A note on tilted Sperner families with patterns

Dániel Gerbner* Máté Vizer ${ }^{\dagger}$

May 19, 2016

Abstract

Let p and q be two nonnegative integers with $p+q>0$ and $n>0$. We call $\mathcal{F} \subset \mathcal{P}([n])$ a

 (p, q)-tilted Sperner family with patterns on [n$]$ if there are no distinct $F, G \in \mathcal{F}$ with:$$
\text { (i) } p|F \backslash G|=q|G \backslash F| \text {, and }
$$

(ii) $f>g$ for all $f \in F \backslash G$ and $g \in G \backslash F$.
E. Long in 10 proved that the cardinality of a (1,2)-tilted Sperner family with patterns on [n] is

$$
O\left(e^{120 \sqrt{\log n}} \frac{2^{n}}{\sqrt{n}}\right)
$$

We improve and generalize this result, and prove that the cardinality of every (p, q)-tilted Sperner family with patterns on $[n]$ is

$$
O\left(\sqrt{\log n} \frac{2^{n}}{\sqrt{n}}\right) .
$$

Keywords: Sperner family, tilted Sperner family, permutation method

1 Introduction

A family \mathcal{F} of subsets of $[n]$ (where for $n>0$ we will use the $[n]$ notation for $\{1,2, \ldots, n\}$ and $\mathcal{P}([n])$ for the power set) is called a Sperner family if $F \not \subset G$ for all distinct $F, G \in \mathcal{F}$. A classic result in extremal combinatorics is Sperner's theorem [12, which states that the maximal cardinality of a Sperner family is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$. This result has a huge impact on combinatorics and has many generalizations (see e.g. [2]).

[^0]Recently Sperner's theorem played some role in the Polymath project to discover a new proof of the density Hales-Jewett theorem [11]. Motivated by its role in the proof Kalai asked whether one can achieve 'Sperner-like theorems' for 'Sperner like families' [8].

One direction to generalize the notion of Sperner families is the so called tilted Sperner families (see Definition 1.1). As written in 8: Kalai noted that the 'no containment' condition can be rephrased as follows: \mathcal{F} does not contain two sets F and G such that, in the unique subcube of $\mathcal{P}([n])$ spanned by F and G, the bottom point is F and G is the top point. He asked: what happens if we forbid F and G to be at a different position in this subcube? In particular, he asked how large $\mathcal{F} \subset \mathcal{P}([n])$ can be if we forbid F and G to be at a fixed ratio $p: q$ in this subcube. That is, we forbid F to be $p /(p+q)$ of the way up this subcube and G to be $q /(p+q)$ of the way up this subcube. Equivalently we can say:

Definition 1.1. Let p, q be two nonnegative integers. We call $\mathcal{F} \subseteq \mathcal{P}([n])$ a (p, q)-tilted Sperner family if for all distinct $F, G \in \mathcal{F}$ we have

$$
p|F \backslash G| \neq q|G \backslash F|
$$

Note that we can restrict ourselves to coprime p and q. Also note the a Sperner family is just a (1, 0)-tilted Sperner family. In [8] Leader and Long proved the following theorem, which gives an asymptotically tight answer for the maximal cardinality of a (p, q)-tilted Sperner family:

Theorem 1.2. Let p, q be coprime nonnegative integers with $q \geq p$. Suppose $\mathcal{F} \subset \mathcal{P}([n])$ is a (p, q)-tilted Sperner family. Then

$$
|\mathcal{F}| \leq(q-p+o(1))\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Note that up to the $o(1)$ term, this is the best possible, since the union of $p-q$ consecutive levels is a (p, q)-tilted Sperner family.

In [10] Long started to investigate the cardinality of tilted Sperner families with patterns (see Definition (1.3), which was also asked by Kalai (9).

Definition 1.3. Let p and q be nonnegative integers with $p+q>0$. We call \mathcal{F} a (p, q)-tilted Sperner family with patterns, if there are no distinct $F, G \in \mathcal{F}$ with:
(i) $p|F \backslash G|=q|G \backslash F|$, and
(ii) $f>g$ for all $f \in F \backslash G$ and $g \in G \backslash F$.

In [10] he gave an upper bound on the cardinality of a (1,2)-tilted Sperner family with patterns:
Theorem 1.4. ([10], Theorem 1.3) Let $\mathcal{F} \subset \mathcal{P}([n])$ be a (1,2)-tilted Sperner family with patterns. Then

$$
|\mathcal{F}| \leq O\left(e^{120 \sqrt{\log n}} \frac{2^{n}}{\sqrt{n}}\right)
$$

Actually in [10] he gives a proof of a weaker result with the density Hales-Jewett theorem, and proves Theorem 1.4 with a randomized generalization of Katona's cycle method (see [5]).

