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Abstract

The goal of this paper is to give a new, abstract approach to cover-decomposition

and polychromatic colorings using hypergraphs on ordered vertex sets. We intro-

duce an abstract version of a framework by Smorodinsky and Yuditsky, used for

polychromatic coloring halfplanes, and apply it to so-called ABA-free hypergraphs,

which are a generalization of interval graphs. Using our methods, we prove that

(2k− 1)-uniform ABA-free hypergraphs have a polychromatic k-coloring, a problem

posed by the second author. We also prove the same for hypergraphs defined on a

point set by pseudohalfplanes. These results are best possible. We could only prove

slightly weaker results for dual hypergraphs defined by pseudohalfplanes, and for hy-

pergraphs defined by pseudohalfspheres. We also introduce another new notion that

seems to be important for investigating polychromatic colorings and ǫ-nets, shallow

hitting sets. We show that all the above hypergraphs have shallow hitting sets, if

their hyperedges are containment-free.
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1 Introduction

The study of proper and polychromatic colorings of geometric hypergraphs has at-

tracted much attention, not only because this is a very basic and natural theoretical

problem but also because such problems often have important applications. One such

application area is resource allocation, e.g., battery consumption in sensor networks.

Moreover, the coloring of geometric shapes in the plane is related to the problems of

cover-decomposability, conflict-free colorings and ǫ-nets; these problems have applications

in sensor networks and frequency assignment as well as other areas. For surveys on these

and related problems see [19, 26].

In a (primal) geometric hypergraph polychromatic coloring problem, we are given a

natural number k, a set of points and a collection of regions in R
d, and our goal is to k-

color the points such that every region that contains at least m(k) points contains a point

of every color, where m is some function that we try to minimize. We call such a coloring a

polychromatic k-coloring. In a dual geometric hypergraph polychromatic coloring problem,

our goal is to k-color the regions such that every point which is contained in at least m(k)

regions is contained in a region of every color. In other words, in the dual version our

goal is to decompose an m(k)-fold covering of some point set into k coverings. The primal

and the dual versions are equivalent if the underlying regions are the translates of some

fixed set. For the proof of this statement and an extensive survey of results related to

cover-decomposition, see e.g., [19]. Below we mention some of these results, stated in the

equivalent primal form.

The most general result about translates of polygons is that given a fixed convex

polygon, there exists a c (that depends only on the polygon) such that any finite point

set has a polychromatic k-coloring such that any translate of the fixed convex polygon

that contains at least m(k) = c · k points contains a point of every color [9]. Non-convex

polygons for which such a finite m(k) (for any k ≥ 2) exists have been classified [22, 25].

As it was shown recently [24], there is no such finite m(2) for convex sets with a smooth

boundary, e.g., for the translates of a disc. However, it was also shown in the same paper

that for the translates of any unbounded convex set m(2) = 3 is sufficient. In this paper

we extend this result to every k, showing that m(k) = 2k − 1 is an optimal function for

unbounded convex sets.

For homothets of a given shape the primal and dual problems are not equivalent.

For homothets of a triangle (a case closely related to the case of translates of octants
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[13, 14]), there are several results, the current best are m(k) = O(k4.09) in the primal

version [3, 16] and m(k) = O(k5.09) in the dual version [4, 16]. For the homothets of other

convex polygons, in the dual case there is no finite m(2) [18], and in the primal case only

conditional results are known [15], namely, that the existence of a finite m(2) implies the

existence of an m(k) that grows at most polynomially in k. In fact, it is even possible that

for any polychromatic coloring problem m(k) = O(m(2)).

For other shapes, cover-decomposability has been studied less, in these cases the inves-

tigation of polychromatic-colorings is motivated rather by conflict-free colorings or ǫ-nets.

Most closely related to our paper, coloring halfplanes for small values were investigated in

[11, 12, 8], and polychromatic k-colorings in [27]. We generalize all the (primal and dual)

results of the latter paper to pseudohalfplanes. Note that translates of an unbounded con-

vex set form a set of pseudohalfplanes, thus the above mentioned result about unbounded

convex sets is a special case of this generalization to pseudohalfplanes.

Axis-parallel rectangles are usually investigated from the ǫ-net point of view (e.g., [5,

20]), for which the coloring function f is not independent of the number of points/regions.

Motivated by these, bottomless rectangles are regarded for small values in [11, 12] and

polychromatic k-colorings in [1]. In this paper we place bottomless rectangles in our

abstract context and pose some further problems about them.

Besides generalizing earlier results, our contribution is a more abstract approach to

the above problems. Namely, we introduce the notion of ABA-free families (see Defini-

tion 1.1), shallow hitting sets (see Definition 1.6) and balanced polychromatic colorings

(see Definition 5.5), and discuss their relevance.

1.1 Definitions and statements of main results

Definition 1.1. A hypergraph H with an ordered vertex set is called ABA-free if H does

not contain two hyperedges A and B for which there are three vertices x < y < z such

that x, z ∈ A \B and y ∈ B \ A.

A hypergraph with an unordered vertex set is ABA-free if its vertices have an ordering

with which the hypergraph is ABA-free.1

Remark 1.2. ABA-free hypergraphs were first defined in [24] under the name special shift-

1While it might seem that using the same notion for ordered and unordered hypergraphs leads to

confusion as by forgetting the ordering of an ordered hypergraph it might become ABA-free, from the

context it will always be perfectly clear what we mean.
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chains, as they are a special case of shift-chains introduced in [23].

