known ring theoretical properties 8fV]® going back to E. NoetheB).

Theorem 4.1.Let all notations be as above.

1. FV]® c F|V] is an integral ring extension an#V]€ is normal.

2. F[V] is a finitely generated[V]®-module, and?[V]® is a finitely generated-
algebra(hence in particular a noetherian domain

3. F[V]C is a Krull domain with Krull dimensiomlimg (V).

Proof. 1. To show thai?[V]® is normal, consider an elemeftc F(V)C which is
integral oveil"[V]C. Thenf is integral oveif[V] as well, and sinc&[V] is normal,
it follows that f € F[V]NF(V)® =F[V]°.

To show thatF[V]® c FV] is an integral ring extension, consider an element
f € F[V] and the polynomial

O = rL(X—gf) e F[V][X]. 2)

ge

The coefficients ofp; are the elementary symmetric functions (up to sign) evatliat
at(gf)ges, and hence they are F{V]®. Thusf is a root of a monic polynomial with
coefficients inFV]C.

2. Fori € [1,n], we consider the polynomial®, (X) (cf. (2)), and denote by
A C FV]® c F|V] theF-algebra generated by the coefficientsdf, ..., @,. By
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definition,Ais a finitely generateti-algebra and hence a noetherian domain. Since
X1,...,X%, are integral oveA, F[V] = Alxy,...,Xa] is a finitely generated (and hence
noetherian)A-module. Therefore thA-submoduleF[V]® is a finitely generated-
module, and hence a finitely generateédlgebra.

3. By 1. and 2.F[V]® is an normal noetherian domain, and hence a Krull do-
main by Theoren?.1 SinceF[V]® C F[V] is an integral ring extension, the Theo-
rem of Cohen-Seidenberg implies that their Krull dimensionincide, and hence
dim(FV]®) = dim(F[V]) = dimg (V).

The algebr&[V] is graded in the standard way (namely, de@= ... =degx,) =
1), and the subalgebRiV € is generated by homogeneous elementsFFaubspaces
S T C FV] we write ST for the F-subspace iif[V] spanned by all the producss
(se SteT), and writeS = S... S (with k factors). The factor algebra &fV] by
the ideal generated &S{V]E is usually called thalgebra of coinvariantdt inherits
the grading off[V] and is finite dimensional.

Definition 4.2. Letk € N.

1. Let B«(G,V) be the top degree of the factor spaep/|€/(F[V]$)<+1, where
FV]¢ is the maximal ideal off[V]® spanned by the positive degree homoge-
neous elements. We call

B(G) = sup{B«(G,W) : W is aG-module oveif'}

thekth Noether numbeof G.
2. Letby(G,V) denote the top degree of the factor algebpd] /(F[V]$)¥F|V] and
set
bk(G) = sup{bk(G,W) : W is aG-module oveiF} .

In the special caske= 1 we set
B(va) = Bl(va) 7B(G) = Bl(G) ) b(GaV) = bl(va) 7andb(G) = bl(G)v

andB(G) is theNoether numbeof G. If {f1,..., fm} and{hy,...,h } are two min-
imal homogeneous generating setsFd#]®, thenm = | and, after renumbering if
necessary, déd) = degh;) for all i € [1,m] ([61, Proposition 6.19]). Therefore by
the Graded Nakayama Lemm&{] Proposition 8.31]) we have

B(G,V)=max{ded f):ie[l,m]},

where{fy,..., fm} is a minimal homogeneous generating sét €. Again by the
Graded Nakayama Lemmia(G, V) is the maximal degree of a generator in a mini-
mal system of homogeneous generatof@vf as arf[V]®-module. If chafF) 1 |G|,
then by [L1, Corollary 3.2] we have

B(G)=b(G)+1 and B(GV)<b(GV)+1, (3)

where the second inequality can be stricGlis abelian, thef (G, V) andby(G,V)
will be interpreted akth Davenport constants (see Propositior).



32 Kalman Cziszter and Matyas Domokos and Alfred Gengler

Theregular G-module \g4 has a basigey: g € G} labelled by the group ele-
ments, and the group action is givendpye, = egn for g,h € G. More conceptually,
one can identifyveg With the space of-valued functions o1, on whichG acts
linearly via the action induced by the left multiplicatioctan of G on itself. In this
interpretation the basis elemesgtis the characteristic function of the s} C G.

It was proved in 73 that, if cha(F) = 0, then(G) = B(G,Vieg). If F is alge-
braically closed, each irreducib&module occurs iVeg as a direct summand with
multiplicity equal to its dimension.

Theorem 4.3.

1. If cha(F) t |G|, thenB(G) < |G|.
2. Ifchal(T) | |G|, thenf(G) = co.

Proof. 1. The case chéF) = 0 was proved by E. Noethe6J in 1916, and her
argument works as well when the characteristi &f greater thafiG|. The general
case was shown independently by P. Fleischmaahgnd J. Fogarty4d] (see also
[62, Theorem 2.3.3] andd[7]. For 2. see 0.

Bounding the Noether number has always been an objectivevafiant theory
(for recent surveys we refer t@], 60]; degree bounds are discussed ir7,[78,
26, 10, 54]; see [LE] for algorithmic aspects). Moreover, the main motivation t
introduce thekth Noether numberfy(G) ([11, 12, 13]) was to bound the ordinary
Noether numbeB(G) via structural reduction (see Subsectiof).

4.2 The divisor theory of invariant rings

LetG c GL(V) and) € Hom(G,F*). Then

FV]®X = {f e F|V]: g- f = x(g)f forallge G}

denotes the space mlative invariants of weighk, and we set

F[V]G,rel — U F[\/]G’X.

XEHom(G,F*)
Clearly, we hav&[V]® ¢ FV]®' ¢ FV], and to simplify notation, we set

H= (F[V]G\{O})red, D= (F[V]G’rel \{0})red, and E = (F|V]\{0})req-

SinceF|V] is a factorial domain wittF* as its set of unitsE = .7 (P) is the free
abelian monoid generated By= {F*f: f € F[V]isirreduciblg. The action ofG
on F[V] is via F-algebra automorphisms, so it induces a permutation acfidh
on E andP. Denote byP/G the set ofG-orbits in P. We shall identifyP/G with
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a subset oE as follows: assign to th&-orbit { f1,..., f;} the element;... f, € E
(herefq,..., f, € P are distinct).

We say that a non-identity elemegtc G C GL(V) is a pseudoreflectioif a
hyperplane inV is fixed pointwise byg, andg is not unipotent (this latter condi-
tion holds automatically if chéF) does not dividgG|, since then a non-identity
unipotent transformation cannot have finite order). We teey Hon?(G,F®) <
Hom(G,F*) the subgroup of the character group consisting of the ckenathat
contain all pseudoreflections in their kernels. For epehP, choose a representa-
tive p € F[V] in the associate clags= F*f. We haveX(F|V]) = {pF[V]: p € P}
becausé V] is factorial. We sets = vp: q(F[V]*) =F(V)* — Z, and for a subset
X CF(V) we writevp(X) =inf{vp(f): f € X\ {0}}. Theramification indeof the
prime idealpF[V] overFV|€ is e(p) = vp(pF[V] NF[V]®). The ramification index
e(p) can be expressed in terms of thertia subgroup

lhb={geG:g-f—fepFV] foral feFV]}.