In this note we generalize and improve his result by applying another generalization of Katona's cycle method, the so called permutation method. We will apply the permutation method in a somewhat similar way like the authors of [3] and prove the following:

Theorem 1.5. Let p and q be non negative integers with $p+q>0$ and let \mathcal{F} be a (p,q)-tilted Sperner family with patterns. Then

$$
|\mathcal{F}| \leq O\left(\sqrt{\log n} \frac{2^{n}}{\sqrt{n}}\right)
$$

The paper is organized as follows: in Section 2 we prove our main theorem and in Section 3 we pose some questions.

2 Proof of Theorem 1.5

Proof. If either p or q is zero, then we get back the usual Sperner family for which we know that the statement is true. In the following we fix $p, q>0$ and furthermore we assume that $p \leq q$. The proof works similarly in case $p>q$.

2.1 The (p, q)-cut point

First we introduce a notion that will have crucial role in the proof.
Definition 2.1. We say that $x \in[n]$ is a (p, q)-cut point of $A \subseteq[n]$, if

$$
\begin{equation*}
0 \leq \frac{n-x-|([n] \backslash[x]) \cap A|}{q}-\frac{|A \cap[x]|}{p}<\frac{1}{p} \tag{1}
\end{equation*}
$$

We remark that x is a (p, q)-cut point means that $\frac{p}{q}$ times the number of points of A less than x is 'approximately' equal to the number of points not belonging to A that are larger than x.
Lemma 2.2. Every $A \subseteq[n]$ has a (p,q)-cut point.
Proof. Let us introduce the following functions: for $u \in\{0\} \cup[n]$ and $A \subseteq[n]$ let

$$
f(A, u):=\frac{|A \cap[u]|}{p} \quad \text { and } g(A, u):=\frac{n-u-|([n] \backslash[u]) \cap A|}{q}
$$

with $|A \cap[0]|=0$. Observe that if $|A| \neq 0$, then we have

$$
\begin{equation*}
0=f(A, 0)<g(A, 0)=\frac{n-|A|}{q} \text { and } \frac{|A|}{p}=f(A, n)>g(A, n)=0 \tag{2}
\end{equation*}
$$

Also note that for all $i \in[n]$ if
${ }^{\bullet}{ }_{1} i \in A$, then

$$
f(A, i-1)+\frac{1}{p}=f(A, i) \text { and } g(A, i-1)=g(A, i)
$$

$\bullet_{2} i \notin A$, then

$$
f(A, i-1)=f(A, i) \text { and } g(A, i-1)-\frac{1}{q}=g(A, i)
$$

By \bullet_{1}, \bullet_{2} and (2) we have $f(A, 0)<g(A, 0)$ and going towards n, f is increasing, g is decreasing, but both of them changes with at most $\frac{1}{p}$ and we have $f(A, n)>g(A, n)$.

We are done with the proof of Lemma [2.2.

2.2 Using the permutation method

Let us introduce two pieces of notation:

1) for all $F \in \mathcal{F}$ choose a (p, q)-cut point x_{F} (we can do it by Lemma [2.2), and let

$$
\mathcal{F}_{x}:=\left\{F \in \mathcal{F}: x=x_{F}\right\} \text { for } x \in[n],
$$

2) for $x+k \leq n$ let $j(x, k):=\left\lfloor\frac{p}{q}(n-x-k)\right\rfloor$.

Note that if x is a (p, q)-cut point for $A \subseteq[n]$, then

$$
|A \cap[x]|=j(x,|([n] \backslash[x]) \cap A|) .
$$

In this section we will prove an upper bound on $\left|\mathcal{F}_{x}\right|$ using the permutation method.
Let us consider the following permutation group of [n]: for any $x \in[n]$ let us denote by S_{x} the symmetric group on x elements, and let $\Pi_{x}:=S_{x} \times S_{n-x}$, the direct product of S_{x} and S_{n-x} (for definition of direct product of groups see e.g. [7]). An element $\left(\pi_{1}, \pi_{2}\right)=\pi \in \Pi_{x}$ acts on [n] the following way:

$$
\pi(i)= \begin{cases}\pi_{1}(i) & \text { if } i \leq x \\ \pi_{2}(i-x)+x & \text { if } i>x\end{cases}
$$

For $A \subseteq[n]$ and $\pi \in \Pi_{x}$ we will use the notation $\pi(A)$ for $\{\pi(a): a \in A\}$.
Let us define the following families of sets for $x \in[n], 0 \leq k \leq n-x$ if $j(x, k)<x$:

$$
C(x, k):=\{1,2, \ldots, j(x, k), x+1, x+2, \ldots, x+k\} .
$$

Observe two things:
\circ_{1} For any $x \in[n]$ and $r<q$ we have

$$
\left|\left\{C(x, t q+r): 0 \leq t \leq \frac{n}{q}\right\} \cap \mathcal{F}\right| \leq 1
$$

by the assumptions that \mathcal{F} is a (p, q)-tilted Sperner family with patterns and two such sets for different t^{\prime} s are forbidden. Note here that $C(x, t q+r)$ does not even exist for some t. We also have that for all $\pi \in \Pi_{x}$

$$
\left|\left\{\pi(C(x, t q+r)): 0 \leq t \leq \frac{n}{q}\right\} \cap \mathcal{F}_{x}\right| \leq 1 .
$$