Example 1.3. An interval hypergraph is a hypergraph whose vertices are some points of

R, and its hyperedges are some intervals from R, with the incidences preserved.

Example 1.4 ([24]). Let S be a set of points in the plane with different x-coordinates

and let C be a convex set that contains a vertical halfline. Define a hypergraph H whose

vertex set is the x-coordinates of the points of S. A set of numbers X is a hyperedge of H

if there is a translate of C such that the x-coordinates of the points of S contained in the

translate is exactly X. The hypergraph H defined this way is ABA-free.

Example 1.5. Let S be a set of points in the plane in general position. Define a hypergraph

H whose vertex set is the x-coordinates of the points of S. A set of numbers X is a

hyperedge of H if there is a positive halfplane H (i.e., that contains a vertical positive

halfline) such that the set of x-coordinates of the points of S contained in H is X. The

hypergraph H defined this way is ABA-free.

The above examples show how to reduce geometric problems to abstract problems

about ABA-free hypergraphs. Observe that given an S, by choosing an appropriately

big parabola, any hyperedge defined by a positive halfplane as in Example 1.5 is also

defined by some translate of the big parabola as in Example 1.4, thus Example 1.4 is

more general than Example 1.5, and it is easy to see that both are more general than

Example 1.3. Even more, as we will see later in Section 3, finite ABA-free hypergraphs

have an equivalent geometric representation with graphic pseudoline arrangements (here

hyperedges are defined by the regions above the pseudolines, for the definitions and details

see Section 3) and both translates of the boundary of an unbounded convex set and lines in

the plane form graphic pseudoline arrangements, showing again that the above examples

are special cases of ABA-free hypergraphs.

To study polychromatic coloring problems, we also introduce the following definition,

which is implicitly used in [27], but deserves to be defined explicitly as it seems to be

important in the study of polychromatic colorings.

Definition 1.6. A set R is a c-shallow hitting set of the hypergraph H if for every H ∈ H

we have 1 ≤ |R ∩H| ≤ c.

Actually, almost all our results are based on shallow hitting sets.

Our main results and the organization of the rest of this paper is as follows.
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In Section 2 we prove (following closely the ideas of Smorodinsky and Yuditsky [27])

that every (2k − 1)-uniform ABA-free hypergraph has a polychromatic coloring with k

colors. We then observe that the dual of this problem is equivalent to the primal, which

implies that the hyperedges of every (2k−1)-uniform ABA-free hypergraph can be colored

with k colors, such that if a vertex v is in a subfamily Hv of at least m(k) = 2k− 1 of the

hyperedges of H, then Hv contains a hyperedge from each of the k color classes.

In Section 3 we give an abstract equivalent definition (using ABA-free hypergraphs)

of hypergraphs defined by pseudohalfplanes, and we prove that given a finite set of points

S and a pseudohalfplane arrangement H, we can k-color S such that any pseudohalfplane

in H that contains at least m(k) = 2k − 1 points of S contains all k colors. Both results

are sharp. Note that these results imply the same for hypergraphs defined by unbounded

convex sets.

In Section 4 we discuss dual and other versions of the problem. For example we prove

that given a pseudohalfplane arrangement H, we can k-color H such that if a point p

belongs to a subfamily Hp of at least m(k) = 3k − 2 of the pseudohalfplanes of H, then

Hp contains a pseudohalfplane from each of the k color classes. This result might not be

sharp, the best known lower bound for m(k) is 2k − 1 [27].

In Section 5, we discuss ABAB-free hypergraphs and related problems. We also discuss

consequences about ǫ-nets on pseudohalfplanes in Appendix B.

We denote the symmetric difference of two sets, A and B, by A∆B, the complement

of a hyperedge F by F̄ and for a family F we use F̄ = {F̄ | F ∈ F}. We will suppose

(unless stated otherwise) that all hypergraph and point sets are finite, and denote the

smallest (resp. largest) element of an ordered set H by min(H) (resp. max(H)).

2 ABA-free hypergraphs and the general coloring algo-

rithm

Suppose we are given an ABA-free hypergraph H on n vertices. As the hypergraph is

ABA-free, for any pair of sets A,B ∈ H either there are a < b such that a ∈ A \ B and

b ∈ B \ A, or there are b < a such that a ∈ A \ B and b ∈ B \ A, or none of them, but

not both as that would contradict ABA-freeness.

Define A < B if and only if there are a < b such that a ∈ A \ B and b ∈ B \ A, and

A ≤ B if and only if either A = B (as sets) or A < B. By the above, this is well-defined,
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and below we show that it gives a partial ordering of the sets.

Observation 2.1. If A < B and a ∈ A \B, then there is a b > a such that b ∈ B \ A.

Proposition 2.2. If A < B and B < C, then A < C.

Proof. Take an a ∈ A \B. If a /∈ C, then take a b ∈ B \ A. If b ∈ C, then A < C and we

are done. Otherwise, there has to be a c > b such that c ∈ C \B. If c ∈ A, then a < b < c

forms a forbidden sequence for A and B, thus c /∈ A. Then by definition a and c show

that A < C.

If a ∈ C, then also a ∈ C \B, thus there has to be a b1 < a such that b1 ∈ B \ C. As

a ∈ A \ B and A < B, we also have b1 ∈ A and so b1 ∈ A \ C. There also has to be a

b2 > a such that b2 ∈ B \ A. If b2 /∈ C, then b1 < a < b2 forms a forbidden sequence for

B and C. Thus b2 ∈ C \ A, and by definition b1 and b2 show that A < C.