SinceV* is a G-stable subspace ifijV], the inertia subgroup, acts trivially on
V*/(V* N PF[V]). On the other hant}, acts faithfully onv*. So if I, is non-trivial,
thenV* N AFV] # 0, implying § € V*. Clearly |, must act trivially on the hyper-
plane? () = {ve V: p(v) = 0}, and hence acts via multiplication by a charac-
ter 6, € Hom(lp,F*) on the 1-dimensional factor spat/ ¥ (). So kefdp) is
a normal subgroup af, (necessarily unipotent hence trivial if cij 1 |G|) and
Ip = ker(dp)Z decomposes as a semi-direct product of(&r and a cyclic sub-
groupZ consisting of pseudoreflections fixing pointwiggp). SoZ = 1,/ ker(dp)
is isomorphic to a finite subgroup &*.

The next Lemmal.4is extracted from Nakajima’s papeiq].

Lemma 4.4.

1. We have the equalityf p) = |Z|.
2. vp(F[V]®X) < g(p) for all x € Hom(G,F*).
3. vp(F[V]&X) = 0for all x € Hom®(G,F*).

Proof. 1. By [59, 9.6, Proposition (i)], we have thatp) = v,(BF[V]NF[V]'?), the
ramification index of the prime ideqlFTV] over the subring of,-invariants. Thus

if 1, is trivial, thene(p) = 1, and of courséZ| = 1. If |, is non-trivial, then as it
was explained above,iS a linear form, which is a relativig-invariant with weight
5, %, hencep? is anl p-invariant, implyingvp(fFV] NF[V]'?) < |Z|. On the other
handF[V]'» is contained iff[V]#, and the algebra of invariants of the cyclic group
Z fixing pointwise the hyperplan# (p) is generated by/# and a subspace of*
complementary t& p. Thusvp(BF[V]NFV]'®) > vp(BFV]NFV]?) = |Z], imply-
ing in turn thate(p) = |Z|.

2. Take arh € F[V]® with e(p) = vp(h). Note thatrq(h) = vp(h) andvg(F[V]®X) =
vp(F[V]&X) holds for allg € G- p, sinceF[V]®X is aG-stable subset iff [V]. Set
S= {ti: f €FV], teF[V]®\pFV]}. Thisis aG-stable subring imy(F[V]) con-
taining[F[V]. ConsiderSX = Snq(F[V])X, whereq(F[V])X = {s€ q(F[V]): g-s=
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x(g)s forall g€ G}. Thenvg(SX) = vg(F[V]SX) for all g € G- p, since for any
denominatot of an eIementI— of Swe havevq(t) = 0. Now suppose that contrary
to our statement we hav&p) < vp(F[V]®X), and hencerg(h) < vq(SX) for all
g€ G- p. In particular this means th&{V]SX # {0}. Thenvq(h~1SX) > 0 holds for
all g€ G- p. Now Sis a Krull domain with%(S) = {§S: q € G- p}, thush™1SX c S
(see the discussion after Theor@rt), implying thatS¥ ¢ hS ClearlyhSnSX = hsX,
so we conclude in turn th& C hSt. Iterating this we deducf} # SX c Ny_;h"S,
a contradiction.

3. It is well known thatF[V]®X = {0} (see the proof ofA4. below). Write
v = vp(F[V]®X). Take f € F[V]®X with vp(f) = v, say f = p'h, whereh € F|V].
Note that bothf and [ are relative invariants of,, hence so ish. Therefore
g-heF*h, andplgy, (g-h—h) forall g€ I, implying thath is anl,-invariant. Any
X € HomP(G,F*) containsl, in its kernel (the unipotent normal subgroup (&)
of I has no non-trivial characters at all, afid= |/ ker(dp) consists of pseudore-
flections). Thusf is I p-invariant as well. Thereforp”’is | ,-invariant, so its weight
oy is trivial. Consequently the ordér| of o, in Hom(lp,F*) dividesv. We have
e(p) = |Z| by 1., and on the other hantk e(p) by 2., forcingv = 0.

For a relative invariant, we denote byw(f) the weight of f. This induces
a homomorphismv: D — Hom(G,F*) assigning taFf*f € D the weightw(f) of
the relative invarianf. Clearly,w extends to a group homomorphism q(D) —
Hom(G,F*). The kernel ofw consists of elements of the for(@*h)~1F* f, where
f,h € F[V]®X for some charactey. Now f /h belongs tdf(V)®, which is the field
of fractions of F[V]®, so there existf;,h; € F[V]® with f/h = f;/h;, implying
(Feh)~IF*f = (F*hy)~1F*f; € q(H). Thus kefw) = q(H). Thereforew induces a
monomorphisnw: q(D)/q(H) — Hom(G,F*).

Theorem 4.5. Let GC GL(V), H = (F[V]®\ {0} )req and D= (F[V]®"®"\ {0} )req-

1. The embedding&V]®\ {0} AN FV]&reh {0} & F[V]* are cofinal divisor
homomorphisms.

2. Dis factorial, P/G C E is the set of prime elements in D, a#d¢) is a torsion
group.

3. The monoid B = {gcdy(X): X C H finite} C D is free abelian with basis
{g®9: q € P/G}, where €q) = min{vgq(h): g |p h € H}, and the embedding
H — Dy is a divisor theory.

4. We have B= {f € D: w(f) € HonP(G,F*)} andW |4(py) /qm): € (FV]®) =
a(Do)/q(H) — Hom?(G,F*) is an isomorphism.

Theoremd.5immediately implies the following corollary which can beuftd in
Benson’s book ¢, Theorem 3.9.2]) and which goes back to Nakajiid [see also
[27] for a discussion of this theorem).

Corollary 4.6 (Benson-Nakajima). The class group off[V]€ is isomorphic to
HomP(G,F*), the subgroup of the character group consisting of the cbians that
contain all pseudoreflections in their kernels.
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Proof (of Theorer.5). 1. SinceF[V]® =F(V)®NF V], the embedding/o ¢ : F[V]® —
F[V] is a divisor homomorphism, and henges a divisor homomorphism. Further-
more, if the quotient of two relative invariants lieshfV], then it is a relative invari-
ant whencay is a divisor homomaorphism. In order to show that the embegidamne
cofinal, let 0+ f € F[V] be given. Thenf* = y.caf € FIV|® and f | f*, so the
embeddingp o ¢ is cofinal and hence¢ andy are cofinal.