Indeed, if F and G are both in this family, it is easy to calculate that $p|F \backslash G|=q|G \backslash F|$, and elements of $F \backslash G$ are smaller than x while elements of $G \backslash F$ are larger than x.
\circ_{2} For any $F \in \mathcal{F}_{x}$ there are $k \leq n-x$ and $\pi \in \Pi_{x}$ with

$$
F=\pi(C(x, k)) .
$$

Now let us do the following computation: fix $x \in[n]$. Using o_{1} we have the following

$$
\sum_{\pi \in \Pi_{x}} \sum_{r=0}^{q-1} \sum_{t=0}^{\left\lfloor\frac{n}{q}\right\rfloor}\left|\pi(C(x, t q+r)) \cap \mathcal{F}_{x}\right| \leq q(n-x)!x!.
$$

After changing the order summations using o_{2} we get

$$
\sum_{F \in \mathcal{F}_{x}}|F \cap[x]|!(x-|F \cap[x]|)!(|F \backslash[x]|)!(n-x-|F \backslash[x]|)!\leq q(n-x)!x!,
$$

and finally, dividing both sides by $(n-x)!x$! we have

$$
\begin{equation*}
\sum_{F \in \mathcal{F}_{x}} \frac{1}{(|F \cap[x]|)\left({ }_{|F \backslash[x]|}^{n-x}\right)} \leq q . \tag{3}
\end{equation*}
$$

Using the fact that $\binom{x}{i} \leq 2^{x} / \sqrt{x}$, from (3) we have that for all $x \in[n]$:

$$
\begin{equation*}
\left|\mathcal{F}_{x}\right| \leq O\left(\frac{2^{n}}{\sqrt{x(n-x)}}\right) \tag{4}
\end{equation*}
$$

2.3 Finishing the proof of Theorem 1.5

We finish the proof of Theorem 1.5 by a standard application of the Chernoff-Hoeffding bound (1], [4]):

Chernoff-Hoeffding bound: Let X_{i} be independent random variables in the $[0,1]$ interval and let

$$
X(n):=\sum_{i=1}^{n} X_{i}
$$

Then for $t \leq \mathbb{E}[X(n)]$ we have

$$
\mathbb{P}(|X(n)-\mathbb{E}[X(n)]| \geq t) \leq 2 \exp \left(-\frac{2 t^{2}}{n}\right)
$$

The next lemma is probably well known, however for the sake of completeness we present a proof here. Let

$$
\mathcal{G}:=\left\{G \subseteq[n]: \text { there is } x \in[n] \text { with }| |[x] \cap G\left|-\frac{x}{2}\right|>\sqrt{n \log n}\right\}
$$

Lemma 2.3. We have

$$
|\mathcal{G}| \leq O\left(\frac{2^{n}}{n}\right)
$$

Proof. Note that $\mathcal{G}=\cup_{x \in[n]} \mathcal{G}_{x}$, where

$$
\mathcal{G}_{x}:=\left\{G \in \mathcal{G}:\left||[x] \cap G|-\frac{x}{2}\right|>\sqrt{n \log n}\right\} .
$$

Observe that

$$
\begin{equation*}
\left|\mathcal{G}_{x}\right| \frac{1}{2^{n}} \leq\left(\sum_{y=0}^{\left\lfloor\frac{x}{2}-\sqrt{n \log n}\right\rfloor}\binom{x}{y}+\sum_{y=\left\lceil\left.\frac{x}{2}+\sqrt{n \log n} \right\rvert\,\right.}^{x}\binom{x}{y}\right) \frac{1}{2^{x}} \tag{5}
\end{equation*}
$$

Applying the Chernoff-Hoeffding bound on the right hand side of (5) with $t=\sqrt{n \log n}$ (which is less than $\frac{n}{2}$ for $n \geq 10$) we have

$$
\begin{equation*}
\left|\mathcal{G}_{x}\right| \frac{1}{2^{n}} \leq 2 \exp \left(-\frac{2 n \log n}{x}\right) \tag{6}
\end{equation*}
$$

Using $x \leq n$ on the right hand side of (6), we have

$$
\left|\mathcal{G}_{x}\right| \leq O\left(\frac{2^{n}}{n^{2}}\right)
$$

which easily implies the statement of the lemma.