We proceed with another definition.

Definition 2.3. A vertex a is skippable if there exists an A ∈ H such that min(A) < a <

max(A) and a /∈ A. In this case we say that A skips a. A vertex a is unskippable if there

is no such A.

Observation 2.4. If a vertex a is unskippable in some ABA-free hypergraph H, then after

adding the one-element hyperedge {a} to H, it remains ABA-free.

Note that the following two lemmas show that the unskippable vertices of an ABA-free

hypergraph behave similarly to vertices on the convex hull of a hypergraph on a point set

defined by halfplanes. These two lemmas make it possible to use the framework of [27] on

ABA-free hypergraphs.

Lemma 2.5. If H is ABA-free, then every A ∈ H contains an unskippable vertex.

Remark 2.6. Note that finiteness (recall that we have supposed that all our hypergraphs

are finite) is needed, as the hypergraph whose vertex set is Z and hyperedge set is {Z\{n} |

n ∈ Z} is ABA-free without unskippable vertices.

Proof of Lemma 2.5. Take an arbitrary set A ∈ H, suppose that it does not contain an

unskippable vertex, we will reach a contradiction. Call a ∈ A rightskippable if there is a

B ∈ H rightskipping a, that is for which a ∈ A \ B and there are b1, b2 ∈ B such that

b1 < a < b2 where b2 ∈ B \ A.
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If A contains no unskippable vertex, max(A) must be rightskippable (any set skipping

max(A) must also rightskip max(A)). Also, min(A) cannot be rightskippable, as otherwise

A and the set B rightskipping min(A) would violate ABA-freeness (we would get b1 <

min(A) < b2 where b1, b2 ∈ B \ A,min(A) ∈ A \ B). Therefore we can take the largest

a ∈ A that is not rightskippable. By the assumption, it is skipped by a set, call it B, i.e.,

b1 < a < b2 where b1, b2 ∈ B 6∋ a. Moreover, suppose without loss of generality that b2 is

the smallest element of B which is bigger than a. Since a is not rightskippable, b2 ∈ A

must also hold. As b2 ∈ A is rightskippable, there is a C such that c1 < b2 < c2 where

c1, c2 ∈ C and b2 /∈ C, c2 /∈ A. Without loss of generality, suppose that c1 is the largest

element of C which is smaller than b2. If c1 < a, then C would rightskip a, a contradiction.

Thus, b1 < a ≤ c1, and from the choice of b2 we conclude that c1 /∈ B. As c2 /∈ A, also

c2 /∈ B, otherwise B would rightskip a. Putting all together, we get c1 < b2 < c2, thus B

and C contradict ABA-freeness.

Definition 2.7. A hypergraph is called containment-free if none of its hyperedges contains

another hyperedge.2 A hypergraph H′ is a subhypergraph of a hypergraph H on vertex set S

if we can get H′ by taking a subset S ′ ⊂ S as its vertex set and the family of the hyperedges

of H′ is a subfamily of the hyperedges of H restricted to S ′. We call a hypergraph property

P hereditary if for every hypergraph H that has property P, all of its subhypergraphs also

have property P.

Observation 2.8. ABA-freeness is a hereditary property.

We further assume in the rest of the paper that our hypergraphs are nonempty in the

sense that they contain at least one hyperedge which is not the empty set. Notice that

for an ABA-free containment-free hypergraph the ordering < of its sets is a total order,

i.e., any two hyperedges are comparable.

Lemma 2.9. If H is ABA-free and containment-free, then any minimal hitting set of H

that contains only unskippable vertices is 2-shallow.

Proof. Let R be a minimal (for containment) hitting set of unskippable vertices. Assume

to the contrary that there exists a set A such that |A ∩ R| ≥ 3. Let l = min(A ∩ R)

and r = max(A ∩ R). There exists a third vertex l < a < r in A ∩ R. We claim that

R′ = R \ {a} hits all sets of H, contradicting its minimality. Assume on the contrary that

2Equivalently, the hyperedges form an antichain. This property is also called Sperner.
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R′ is disjoint from some B ∈ H. As R must hit B, we have R ∩ B = {a}. If there is a

b ∈ B \ A such that l < b < r, that would contradict the ABA-free property. If there

is a b ∈ B such that b < l < a or a < r < b, that would contradict that l and r are

unskippable. Thus B ⊂ A, contradicting that H is containment-free.

Lemma 2.10. Every containment-free ABA-free hypergraph has a 2-shallow hitting set.

Proof. Given a containment-free ABA-free hypergraph, take the set of all unskippable

vertices, it is a hitting set by Lemma 2.5. Then we can delete vertices from this set until

it becomes a minimal hitting set, which is 2-shallow by Lemma 2.9.

Now we present an abstract and generalized version of the framework of [27] to give

polychromatic k-colorings of hypergraphs.

Theorem 2.11. Assume that P is a hereditary hypergraph property such that every

containment-free hypergraph with property P has a c-shallow hitting set. Then every hyper-

graph H with hyperedges of size at least ck−(c−1) that has property P admits a polychro-

matic k-coloring, i.e., a coloring of its vertices with k colors such that every hyperedge of

H contains vertices of all k colors.