2. Suppose thaffi,..., fr} C F[V] represents &-orbitin P. Theng- (f1... )
is a non-zero scalar multiple df ... f;, hencef;... f, € IF[\/]Gv’e'. This shows that
P/G C Eisin fact contained ifD. Conversely, take an irreducible elem&hf in the
monoidD (so f is a relative invariant). Take any irreducible divisfarof f in F[V].
Sinceg- f e F*f, the polynomiad- f1 is also the divisor of . Denoting byf, ..., f;
polynomials representing tt@-orbit of F* f1 in P, we conclude that; ... f; divides
f in F|V], hencelF*f;... f; dividesF*f in D as well, soF*f;... f, = F*f. This
implies thatD is the submonoid oE = .% (P) generated b{?/G.

In order to show tha# (¢ ) is a torsion group, let € D be given. We have to find
anme N such thatf ™ € H. Clearly, this holds wittmbeing the order in Hoti@, F*)
of the weight of the relative invariant correspondingto

3. Since%(¢) is a torsion group, Propositioh.2 implies that the embedding
H < Dg is a divisor theory, and thdg is free abelian with basig®¥: q e P/G},
wheree(q) = min{vq(h): q|p h € H} (note that ifq € P/G is theG-orbit of p € P,
thenvg(h) = vp(h), where the latter is the exponentpfn h € E = .7 (P)).

4. It remains to prove the following three assertions.

Al. Dg={f eD: w(f) € Hom’(G,F*)}.
A2. w(Dg) = Hom®(G,F*).
A3. W |4y /qH) " d(Do)/q(H) — w(Do) is an isomorphism.

Proof of ALl. SetD® = {f € D: w(f) € Hom’(G,F*)}. We show firstDg  D°.
Let x be a character o6, and assume that(g) # 1 for some pseudoreflection
g € G. Let f be a relative invariant witv(f) = x. Then for any with gv=v we
havef(v) = f(g~tv) = (gf)(v) = x(g) f(v), hencef(v) = 0. Sol [ o wherel
is a non-zero linear form oY that vanishes on the reflecting hyperplangobe-
noting byl =14, ...,I; representatives of th8-orbit of F*I, we find that the relative
invariantq=1; ..., dividesf. Thusgcg){ f € D |w(f) = x} # 1. Now suppose that
for somelF*k € Dy we have thatv(k) does not belong to HoMG,F*). By defini-
tion of Dg there existhy,...,hy € D with gccy(hg,...,hy) = 1 andkhy,... kh, €
H. Clearly w(hj) = w(k)~1 ¢ Hom®(G,F*), hence by the above considerations
gcdy(hy,. .., hn) # 1, a contradiction.

Next we showD? c Dy. Letd be an element in the monoi2. By Lemma4.4.3
for any prime divisorp € P of d there exists amhy, € D such thaw(hp) = w(d) !
andpte hp. Denote bym > 1 the order ofv(d) in the group of characters. Clearly
d™ e H anddh, € H. Moreover, gcd(d™,dh,: pe P, plgd)=d.

Proof of A2. The statement follows fror1, as soon as we show tHaV|SX £
0 for all x € Hom(G,F*). For any charactey € Hom(G,F*) the groupG =
G/ ker(x) is isomorphic to a cyclic subgroup Bf, hence its order is not divisible by
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charF). MoreoverG acts faithfully on the field = F(V)keX), with T® = F(V)C.
By the Normal Basis Theoreril, as aG-module ovefT € is isomorphic to the regu-
lar representation @B, hence contains the representatioas a summand with mul-
tiplicity 1. This shows in particular that® contains a relative invariant of weigjt
Multiplying this by an appropriate element®f NF|V] = F[V]® we get an element
of FV]®X. So all characters d& occur as the weight of a relative invariantiiv].

Proof of A3. Sincew: q(D)/q(H) — Hom(G,F*) is a monomorphism, the
Mapw |qpg) /q(H) - 9(Do)/d(H) — w(q(Do)) is an isomorphism. Note finally that
w(q(Do)) = q(W(Do)) = W(Do).

As already mentioned, not only the class group but also tteilolition of prime
divisors in the classes is crucial for the arithmetic of tbendin. Moreover, the class
group together with the distribution of prime divisors iettiasses are characteristic
(up to units) for the domain. For a precise formulation wetheee more definition.

LetH be a Krull monoidHeq— % (£?) a divisor theory, and l&b be an abelian
group and(mg)gec be a family of cardinal numbers. We say théithascharac-
teristic (G, (mg)gec) if there is a group isomorphism® : G — ¢'(H) such that
my = | N ®(g)|. Two reduced Krull monoids are isomorphic if and only if they
have the same characteristi¢([ Theorem 2.5.4]). We pose the following problem.

Problem 1.Let G be a finite groupF be a field, and/ be a finite dimensional
F-vector space endowed with a linear action®fDetermine the characteristic of

FV]C.

Let all assumptions be as in Problénand suppose further th&t acts trivially
on one variable. TheR[V|® is a polynomial ring in this variable and hence every
class contains a prime divisor b9, Theorem 14.3].

4.3 The abelian case

Throughout this subsection, suppose that G is abelias,algebraically closed,
andcharF) {|G|.

The assumption on algebraic closedness is not too regtyjciince for any field
IF the setF[V]® spans the ring of invariants over the algebraic clo§uas a vector
space oveF. The assumption on the characteristic guarantees that &verodule
is completely reducible (i.e. is the direct sum of irredleiG-modules). The dual
space/* has abasi$x,, ..., xn} consisting ofG-eigenvectors whenae x; = xi(9)Xi

~

for all i € [1,n] wherexa,...,xn € Hom(G,F*). We setG = Hom(G,F*), Gy =
{X1,-..,Xn} C G, and note tha = G. Recall that a completely reducitte module
W (for a not necessarily abelian grot) is calledmultiplicity freeif it is the direct
sum of pairwise non-isomorphicirreducittiemodules. In our casé is multiplicity

free if and only if the charactepg, . . ., xn are pairwise distinct.
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It was B. Schmid ([3, Section 2]) who first formulated a correspondence be-
tween a minimal generating systemIgffi/]® and minimal product-one sequences
over the character group (see alsdl]). The next proposition describes in detail
the structural interplay. In particular, Propositidrv.2 shows that all (direct and
inverse) results on minimal zero-sum sequences Byvefsee Subsectioriz3 and
3.4) carry over toeZ (M®).

Proposition 4.7.Let M C F[xy,...,X%n] be the multiplicative monoid of monomials,

Y: M — Z(Gy) be the unique monoid homomorphism definedipg) = x; for
alli € [1,n], and let M® C M denote the submonoid of G-invariant monomials.

1. FV]® has M° as anF-vector space basis, aritfV]® is minimally generated as
anTF-algebra by (M©).

2. The homomorphismy: M —.%(Gy) and its restrictiony | ye : M€ — B(Gy)
are degree-preserving transfer homomorphisms. MgredVI@r,is a reduced
finitely generated Krull monoid, and’(M®) = ¢1(/ (Gv)).