Let $\mathcal{F}^{\prime}:=\mathcal{F} \backslash \mathcal{G}$.
Using Lemma 2.3 we prove that a (p, q)-cut point of any $F \in \mathcal{F}^{\prime}$ is in a $O(\sqrt{n \log n})$ neighborhood of $\frac{p}{p+q} n$.

Lemma 2.4. For $n \geq 2$ and all $F \in \mathcal{F}^{\prime}$ we have

$$
\left|x_{F}-\frac{p}{p+q} n\right| \leq 8 \sqrt{n \log n}
$$

Proof. By the fact that $F \in \mathcal{F}^{\prime}$ we have both

$$
\begin{equation*}
\left|\left|\left[x_{F}\right] \cap F\right|-\left\lfloor\frac{x_{F}}{2}\right\rfloor\right| \leq \sqrt{n \log n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left||[n] \cap F|-\left\lfloor\frac{n}{2}\right\rfloor\right| \leq \sqrt{n \log n} \tag{8}
\end{equation*}
$$

By (7) and (8) we have (loosing at most 1 in putting together two inequalities and using that $1 \leq \sqrt{n \log n}$ for $n \geq 2$.)

$$
\begin{equation*}
\left|\left|\left([n] \backslash\left[x_{F}\right]\right) \cap F\right|-\left\lfloor\frac{n-x_{F}}{2}\right\rfloor\right| \leq 4 \sqrt{n \log n} \tag{9}
\end{equation*}
$$

However x_{F} is a (p, q)-cut point for F, so by (77), (8) and (9) we have

$$
\left|\left(n-x_{F}-\left\lfloor\frac{n-x_{F}}{2}\right\rfloor\right) \frac{1}{q}-\left\lfloor\frac{x_{F}}{2}\right\rfloor \frac{1}{p}\right| \leq 8 \sqrt{n \log n}
$$

and we are done with Lemma 2.4.

By (4) and Lemma 2.4 we have

$$
\left|\mathcal{F}^{\prime}\right| \leq O\left(\sqrt{n \log n} \frac{2^{n}}{n}\right)
$$

and by Lemma 2.3 we are done with the proof of Theorem 1.5.

3 Concluding remarks

We proved in Theorem 1.5 that the cardinality of a (p, q)-tilted Sperner family with patterns on $[n]$ is $O\left(\sqrt{\log n} \frac{2^{n}}{\sqrt{n}}\right)$, however we do not have much better constructions than the ones in [8]. We conjecture that for different p and q the order of a maximal size (p, q)-tilted Sperner family with patterns on $[n]$ is $\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$.

For $p=q$ we are not able to give really good constructions, we only know that the $(0,0)$-tilted Sperner family with patterns on $[n]$ (which we define just with property (ii) in Definition [1.3) is $O\left(\frac{2^{n}}{n}\right)$, and we do not know what should be the right order.

It is worth mentioning that the whole topic from a more general viewpoint is investigated in the recent paper [6].

4 Acknowledgment

The authors would like to thank Zheijang Normal University, China - where they started to work on this problem - for their hospitality. They are also indebted to the anonymous referees for providing insightful comments which increased the level of presentation of the paper.

References

[1] H. Chernoff: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23, pp. 493-507, 1952.
[2] K. Engel: Sperner Theory, Cambridge University Press, 1997.
[3] Peter L. Erdős, Z. Füredi and G.O.H. Katona: Two-part and k-Sperner families: new proofs using permutations, SIAM J. Discrete Math. 19, pp. 489-500, 2005.
[4] W. Hoeffding. Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58, pp. 13-30, 1963.
[5] G.O.H. Katona: A simple proof of the Erdős - Chao Ko - Rado theorem, J. Comb. Theory B 13, pp. 183-184, 1972.
[6] I. Karpas, E. Long: Set families with a forbidden pattern, arXiv:1510.05134.
[7] S. Lang: Undergraduate Algebra (3rd ed.), Berlin, New York: Springer-Verlag, 2005.
[8] I. Leader, E. Long: Tilted Sperner families, Disc. Appl. Math., 163, part 2, pp. 194-198, 2014.
[9] E. Long, email communication.
[10] E. Long: Forbidding intersection patterns between layers of the cube, J. Comb. Theory A 134, pp. 103-120, 2015.
[11] D.H.J. Polymath: A new proof of the density Hales-Jewett theorem, Ann. Math. 175, pp. 1283-1327, 2012.
[12] E. Sperner: Ein Satz über Untermengen einer endlichen Menge. Math. Z., 27, pp. 544-548, 1928.

[^0]: *MTA Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary. Email: gerbner.daniel@renyi.mta.hu Research supported by OTKA grant PD-109537.
 ${ }^{\dagger}$ MTA Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary. Email: vizermate@gmail.com Research supported by OTKA grant SNN-116095.