Proof. We present an algorithm that gives a polychromatic k-coloring. First, we repeat

k − 1 times (i = 1, . . . , k − 1) the general step of the algorithm:

At the beginning of step i we have a hypergraph H with hyperedges of size at least

ck− ci+1 that has property P. If any hyperedge contains another, then delete the bigger

hyperedge. Repeat this until no hyperedge contains another, thus making our hypergraph

containment-free. Next, take a c-shallow hitting set (using our assumptions), and color

its vertices with the i-th color. Delete these vertices from H (the hyperedges of the new

hypergraph are the ones induced by the remaining vertices). As P is hereditary, the new

hypergraph also has property P and we can proceed to the next step.

After k − 1 iterations of the above, we are left with a 1-uniform hypergraph whose

vertices we can color with the k-th color.

First, we use this algorithm to give a polychromatic k-coloring of the vertices of an

ABA-free hypergraph with hyperedges of size at least 2k − 1.

Theorem 2.12. Given an ABA-free H we can color its vertices with k colors such that

every A ∈ H whose size is at least 2k − 1 contains all k colors.
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Proof. By Observation 2.8 ABA-freeness is a hereditary property. Together with Lemma

2.10 we get that all the assumptions of Theorem 2.11 with c = 2 hold for ABA-free

hypergraphs with hyperedges of size at least 2k−1 and thus we get a required k-coloring.

Notice that the above theorem is sharp, as taking H to be all subsets of size 2k − 2

from 2k − 1 vertices, in any coloring of the vertices, one color must occur at most once

and is thus missed by some hyperedge.

We state another corollary of Lemma 2.5 that we need later. Before that, we need

another simple claim.

Proposition 2.13. Suppose we insert a new vertex, v, somewhere into the (ordered)

vertex set of an ABA-free hypergraph, H, and add v to every hyperedge that contains a

vertex before and another vertex after v, then we get an ABA-free hypergraph.

Proof. We show that if in the new hypergraph, H′, two hyperedges A′ and B′ violate

ABA-freeness, then we can find two hyperedges A and B in the original hypergraph, H,

that also violate ABA-freeness, which would be a contradiction. We define A = A′ \ {v}

and B = B′ \{v}. If both A′ and B′ contain or do not contain v, then by definition A and

B also violate the condition. If, say, v /∈ A′ and v ∈ B′, then without loss of generality

we can suppose that all the vertices of A = A′ are before v. This means that if there are

x < y < z such that x, z ∈ A′\B′ and y ∈ B′\A′, then necessarily v = z. But as B′ has an

element z′ that is bigger than v, we have x, z′ ∈ A\B and y ∈ B \A, a contradiction.

Lemma 2.14. If H is ABA-free, A ∈ H, then there is a vertex a ∈ A such that H∪{A \

{a}} is also ABA-free.

Proof. If |A| = 1, then trivially H can be extended with ∅. If |A| > 1, then we proceed by

induction on the size of A. Using Lemma 2.5, there is an unskippable vertex v ∈ A. Delete

this vertex from H to obtain some ABA-free Hv and let Av = A \ {v}. Using induction

on Av, there is an A′

v = Av \ {a} such that Hv ∪ {A′

v} is also ABA-free. We claim that

with A′ = A′

v ∪ {v} = A \ {a}, the family H ∪ {A′} is also ABA-free.

Notice that adding back v to Hv is very similar to the operation of Proposition 2.13,

as v is unskippable in H. The only difference is that we might also have to add it to some

further hyperedges, ending in or starting at v. But a hyperedge that contains v cannot

violate the ABA-free condition with A′, since it also contains v, so the corresponding

hyperedges in Hv would also violate the ABA-free condition.
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Notice that with the repeated application of Lemma 2.14 we can extend any ABA-

free hypergraph, such that in any set A there is a vertex a for which {a} is a singleton

hyperedge, implying that a is unskippable in A. Thus in fact Lemma 2.14 is equivalent to

Lemma 2.5. Moreover, in Section 3, in the more general context of pseudohalfplanes, it

will be the abstract equivalent of a known and important property of pseudohalfplanes.

We prove another interesting property of ABA-free hypergraphs before which we need

the following definition.

Definition 2.15. The dual of a hypergraph H, denoted by H∗, is such that its vertices

are the hyperedges of H and its hyperedges are the vertices of H with the same incidences

as in H.

Proposition 2.16. If H is ABA-free, then its dual H∗ is also ABA-free (with respect to

some ordering of its vertices).

Proof. Take the partial order “<” of the hyperedges of H and extend this arbitrarily into

a total order <∗. We claim that H∗ is ABA-free if its vertices are ordered with respect

to <∗. To check the condition, suppose for a contradiction that Hx <∗ Hy <∗ Hz and

a ∈ (Hx∩Hz)\Hy and b ∈ Hy \ (Hx∪Hz). Without loss of generality, suppose that a < b.

But in this case Hz < Hy holds, contradicting Hy <
∗ Hz.

Corollary 2.17. The hyperedges of every (2k − 1)-uniform ABA-free hypergraph can be

colored with k colors, such that if a vertex v is in a subfamily Hv of at least m(k) = 2k−1

of the hyperedges of H, then Hv contains a hyperedge from each of the k color classes.

Corollary 2.18. Any (2k− 1)-fold covering of a finite point set with the translates of an

unbounded convex planar set is decomposable into k coverings.