3. Y| e is anisomorphism if and only if V is a multiplicity free G-nubel

4. B(G,V) = Di(M®) = Dy (Gy) and Bx(G) = Di(G) for all k € N.

Proof. 1. Each monomial spans@stable subspace if{V], hence a polynomial is
G-invariant if and only if all its monomials ai@-invariant, sai® spangf[V]®. The
elements oM® are linearly independent, therefd?®/]® can be identified with the
monoid algebra oM® overF, which shows the second statement.

~

2.M and.#(Gy) are free abelian monoids agdmaps primes onto primes. Thus
y: M- ﬁ(é\/) is a surjective degree-preserving monoid homomaorphisnitasd
a transfer homomorphism. Let: ﬁ(é) — G be the monoid homomorphism de-
fined byr(x) = x for all x € G. Then kefm) = %(G). Taking into account that for
amonomiame M G acts on the spadémvia the charactern(y(m)), we conclude
that for a monomiam € M we have tham € M if and only if ¢(m) € Z(Gy).
This implies that the restrictioy | e of the transfer homomorphisi is also a
transfer homomorphism. Therefo® is generated by7 (M®) = ¢~1(«/ (Gv)).

Sincegf(é\/) is finite, andy has finite fibers, we conclude that the monbif is
finitely generated. Sinck is factorial andF[V]® c F[V] is saturated by Theorem
4.5, it follows that

MNq(M®) c MNFV]Nq(FV]®) c MNFV]® = M®

whenceM® ¢ M is saturated and thid® is a Krull monoid.
3.V is a multiplicity freeG-module if and only ifxs,.. ., X are pairwise distinct.

Sincey: M — Z#(Gy) maps the primesy, ..., X, of M onto the prime, ..., Xn
of ﬁ‘(é\/), Y is an isomorphism if and only i1, ..., xn are pairwise distinct.

4. Letk € N and M¢ = M®\ {1}. Then M®\ (M®)*1 = _#(M®). Since
Ylye: MG — %(év) is degree-preserving transfer homomorphism, Propositio8
implies thatDy(MS) = D(Gy). SinceF|[V]C is spanned byMS, (F[V]S)k1 is
spanned b)(Mf)k”. Therefore the top degree of a homogeneGtiavariant not
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contained in(F[V]%)k*1 coincides with the maximal degree of a monomial in
ME\ (M$)kHL = 4 (M®). ThusB(G,V) = Dx(M®). For thekth Noether number
Bx(G) we have

Bk(G) = sup{ B(G,W) : W is aG-module oveif'}
= sup{Dx(Gw): W is aG-module oveif'} = Dy(G)

because for the regular representatifyg we haveévreg =G.
Recalling the notation of Theorem5, we have

H=(FIV]®\{0})rea and Do= {g[(D:(XX): X C H finite} € D = (F[V]®™®\ {0})req.

FurthermoreM C F|V] = F[xq,..., %] is the monoid of monomialdy® = M N
F[V]®, and we can viewM as a submonoid off and thenM® = M NH. Since
M C H is saturatedV = q(M)NH, and

a(M)/a(M®) =q(M)/q(MNH) =q(M)/(a(M)Na(H)) =q(M)a(H)/q(H) € a(D)/a(H),
we considet;(M)/q(M®) as a subset af(D)/q(H).

Proposition 4.8. Let all notation be as above and seyM M N Dy.

1. My C Dy is divisor closed whence Mis free abelian, ands/ (M) = M N
o (Do) = [ gy,

2. We have @) = min{ke N: xKe (xj | j #i)}.

3. HorP(p(G),F*) is generated by{x™, ... x2 )} and FxE*Y ... x§] =
F[V]®t, where G denotes the subgroup piG) generated by the pseudoreflec-
tionsinp(G).

4. The embedding ¥ Mg is a divisor theory,

W |qMo)/ame) - € (M) = a(Mo)/q(M®) — Hom’(p(G), F*)

is an isomorphism, anai(%'(M®)*) = {x00 ... x5y,
Proof. 1. If the product of two polynomials ifi[V] has a single non-zero term, then
both polynomials must have only one non-zero term. ThuabpiE M for some
a,b € D, then botha andb belong toM. HenceM c D is divisor closed implying
thatMg C Dy is divisor-closed. Therefore/(Mg) = M N %7 (D).

By Theorem¥.5.3, o7 (Do) = {q®9: q € «/(D)}. The divisor closedness &1
in D implies that ifg®% € M, thengq € MN.#7 (D) = /(M) = {x1,...,%}. Thus
MN./(Dg) = (X sy,

2. Fori € [1,n], we have

e(x) = min{vy (h): % |[p h,h € H} = min{vy (M): X |[p mme M®},
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where the second equality holds because fon alH we have

vx; (h) = min{vy (m): m ranges over the monomials bf. Note that a monomial
m="x* lies in M if and only if ﬂ{‘:lxi[a‘] is a product-one sequence over
G if and only if X = ;i X; - Thus mir{v, (m): x [p mme M®} = min{k €

N: xke (xj | #0))

3. By Theorem4.5.4, Hon?(p(G),F*) = w(Dg) and hence Hof{p(G),F*)
is generated byv(«7(Dg)). Thus by 1., it remains to show thaét (<7 (Dy))) =
(w(e7 (Mg))). Sinces? (Mg) C 7 (Do), it follows that(w(<7 (Dg))) D (W(</ (Mp))).
To show the reverse inclusion, let <7 (D). For any monomiai occurring ina,
we havew(m) = w(a). By Theorem4.5.4,Dg = {f € D: w(f) € Hom’(p(G),F*)}
whencem € MN Dy = Mg and clearlyw(m) € (w(.%” (Mo))).

Recall that each monomial ifV] spans &-invariant subspace. Thuse F[V]
is Gy-invariant if and only if all monomials of are G;-invariant. Furthermore, a
monomialm is Gz-invariant if and only ifw(m) containsG; in its kernel; equiva-
lently (by the characterization @) m € M N Dg = Mg. ThusF[V]®! is generated
by o7 (M) and hence the assertion follows from 1.

4. SinceM ¢ D, My € Dg andM® ¢ H are divisor closed and since the embed-
dingH c Dg is a divisor theory (Theorerh.5.4), M® — My is a divisor homomor-
phism into a free abelian monoid. Late Mg. Thenm € Dg and there is a finite
subset ¢ H such tham= gcq)0 (Y). LetX € DonNM = Mg be the set of all mono-
mials occurring in somg € Y. Thenm = gcd, (X) = gcdy, (X), where the last
equality holds becausddg C Dy is divisor closed.

Restricting the isomorphism

W |q(Do)/atH) * € (FV]®) = a(Do)/a(H) — HomP(p(G), F*)
from Theoremt.5 we obtain a monomorphism

W oMoy /qme) - € (M) = q(Mo)/q(M®) — HomP(p(G),F*).

By 1. and 3., the image contains the generating g§t%, ..., xa*'} of the group
HomP(p(G),F*) and hence the above monomorphism is an isomorphism. The last
statement follows from 1. byi(%' (M®)*) = (.7 (Mo)).

Proposition 4.9. Let M C F[x, .. .,Xs] be the multiplicative monoid of monomials,
and M® C M the submonoid of G-invariant monomials.

1. Every class 0¥ (F[V]®) contains a prime divisor.
2. We have the following commutative diagram of monoid hoonphisms
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61 wy

#(¢(H)) —— #(HomP(p(G),F*))

/

B(Gv) W

I

B(€M®))

where

e 6, and 6, are transfer homomorphisms of Krull monoids as given in Bgip
tion 3.7.

e wj is the extension to the monoid of product-one sequenceg gfrttup iso-
morphismw |, p,) /qH) 9iven in Theorer.5.4

e W, is the extension to the monoid of product-one sequencesg oésfriction
to (M®)* of the group isomorphisfv lq(Mo)/a(mS) given in Propositiort.8

e (U is given in Propositiont.7.

e v will be defined below (indeed, is a transfer homomorphism as given in
Proposition3.8).

3. 1fGy = G, then every class &f (M®) contains a prime divisor.

Proof. 1. By Propositiont.7.1, F[V]® is the monoid algebra ofl® overF. Thus, by
[7, Theorem 8], every class &{V|® contains a prime divisor.
2. In order to show that the diagram is commutative, we fixvaa M®. We

consider the divisor theoyI® — Mg from Propositior4.8 and factorizem in Mo,
saym= [, (xiem))a*' whereay,...,an € No. Sincev—v(xf(xi)) = xie(xi) foralli €

[1,n], it follows that
(Wa0 8o)(m) = (xS (x&0)lan] € 5 (HomP(p(G), F*)).

Next we viewm as an element ial and consider the divisor theoky — Dg. Since
Mo C Dg is divisor closedm= ], (><l-e(x‘>)a‘ is a factorization ofmin Dg. Therefore

(W10 61)(m) = (W0 62)(m).

By definition of s, we infer that
w(m) — X;E_e(xﬂal] . 'XrLe(X”)an] )

We define a partition By = G1 UGy, whereG, = {Xi: xi= X, for some distinct, j €
[1,n)} andG; = Gy \ Gy. Letv: Z(Gy) — B(HomP(p(G),F*)) be defined as in
Proposition3.8 (with respect to the partitiosy = G1 W Gp). By Proposition4.8.2,
e(x) = 1if xi € Gy, ande(x;) equals the numbex(x;) in Proposition3.8if x; € G;.
Therefore it follows that

v(g(m) = (PR ()
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and hence the diagram commutes.

3. In afinite abelian group all elements are contained in txgoup generated
by the other elements, with the only exception of the geperHta 2-element group.
Therefore unles6 is the 2-element group and the non-trivial character ocwitts
multiplicity one in the sequencg; - ... - xn, all thee(x;) = 1 by Propositiont.8.3,
and the elements; are all prime inMg, so they represent all the divisor classes,
asi varies in[1,n]. In the missing case we ha®V]® = F[xy,...,%,_1,X] (after a
renumbering of the variables if necessary), hence botls gesups are trivial, and
X1 andx% are prime elements in the unique class.

Thus Propositiort.9.1 gives a partial answer to ProbleimUsing that notation
it states thatng > 1 for allg € € (F[V]®).

Example 4.10.The set%(M®)* may be a proper subset @f(M®), and conse-
quently the monoid homomorphism: 2(Gy) — Z(Hom?(p(G),F*)) is not sur-
jective in general.

1. Indeed, letG be cyclic of order 3g € G with ord(g) = 3, and the action
onT[x1, %o, X3] is given byg- x; = wx, wherew is a primitive cubic root of 1. Then
X1= X2 = X3 = X, S0€(X1) = &(x2) = €(x3) = 1, implyingw(¢'(M®)*) = {x} (each
of thex; is a prime element in the clagg, whereasw(% (M®)) = {x, x% x° = 1},
the 3-element group. Thug®(Gy) = {x®: k € Ny}, andv(#(Gy)) is the free
abelian monoidZ ({x3}) generated b3 =1 ¢ G.The polynomialsé + xpxs and
x5 + X33 are irreducible, they are relative invariants of weigiitand x3, so they
represent prime elementsBf in the remaining classeg’ andx® = 1.

2. To provide an example with a multiplicity free module, Btbe cyclic
of order 5,9 € G with ord(g) = 5, and the action offf[x1, X2, %3] is given by
g-X1 = WX1, §-Xo = WX, §- X3 = w3, Wherew is a primitive fifth root of 1.
Then settingy = x1, we havexz = x2, x3 = x> andw(%'(M®)) = (x) is the 5-
element group, s¥ is multiplicity free. Still we havee(x;) = e(x) = e(x3) = 1,
SOW(% (M®)*) = {x, x2 x3} (andxy, Xz, X3 are the prime elements Mg in these
classes). The remaining classgband x® = 1 contain the prime elements B
represented bys + Xix3 andx3 + XoXs.

4.4 A monoid associated withG-modules

Throughout this subsection, suppose ttiza(F) 1 |G|.

In this subsection we discuss a monoid associated with septations of not
necessarily abelian groups which in the case of abelianpgroecovers the monoid
of G-invariant monomials. Decompo¥einto the direct sum o6-modules:

V=Vi®..oV (4)
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and denote by, : G — GL(V;) the corresponding group homomorphisms. Thgn (
induces a decomposition @f[V] into multihomogeneous components as follows.
The coordinate ringf[V] is the symmetric algebra Syw*) = @p_,Synt'(V*).
Writing F[V]a = Synft(V}) ® ... ® Synf (/) we have SyMi(V*) = @ 3_nF[V]a,
and henc&[V] = @acn;F[V]a. The summandg[V], areG-submodulesitf[V], and
FV]aFV]p C F[V]asb, SOF|V] is aNj-graded algebra. Moreovéi|V|® is spanned
by its multihomogeneous componeiit®/|$ = F[V]® NFV]a. For f € F]V], we
call athemultidegreeof f. We are in the position to define

#(GV) = {aeNj: FV]3 # {0}} (%)

the set of multidegrees of multihomogene@invariants. We give precise infor-
mation on#(G,V) in terms of quantities associated to the direct summnagV .
Fori € [1,r] denote by the greatest common divisor of the elements&{iG,V, ),
andF; the Frobenius number of the numerical semigrea(G, Vi) C Ny, soF is
the minimal positive integeX such that#(G,V;) containsN + kg for all k € Np.

Proposition 4.11.