3 Pseudohalfplanes

Here we extend a result of Smorodinsky and Yuditsky [27]. A pseudoline arrangement

is a finite collection of simple curves in the plane such that any two are either disjoint

or intersect once and in the intersection point they cross. We suppose that they are

in general position, i.e., no three curves have a common point. Some well-known results

about pseudoline arrangements are collected in Appendix A, which can be found in [2]. We

also recommend [7] where generalizations of classical theorems are proved for topological
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affine planes. From these, it follows that the hypergraphs defined by points contained in

pseudohalfplanes have the following structure.

Definition 3.1. A hypergraph H on an ordered set of points S is called a pseudohalfplane-

hypergraph if there exists an ABA-free hypergraph F on S such that H ⊂ F ∪ F̄ .

Note that F̄ is also ABA-free with the same ordering of the points. We refer to the

hyperedges of a pseudohalfplane-hypergraph also as pseudohalfplanes.

Using Lemma 2.14 on a hyperedge of a pseudohalfplane-hypergraph, we get the fol-

lowing.

Proposition 3.2. Given a pseudohalfplane-hypergraph H, and a hyperedge A of H, we

can add a new hyperedge A′ contained completely in A that contains all but one of the

points of A, such that H remains a pseudohalfplane-hypergraph.

In the geometric setting this corresponds to the known and useful fact that given a

pseudohalfplane arrangement and a finite set of points A contained in the pseudohalfplane

H , we can add a new pseudohalfplane H ′ contained completely in H that contains all but

one of the points of A.

Now we show how to extend Theorem 2.12 to pseudohalfplane arrangements, i.e., to

the case when the points of S below a line also define a hyperedge.

Theorem 3.3. Given a finite set of points S and a pseudohalfplane arrangement H,

we can color S with k colors such that any pseudohalfplane in H that contains at least

2k− 1 points of S contains all k colors. Equivalently, the vertices S of a pseudohalfplane-

hypergraph can be colored with k colors such that any hyperedge containing at least 2k− 1

points contains all k colors.

Remark 3.4. The similar statement is not true for the union of two arbitrary ABA-free

hypergraphs (instead of an ABA-free hypergraph and its complement), as the union of two

arbitrary ABA-free hypergraphs might not be 2-colorable, see [24] for such a construction.

Proof of Theorem 3.3. Our proof is completely about the abstract setting, yet it translates

naturally to the geometric setting, also the figures illustrate the geometric interpretations.

By definition there exists an ABA-free F such that H ⊂ F ∪ F̄ . Call U = H ∩ F the

upsets and D = H ∩ F̄ the downsets, observe that both U and D are ABA-free.

Further, the unskippable vertices of U (resp. D) are called top (resp. bottom) vertices.

The top and bottom vertices are called the unskippable vertices of H. Recall that by

11
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X B b2{c}

a

(a) c cannot be top

a b c

X {b}

{c}

a2
A

(b) A cannot be an upset

Figure 1: Proof of Lemma 3.6

adding these unskippable vertices as one-element hyperedges to H, H remains to be a

pseudohalfplane-hypergraph, as we can extend F and F̄ with the appropriate hyperedge

(this is a convenient way of thinking about top/bottom vertices in the geometric setting,

as seen later in the figures).

Observation 3.5. If x is top and X is a downset and x ∈ X, then X contains all vertices

that are bigger or all vertices that are smaller than x. The same holds if x is bottom, X

is an upset and x ∈ X.

Lemma 3.6. If H is a containment-free pseudohalfplane-hypergraph, then any minimal

hitting set of H that contains only unskippable vertices is 2-shallow.

Proof. Let R be a minimal hitting set of unskippable vertices. Suppose for a contradiction

that {a, b, c} ⊂ R∩X and a < b < c for some X ∈ H. Without loss of generality, suppose

that b is top. As R is minimal, let B be a set for which B∩R = {b}. From Observation 3.5

it follows that B is an upset.

First suppose that X is an upset. As B 6⊂ X, take a b2 ∈ B \ X. As B and X are

both upsets and thus have the ABA-free property, we have b2 < a or c < b2. Without

loss of generality, we can suppose c < b2. If c is top, {c} and B violate ABA-freeness.

See Figure 1a. If c is bottom, then using Observation 3.5, X contains all the vertices that

are smaller than c. Take a set A 6⊂ X for which A ∩ R = {a}. This set must contain an

a2 ∈ A \ X and so we must have c < a2. If A is an upset, as it does not contain b and

recall a < b < a2, A and {b} violate ABA-freeness. See Figure 1b. If A is a downset, as

it does not contain c and recall a < c < a2, A and {c} violate ABA-freeness, both cases

lead to a contradiction.

The case when X is a downset is similar. Using Observation 3.5 for X and {b} we can

suppose without loss of generality that X contains all vertices that are smaller than b.
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Take a set A 6⊂ X for which A ∩ R = {a} and an a2 ∈ A \X. As X contains all vertices

smaller than b, we have b < a2. A cannot be an upset, as then it would contain b, so it is

a downset. If b < a2 < c, then A and X would violate ABA-freeness, thus we must have

c < a2. This means c cannot be bottom, so it is top. Using Observation 3.5, X contains

all the vertices that are smaller than c. But then B \ X must have an element that is

bigger than c, contradicting the ABA-freeness of B and {c}.

It is easy to see that being a pseudohalfplane hypergraph is a hereditary property.

Thus, Lemma 3.6 implies that all the assumptions of Theorem 2.11 hold with c = 2 to

get a polychromatic k-coloring as required. This finishes the proof of Theorem 3.3.

4 Dual problem and pseudohalfsphere-hypergraphs

We are also interested in coloring pseudohalfplanes with k colors such that all points

that are covered many times will be contained for each k colors in a pseudohalfplane of

that color. For example, we can also generalize the dual result about coloring halfplanes

of [27] to pseudohalfplanes.

Theorem 4.1. Given a pseudohalfplane arrangement H, we can color H with k colors

such that if a point p belongs to a subset Hp of at least 3k − 2 of the pseudohalfplanes of

H, then Hp contains a pseudohalfplane of every color.

Theorem 4.1 follows from Theorem 4.5, that we will state and prove later.

However, instead of coloring pseudohalfplanes, we stick to coloring points with respect

to pseudohalfplanes and work with dual hypergraphs, where the vertex-hyperedge inci-

dences are preserved, but vertices become hyperedges and hyperedges become vertices.

Since we have already seen in Section 3 the equivalence of our abstract definition and

the standard definition of a pseudohalfplane arrangement, we can use the well-known

properties of the dual arrangement (see, e.g., [2]) to obtain the following.

Proposition 4.2. A dual pseudohalfplane-hypergraph is a hypergraph H on an ordered

set of vertices S such that there exists a set X ⊂ S and an ABA-free hypergraph F on S

such that the hyperedges of H are the hyperedges F∆X for every F ∈ F .

Proof. Using Definition 3.1, let F be an ABA-free hypergraph that represents the original

pseudohalfplane-hypergraph, that is, every pseudohalfplane is equal to a set F ∈ F or
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to a set F ∈ F̄ . Using Proposition 2.16, the dual of F is an ABA-free hypergraph, F∗,

whose vertices {vF : F ∈ F} correspond to the hyperedges of F (ordered in the way given

by Proposition 2.16) and whose hyperedges {fp : p ∈ S} correspond to the vertices of

F , with incidence relations preserved, i.e., fp = {vF : p ∈ F}. Now we add also the set

of vertices {vF̄ : F̄ ∈ F} corresponding to the hyperedges of F̄ . Each vertex vF̄ is put

right after vertex vF in the order. The hyperedges change in the following way. As in F

we have p /∈ F ∈ F if and only if p ∈ F̄ , in the dual the corresponding hyperedge is

hp = {vF : p ∈ F} ∪ {vF̄ : p ∈ F̄}, which contains exactly one of vF and vF̄ for every

F . First, without loss of generality, we can suppose that for every A ∈ F , H contains at

least one of A ∈ F and Ā ∈ F̄ , otherwise we can delete A from F too. Further, we can

suppose that H contains exactly one of A ∈ F and Ā ∈ F̄ , as if it contains both, we can

add another copy A′ of A to F (F is then a(n ABA-free) multihypergraph) and regard Ā

as Ā′. This way it can never happen that both A ∈ H and Ā ∈ H, thus in the dual only

one of the corresponding vertices are present. Thus, we can relabel to wA the one vertex

that is present in H among vA and vĀ. After the relabeling we have V = {wA : A ∈ F}.

Denote by X the set of vertices of V for which wA = vĀ. Now an arbitrary hyperedge

hp = {vF : p ∈ F} ∪ {vF̄ : p ∈ F̄} = {wF : p ∈ F ∩ X̄} ∪ {wF : p ∈ F̄ ∩ X} = f ′

p∆X,

where ∆ denotes the symmetric difference of two sets and f ′

p = {wF : vF ∈ fP}, i.e., fp

injected in the natural way into the relabeled set V . These f ′

p define the same (up to this

projection) ABA-free hypergraph as F∗, the dual of F .

Now we define a common generalization of the primal and dual definitions.

Definition 4.3. A pseudohalfsphere-hypergraph is a hypergraph H on an ordered set of

vertices S such that there exists a set X ⊂ S and an ABA-free hypergraph F on S such

that the hyperedges of H are some subset of {F∆X, F̄∆X | F ∈ F}.

It is easy to see that the dual of such a pseudohalfsphere-hypergraph is also a pseudohalfsphere-

hypergraph, just like in Proposition 2.16. Furthermore, there is a nice geometric repre-

sentation of such hypergraphs using pseudohalfsphere arrangements, a generalization of

halfsphere arrangements on a sphere.

In a pseudohalfsphere arrangement the pseudohalfspheres are regions whose bound-

aries are centrally symmetric simple curves such that any two intersect exactly twice.

(For more on pseudohalfsphere arrangements, see, e.g., [2].) Without changing the com-

binatorial properties of the arrangement, we can suppose that the boundary of one of

the pseudohalfspheres is the equator. Using a stereographic projection from the center
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of the sphere such that this pseudohalfsphere is mapped to a whole plane, the other

pseudohalfspheres are mapped to pseudohalfplanes. Thus, we can conclude that H is a

pseudohalfsphere-hypergraph if and only if there is a set of points, S, on the surface of

a sphere and a pseudohalfsphere arrangement F on the sphere such that the incidences

among S and F give H. (Here X corresponds to the points on the southern hemisphere

and S \X to the points on the northern hemisphere.)

Another popular geometric representation on the plane, adding signs to lines and

points, is the following. The vertices correspond to a set of points in the plane together

with a direction (up or down), and the hyperedges correspond to a set of (x-monotone)

pseudolines with a sign (+ or −). The hyperedge corresponding to a positive pseudoline

is the set of points that point towards the pseudoline, while the hyperedge corresponding

to a negative pseudoline is the set of points that point away from the pseudoline. Positive

pseudolines correspond to F , negative pseudolines to F̄ , up points correspond to X and

down points correspond to X̄. With this interpretation, ABA-free hypergraphs have only

+ and up signs, pseudohalfplane-hypergraphs have ± and up signs, dual pseudohalfplane-

hypergraphs have + and up/down signs.