1. #(G,V) C Ny is a reduced finitely generaté@tmonoid.
2. For eachic [1,r] and all ac N, satisfying a> b(G,V;) + K we have

ac #B(G\V) if and only if Ga+ac BGV). (6)
3. For each i€ [1,r] we have c= |pi(G) NF*idy;|.

Proof. 1. Takea,b € (G,V), so there exist non-zerbe F[V|$ andh € F[V|¢.
Now 0+# fhe F[V]$, ., hencea+b € %(G,V). This shows thatZ(G,V) is a sub-
monoid ofNp. Moreover, the multidegrees of a multihomogeneBtagebra gen-
erating system oF[V]® clearly generate the monoi#(G,V). Thus #(G,V) is
finitely generated by Theorem 1

To show that#(G,V) is also a C-monoid, recall that by Propositiars.3 a
finitely generated submonold of Nj is a C-monoid if and only if each standard
basis elemeng € Njj has a multiple irH. Now this condition holds forZ(G,V),
since by Theorem.12F|Vj]® c F[V]® contains a homogeneous element of positive

degree for eache [1,r].

2. By symmetry it is sufficient to verify@) in the case = 1. Suppose €
A(G,V), so there is a non-zef@-invariantf € Synf1(V}") ® ... ® Synf* (V). De-
compose Sy (V) = @;W, into a direct sum of irreducibl&-modules. This
gives adirect sum decomposition S$iV;) ®... @ Synf (/") = @ (W, @ Synf2 (V) ©
...@ Synf* (V*)). It follows that Syn¥:(V;*) contains an irreducibl&-module di-
rect summandV such thatV ® Synf2(V;) ® ... ® Synf* (V/*) contains a non-zero
G-invariant. By definition ob(G,V;) we know thafF|Vy] is generated as dfVy|®
module by its homogeneous components of degt&€G,V; ). Therefore there ex-
ists ad < b(G,V;) such that the degred homogeneous component BfV] con-
tains aG-submoduld) =W, anda; € d + %(G,Vy). Now for any homogeneous
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h e F]V4]® we havehU @ Synf2(V;) @ ... ® Syn? (V")) C FV] g degh) ap.....ar)
contains a non-zerG-invariant, since it is isomorphic t&/ ® Synf?(V;) ® ... ®
Synf* (V). It follows that (k,ap,...,a;) € #B(G,V) for all k € d+ Z(G, V1), in
particular, for allkk € {d+ F;,d + Fy+c¢y,d + F1 + 2¢g,.. . }.

3. Leti € [1,r], and to simplify notation s&tV = Vi, c =¢;, andg = p;. Recall
that F[W]* = F|W]B for some finite subgroup4, B ¢ GL(W) implies thatA = B.
Indeed, the condition implies equali§(W)" = F(W)B of the corresponding quo-
tient fields, and so botA andB are the Galois groups of the field extensiofw)
overF(W)A = F(W)B, implying A = B. Now denote byZ ¢ GL(W) the subgroup
of scalar transformation® = {widw: w® = 1}, soZ is a central cyclic subgroup
of GL(W) of orderc. Clearly every homogeneous elementf#fV] whose degree
is a multiple ofc is invariant undeg. It follows that F[W]® c IF[\N]%, hence de-
noting by G the subgroump(G)Z of GL(W), we haveF[W|® = F[W]C. It follows
that (G) = G, i.e. Z C ¢(G), and soc = |Z| divides the order ofp(G) N F*idw.
Conversely, ifAidy belongs tgo(G), then every element df[W]® must be invari-
ant under the scalar transformatidityy, whence all homogeneous components of
FWI]® have degree divisible by the order &f so the order of the cyclic group
¢@(G) NF*idw must dividec.

In general#(G,V) is not a Krull monoid. To provide an example, consider the
two-dimensional irreducible representatidrof the symmetric grou®s = Dg. Its
ring of polynomial invariants is generated by an elementeagfrde 2 and 3, hence
#(G,V) = (2,3) C (Ng,+) , which is not Krull.

Proposition 4.12.For every ke N we haveDy(%(G,V)) < B(G,V).

Proof. Let k € N. Takea € #(G,V) such that|a] > B«(G,V). By (5) a multi-
homogeneous invariarit € F[V]$ exists. As deff) = |a] > B«(G,V) it follows
that f = YN, fi1...fix.1 for some non-zero multihomogeneous invariafits
of positive degree. Denoting bg ; € N the multidegree off; ;, we have that
a=aj1+...+8a k1, Wwhere 0# g j € #(G,V). This shows that alh € #(G,V)
with |a] > Bx(G,V) factor into the product of more thdnatoms, implying the de-
sired inequality.

Remarks. 1. LetG be abelian and suppose tHafts algebraically closed. Then
we may take in4) a decomposition d¥ into the direct sum of 1-dimensional sub-
modules and s¥*, is spanned by a variablg as in Subsectiod.3 ThenF[V]a

is spanned by the monomia:il---xﬁ‘r anda € #(G,V) holds if and only if the
corresponding monomial i&-invariant. So in this cas&(G,V) can be naturally
identified withM® and the transfer homomorphisn|,,c of Proposition4.7 can

-~

be thought of as a transfer homomorphis#iG,V) — #(Gv), which is an iso-
morphism ifV is multiplicity free. However, this transfer homomorphisimes not
seem to have an analogues for non-abeBgne. the study of8(G,V) can not be
reduced to the multiplicity free case), as it is shown by tkeneple below.

2. The binary tetrahedral gro@= A4 = SL,(F3) of order 24 has a 2-dimensional
complex irreducible representatidhsuch thatF[V]® is minimally generated by
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elements of degree 8,12 (see for exampled] Appendix A]), hencez(G,V) =
{0,6,8,12,14,16,18,...}. On the other hand under this representa@da mapped
into the special linear group ®f, so onV @V the function maping(x1,%2), (y1,¥2)) —

det(g ﬁ) is aG-invariant of multidegre¢1, 1), implying that(1,1) € 2(G,V ®

V). This shows that the transfer homomorphismNS — N, (a1,a2) — a1 +a
does not map8(G,V @V) into Z(G,V), ast(1,1) = 2 ¢ B(G,V).

Recall that the multigraded Hilbert series BV]® in r indeterminatesT =
(Tl,...,Tr) |S

HEFV®T) = Y dimp(F[VI9)T™---T¥, and hence
acNj
B(G,V) ={aeNj: the coefficient off®in H(F[V]®,T) is nonzerd.

By this observation Propositiofi12can be used for finding lower bounds on the
Noether numbeB(G,V), thanks to the following classical result of Molien (see for
example f, Theorem 2.5.2]):

Proposition 4.13.Given a G-module \= V1 @& ... ®V, overC, let pi(g) € GL(M)
be the linear transformation defining the action of @ on \{. Then we have

1 [ 1
H(CVI®,T) = @géu delidy —p(Q) T

Example 4.14 (see p. 54-55 ir6p]). Consider the alternating growg and its 3-
dimensional representation ov@? as the group of symmetries of an icosahedron.
The Hilbert series then equals

14718
(1-T)(1-TO(1-T)

whence it is easily seen tha#(As, C3) = (2,6,10,15) and consequentl@(As) >
D(%(As,C?)) = 15. Note that this lower bound is stronger than what we coatd g
from B(G) > maxycc B(H), sinceB(H) < [H| < 12 for any proper subgroug of
As.