In the next table we summarize the best known results about these hypergraphs, with

respect to how many points each hyperedge has to contain to have a polychromatic k-

coloring and the values of the smallest c for which there exists a c-shallow hitting set for

containment-free families.

Polychromatic k-coloring Shallow hitting set

ABA-free hypergraphs 2k − 1 (Theorem 2.12) 2 (Lemma 2.9)

Pseudohalfplane-hypergraphs 2k − 1 (Theorem 3.3) 2 (Lemma 3.6)

Dual pseudohalfplane-hypergraphs ≤ 3k − 2 (Theorem 4.1) ≤ 3 (Theorem 4.5)

Pseudohalfsphere-hypergraphs ≤ 4k − 3 (Corollary 4.4) ≤ 4 (Theorem 4.5)

We conjecture that even containment-free pseudohalfsphere arrangements have a 2-

shallow hitting set, which would also imply, using Theorem 2.11, that any family whose

sets have size at least 2k − 1 admits a polychromatic k-coloring.

As we can find a polychromatic k-coloring of the points of X and X̄ independently

with respect to the sets of F and F̄ , respectively, of size at least 2k−1 using Theorem 3.3,

the following is true.
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Corollary 4.4. Given a finite set of points S on the sphere and a pseudohalfsphere ar-

rangement H, we can color S with k colors such that any pseudohalfsphere in H that

contains at least 4k − 3 points of S contains all k colors. Equivalently, the vertices S

of a pseudohalfsphere-hypergraph can be colored with k colors such that any hyperedge

containing at least 4k − 3 points contains all k colors.

To finish, we first prove the following theorem, which, using Theorem 2.11, will imply

Theorem 4.1, and also provides another proof for Corollary 4.4.

Theorem 4.5. Every containment-free dual pseudohalfplane-hypergraph has a 3-shallow

hitting set and every containment-free pseudohalfsphere-hypergraph has a 4-shallow hitting

set.

The proof of this result follows again closely the argument of [27]. We note that the

next few statements can also be proved using the geometric representation, but here we

develop further our completely abstract approach. The reason for this is to demonstrate

the power of our method, hoping that in the future it enables attacking completely different

problems as well.

Lemma 4.6. Suppose F is an ABA-free hypergraph on an ordered vertex set S = (Y, Z)

such that the vertices in Y precede the ones in Z. Then F ′ = F∆Y = {F∆Y | F ∈ F}

is an ABA-free hypergraph on the vertices ordered as S ′ = (Z, Y ), i.e., Z precedes Y but

otherwise the order inside Y and Z is unchanged.

Moreover, if F and X ⊂ S define a pseudohalfsphere-hypergraph H, i.e., the hyperedges

of H are {F∆X | F ∈ F} and {F̄∆X | F ∈ F}, then F ′ and X ′ = X∆Y ⊂ S ′ also

define the same (if unordered) pseudohalfsphere-hypergraph H′.

Proof. It is enough to show the statement if |Y | = 1, as then by induction we can proceed

with the vertices of |Y | > 1 one by one. Let us denote the original order by < and the

new one by ≺. It is enough to show that for any A,B ∈ F we have no ABA-sequence in

A′ = A∆Y,B′ = B∆Y ∈ F ′ according to the order ≺. We will only use that there is no

ABA-sequence in A,B according to <. Denote the only element of Y by y. If y /∈ A∆B,

then A∆B is unchanged by the transformation, thus an ABA-sequence in A′, B′ according

to ≺ would also be an ABA-sequence in A,B according to <, a contradiction. Thus,

without loss of generality, y ∈ B \ A and so y ∈ A′ \ B′. An ABA-sequence in A′, B′

according to ≺ not containing y would be an ABA-sequence also in A,B according to <.
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Otherwise, if three vertices a ≺ b ≺ y form an ABA-sequence in A′, B′, then the three

vertices y < a < b form an ABA-sequence in B,A, a contradiction.

For the moreover part, notice that as F∆Y∆X ′ = F∆Y∆X∆Y = F∆X, the hyper-

edges of H and H′ are indeed the same.

Remark 4.7. Lemma 4.6 suggests that instead of our linear ordering of the vertices, we

could consider them in circular order. Indeed, let the vertices be points in a circle, where

for every vertex the point opposite it on the circle is also a vertex, called its negated pair.

Now take a hypergraph on such a circular point set which contains exactly one point from

each opposite pair and is circular ABAB-free, that is, it does not contain two sets, A and

B, and four points, a, b, c, d, that are in this order around the circle for which a, c ∈ A\B

and b, d ∈ B \ A. It is easy to see that such a hypergraph is also circular ABABAB-

free, and restricting it to any consecutive subset of half of the vertices is an ABA-free

hypergraph with the same (non-circular) order. For example, (a, b, c, ā, b̄, c̄) would be the

circular order, where the original base set is S = {a, b, c}, and a set would be F = {a, c, b̄}.

After we apply Lemma 4.6 with Y = {a}, the “new” base set becomes S = {b, c, ā}.

Our earlier results could be translated to this abstraction as well, which models the

above rotational symmetry of pseudohalfspheres in a more natural way. However, further

statements we prove are still non-trivial even in this model, so we will stick with our

original linear ordering of the vertices.