5 Constants from Invariant Theory and their counterparts in
Arithmetic Combinatorics

In Subsectiorb.1 we compare known reduction lemmas for the Noether number
with reduction lemmas for the Davenport constants achiévgievious sections.
We demonstrate how to use them to determine the precise vélNeether num-
bers and Davenport constants in new examples. In Subsécfiome consider an
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invariant theoretic analogue of the consta®) (for the definition ofn (G) see the
discussions before PropositidrBand Lemmas.1).

Throughout this section, suppose tchai(F) 1 |G|.

5.1 The Noether number versus the Davenport constant

In the non-abelian case no structural connection (like &sitjpn4.7) is known
between thes-invariant polynomials and the product-one sequences Gvéev-
ertheless, a variety of features of tkiln Noether numbers and the¢h Davenport
constants are strikingly similar, and we offer a detailechparison.

Recall thatfB(G) = b(G) + 1 ((3)) and thatdk(G) + 1 < Dx(G) (Proposi-
tion2.81).

1. The inequalities

@) B(G)<kB(G) (b) dk(G)+1<k(d(G)+1) (c) Dk(G)< kD(((B))
7

2. Reduction lemma for normal subgroups G:
(@  B(G) < Bga/n)(N) (b)  dk(G) <dg,n)+1(G/N) (8)
3. Reduction lemma for arbitrary subgroups< G with index| = [G: H]:

(@) B(G) < Bu(H) <I1B(H) (b) dk(G)+1<I(dk(H)+1) (c)Dk(G) <IDk(H)
9)

4. Supra-additivity: for a normal subgroiyx G we have
(@) bkir-1(G) > be(N) + b (G/N) if G/N is abelian (10)
(b)  diir-1(G) = dk(N) +dr (G/N)
5. Monotonicity: for an arbitrary subgrodp < G we have
(@) B(G)=pB(H) (b) dk(G)>dk(H) (c) Dk(G)=>Dk(H) (11)

6. Almost linearity ink: there are positive constar@sC’,C", ko, ky, ky depending
only onG such that

(@) Bk(G) = ka(G) +Cfor allk > kg if char(F) =0 (b) dx(G) = ke(G) +C’
(12)

forallk>kj and (c)Dk(G)=ke(G)+C” for allk > kj

7. The following functions are non-increasingkn
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(&) B«(G)/k if charF)=0 (b) Dk(G)/k (13)

The inequality 7) (a) is observed in12], (b) is shown in Propositior3.9.4,
whereas (c) is observed in the beginning of Subse&ibn

For the proof of §) (a) see 12, Lemma 1.5] and for part (b) see PropositA.2.
Note that the roles ol andG/N are swapped in the formulas (a) respectively (b),
but in the abelian case they amount to the same.

The first inequality in part (a) of9) is proved in [L2, Corollary 1.11] for cases
when (i) cha(F) = 0 or chafFF) > [G: HJ; (i) H is normal inG and chafF) {

[G : HJ; (iii) char(IF) does not divideG|. It is conjectured, however that it holds in
fact whenever chéF) { [G: H] (see pT)). By [11, Lemma 4.3], we havf(H) <

I B(H) for all positive integer, |, implying the second inequality in part (a). Parts
(b) and (c) of ) appear in Propositiof.9(3. and 5.)

Part (a) of (0) appears in13, Theorem 4.3 and Remark 4.4] while part (b) is
proved in Propositio.9.1.

Parts (b) and (c) ofl(1) are immediate from the definitions, while part (a) fol-
lows from an argument of B. Schmid7(}, Proposition 5.1]) which also shows that
B(G, IndﬁV) > Bk(H,V) forallk > 1 (see 3, Lemma 4.1]).

Part (a) of (2) is proved in [L1, Proposition 4.5] (the constamt(G) will be
discussed in Subsectidn2, and for (L2) (b) and (c) we refer to Propositidh 7.2
and Propositior2.8.2.

Part (a) of (3) is proved in [L1, Section 4] and forX3) (b) we refer to Proposi-
tion 2.7.3.

Furthermore, for a normal subgrotix G we have

(@) B(G) <B(G/N)B(N) (b) D(G) <D(N)D(G/N),  (14)

where in (b) we assume th&tN G’ = {1}. Here part (a) is originally due to B.
Schmid ([/3, Lemma 3.1]) and it is an immediate consequencé&pfg) and 8) (a)
while part (b) is proven in39, Theorem 3.3].

The above reduction lemmas on the Noether numbers are kksyitothe proof
of the following theorem.

Theorem 5.1. Letke N,

1. Be(Ag) = 4k +2 andB(A4) = 12, where A is the alternating group of degrek
andAy is the binary tetrahedral group.

2. If G is a non-cyclic group with a cyclic subgroup of indexofthen

2 if G =Dicgm, m> 1,
1 otherwise.

B(G) = §|G|k+{

where Dign = (a,b:a°™ = 1,b? = a™ bab ! = a~1) is the dicyclic group.
3.
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B(G) > %|G| if and only if G has a cyclic subgroup of index at most two or

G is isomorphic to €& Cs, C, B Co @ Cy, A OF Ay

Proof. For 1. see]2, Theorem 3.4 and Corollary 3.6], for 2. sé&[Theorem 10.3],
and 3. can be found irlp, Theorem 1.1].

Itis worthwhile to compare Theorehl.3 with the statement frontf] asserting
thatd(G) < %|G| unlessG has a cyclic subgroup of index at most twoGlfs abelian,
then LemméB.13and Propositiod.7imply d(G) + 1 = 3(G) = D(G). Combining
Theorems3.10and5.1we obtain that all groupS having a cyclic subgroup of index
at most two satisfy the inequalit(G) + 1 < B(G) < D(G). Moreover, for these
groupsB(G) = d(G) + 1, except for the dicyclic groups, whefG) = d(G) + 2.
On the other hand, it was shown i that for the Heisenberg grouh,; of order
27 we haveD(Hz7) < B(Hz7).

Problem 2. Study the relationship between the invariat(§), 3(G), andD(G).
In particular,

e Characterize the grougssatisfyingd(G) + 1 < B(G).
e Characterize the grougs satisfying3(G) < D(G).

In the following examples we demonstrate how the reducesnlts presented at
the beginning of this section do work. This allows us to deiae Noether numbers
and Davenport constants of non-abelian groups, for whiely there not known
before.

Example 5.2.Let p,q be primes such that| p— 1.

1. Consider the non-abelian semi-direct proddct Cp x Cy. A conjecture at-
tributed to Pawale {[1]) states thaf3(Cp x Cq) = p+g— 1 and many subsequent
research was done in this directiori{], [12]). Currently it is fully proved only
for the caseg|= 2 in [73] andq = 3 in [10] whereas for arbitrarg we have only
upper bounds in1Z], proved using known results related to the Olson consthnt o
the cyclic group of ordep. Theorem3.113 implies thad(G) + 1= p+qg—1 and
henced(G) + 1 coincides with the conjectured value f(G).

2. Inview of the great difficulties related to Pawale’s catjee it is quite remark-
able that we can determine the exact value of the Noether evfmbthe non-abelian
semidirect produdCpq x Cq. Indeed, this group contains an indpxsubgroup iso-
morphic toCq @ Cq, henceB(Cpq x Cq) < Bp(Cq ® Cq) by (9). By Propositiorv.7
4. we haveBp(Cq @ Cq) = Dp(Cq @ Cy), and finally,Dp(Cq & Cq) = pq+q—1 by
Theorem3.14 Thus we havg8(Cpq x Cq) < pg+ q— 1. The reverse inequality also
holds, sincg3(Cpq x Cq) contains a normal subgrodyp= Cpq with G/N = Cy, so
by (10) and @) we haveB(Cpq x Cq) > B(Cpq) + B(Cq) — 1= pg+q—1. So we
haveB(Cpq % Cq) = pg+q—1.

Next we determine the small Davenport constant of this gr®ipceCpq is a
normal subgroup and the corresponding factor groiyisve have by Proposition
3.9.1 thatd(Cpq % Cq) > d(Cpg) +d(Cq) = p+0— 2. The reverse inequalityCpq
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Cq) < p+q—2follows from Theoren3.114, sinceCyq x Cq contains also a normal
subgroutN = C, such thailG/N = Cq 4 Cq. Consequently, by Lemnial2.(a) we
have

Example 5.3.The symmetric groufy, has a normal subgroug = C, ® C, such
thatSy/N = Dg. We know thai3 (De) = 4 (say by Theorerf.12.). Thus by 8) and
Theorem3.14we haveB(Sy) < Bg(pg) (C2®Cp) =D4(C20Cp) =2-4+1=09.

Now letV be the standard 4-dimensional permutation representatiGy and
sign : S, — {£1} the sign character. It is not difficult to prove the algebransr-
phismF|V @ sign = F|V|Sen® A4F[V]§‘c‘,d whereA, is the Vandermonde determi-
nantin 4 variabIeSE[V]gi‘,enis the span of the even degree homogeneous components
of F[V]%, andIF[\/]E‘ad is the span of the odd degree homogeneous components of
F[V]%. Moreover, the algebrB|V]Sen® A4]F[V]§"(‘jd is easily seen to be minimally
generated byy, 012, 0103, O3, 03?, 0144, 0344, Whereg; is thei-th elementary sym-
metric polynomial. As a resuff(Sy,V ® sign) = deg034s) = 3+ (3) = 9. So we
conclude tha3 (&) = 9 (and not 10, as it is claimed on page 14 o).

Example 5.4.Let G be the group generated by the complex Pauli matrices

01 0 —i 1 0
(%) (7o) (o-2)

This is a pseudoreflection group, hence the ring of invasianty = C? is gener-
ated by two elements, namefyjx,y|® = C[x* + y* x%y?]. Moreoverb(G,V) is the
sum of the degrees of the generators minus(¥ijragain becausé is a pseudore-
flection group, seed]), sob(G,V) = 6. It follows by (3) that3(G) =b(G)+1 >
b(GV)+1=7.

On the other hand3 is a non-abelian semi-direct prod(€§ © C;) x Cy. There-
fore G has a normal subgrouy such thalN =~ G/N =2 C, & C, and thus

B(G) < Bg(c,ac,) (C2@Cp) = D3(CaCp) = 7.

So we conclude thg3(G) = 7.

5.2 The constantso(G,V) and n(G,V)

Definition 5.5.

1. Leto(G,V) denote the smallest € NoU {»} such thaff[V]® is a finitely gen-
erated module over a subrifigfy, ..., f;] such that mafded fi): i € [1,r]} =d.
We defineg (G) = sup{g(G,W): W is aG-module.
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2. LetSc FV]® be theF-subalgebra of V] generated by its elements of degree
at mosto(G,V). Thenn(G,V) denotes the maximal degree of generators of
F[V]¢ as anS-module.

One motivation to studg(G,V) andn(G,V) is that by a straightforward induc-
tion argument ([ 1, Section 4]) we have

Bk(GvV) < (k_ 1)0—(G5V) + n(G’V) :

By [11, Proposition 6.2]0(Cp x Cq) = p (this is also true in characteristif; see
[18, Proposition 4.5]).

If F is algebraically closed, then, by Hilbert's Nullstelletisao (G,V) is the
smallestd such that there exist homogeneous invariants of degree sttdwehose
common zero locus is the origin. It is shown in Lemma 5.1, 514 8.6 of [L1]
(some extensions to the modular case and for linear algegraups are given in
[18]) that

e 0(G) <a(G/N)a(N)if N«G;
e 0(H)<0(G)<I[G:H]o(H)ifH<G;
e 0(G)=ma{o(G,V): Vis anirreducibles-modulég.

Proposition 5.6.Let G be abelian.

1. 0(G) = exp(G) = ¢(G).
2.n(G) =sup{n(G,W): W is a G-modulg.

Proof. For 1. see]1, Corollary 5.3]. To prove 2., If € .# (G) with | T| = n(G)—1
such thafl has no product-one subsequektevith |U| € [1,e(G)]. LetV be the
regular representation &, and denote b$the subalgebra @[V |® generated by its
elements of degree at mastG) = e(G). Now (y: M — .Z(G) is an isomorphism
(see the proof of Proposition.7.3.). Thusy~%(T) € M is not divisible by aG-
invariant monomial of degree smaller the(@). Since bottSandF[V] are spanned
by monomials, it follows thaty~—%(T) € M is not contained in th&-submodule of
F[V]¢ generated by elements of degree less thafigley(T)). This shows that for
the regular representatidhof G we haven (G,V) > n(é).

On the other hand I& be an arbitrangG-module, andn € M a monomial with
degm) > n(G). Theny(m) has a product-one subsequence with length at most
e(G) = 0(G), hencem is divisible by aG-invariant monomial of length at most
0(G) (see the beginning of the proof of Propositiai.2). This shows the inequality

n(G,w) < n(é). Taking into account the isomorphis@% G we are done.

For the state of the art on(G) (in the abelian case) we refer td(, Theorem
5.8.3], 22, 23. Propositions.6inspires the following problem.

Problem 3. LetG be afinite non-abelian group. Is Sup(G,W) : W is aG-module
finite? Is it related t07 (#A(G)) (see Subsectioh.5and3.1)?
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