Lemma 4.8. [Helly’s theorem for pseudohalfplanes] If any three hyperedges of a pseudohalf-

plane-hypergraph intersect, then we can add a vertex contained in all pseudohalfplanes of

the arrangement.

Proof. We prove the dual statement, as it will be more convenient. That is, suppose that

we are given a pseudohalfsphere-hypergraph H, such that all its hyperedges are derived

from F , i.e., H has a representing ABA-free F and vertex set X ⊂ S such that for every

H ∈ H there is an F ∈ F such that H = F∆X. We need to show that if for any three

vertices there exists a hyperedge that contains all three of them, then we can add the

hyperedge X̄ to F such that it stays ABA-free. This is indeed the dual equivalent of the

statement, as X̄∆X ∈ H contains all the vertices.

For a contradiction, suppose that X̄ and some F ∈ F violate ABA-freeness because

of some vertices x, y, z. By our assumption, there exists another hyperedge G∆X which

contains all of x, y, z, thus G and X̄ contain the same subset of x, y, z. Thus F,G ∈ F
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contain an ABA-sequence on the vertices x, y, z as F, X̄ contains an ABA-sequence on

x, y, z, a contradiction.

Applying this to the complements of the pseudohalfplanes we get the following.

Corollary 4.9. Given a pseudohalfplane-hypergraph, either there are already three hyper-

edges that cover all the vertices, or we can add a vertex which is in none of the hyperedges.

Now we show that reordering the vertices in an appropriate way keeps the ordered

hypergraph ABA-free.

Lemma 4.10. Suppose F is an ordered ABA-free hypergraph on vertex set S. Let F ∈ F

be a smallest hyperedge in the partial ordering of the hyperedges of F . If we reorder S as

(F, F̄ ), i.e., the vertices of F go to the front but otherwise the order inside F and F̄ is

unchanged, then the ordered hypergraph remains ABA-free.

Proof. Let us denote the original order by < and the new one by ≺. Suppose on the

contrary, that for some A,B ∈ F we have some a, c ∈ A \ B and b ∈ B \ A that satisfy

a ≺ b ≺ c. The proof is a simple case analysis of how this could happen. Notice that c ∈ F

implies b ∈ F and b ∈ F implies a ∈ F , so there are four cases. If a, b, c ∈ F or a, b, c /∈ F ,

then a < b < c. In this case A and B contradict that F is ABA-free. If a ∈ F and

b, c /∈ F , then we must have b < a. In this case B < F , contradicting that F is smallest.

If a, b ∈ F and c /∈ F , then we must have c < b. In this case A < F , contradicting that F

is smallest.

Remark 4.11. If S = {a < b < c} and F = {{a}, {c}, {a, b}, {a, c}, {b, c}}, then in any

reordering of S where the elements of the hyperedge {a, c} go to front (i.e., in {a < c < b}

and {c < a < b}) ABA-freeness is violated. This shows that in the above Lemma 4.10

the assumption that F is a smallest hyperedge cannot be removed. We might hope that

the lemma can be modified to remain true for all hyperedges by first applying Lemma 4.6

for an appropriate prefix set of the points, however this is also not possible. Consider

the ABA-free hypergraph F = {∅, {a}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} and define FX =

{F∆X | F ∈ F} for any X ⊂ S = {a, b, c}. In this case there is no X for which there is a

reordering of S that starts with the elements of {a, c}∆X and for which FX is ABA-free

with this new order.

Lemma 4.12. If all the hyperedges of a pseudohalfsphere-hypergraph H avoid some vertex

p in S, then Ĥ, the dual hypergraph of H, is a pseudohalfplane-hypergraph.
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Proof. Start with a representation of H: an ABA-free hypergraph F and a point set X

such that H ⊂ {F∆X, F̄∆X | F ∈ F}. Apply Lemma 4.6 with Y being the vertices

before p, this way we get a representation of H in which p is the first point. Take Ĥ, the

dual of H, with representation F̂ and X̂. In Ĥ, the set corresponding to p is Hp = Fp∆X̂

for some Fp ∈ F̂ , where we can choose the representation such that Fp is the smallest

set of F̂ (as p was the smallest point of F). Now apply Lemma 4.10 to get another

representation of Ĥ in which the points of Fp are at the beginning in the order. As p was

a point that was in none of the hyperedges of H, in the dual Hp contains no points and

so Fp = Hp∆X̂ = ∅∆X̂ = X̂. Now apply again Lemma 4.6 to F̂ with Y = X̂. We get a

representation (F̂ ′, X̂ ′) of Ĥ in which X̂ ′ = X̂∆X̂ = ∅, that is, Ĥ is a pseudohalfplane-

hypergraph.

Applying Lemma 4.12 to the dual of a pseudohalfsphere-hypergraph we get the fol-

lowing dual statement:

Corollary 4.13. If the empty set is (or can be added as) a hyperedge of a pseudohalfsphere-

hypergraph H, then H is a pseudohalfplane-hypergraph.

Lemma 4.14. [Helly’s theorem for pseudohalfspheres] If any four hyperedges of a pseudohalf-

sphere-hypergraph intersect, then we can add a vertex contained in all pseudohalfspheres

of the arrangement.

Proof. Let H be defined by F and X ⊂ S. We prove the following stronger statement.

If there is a pseudohalfsphere F0∆X = H0 ∈ H that has a non-empty intersection with

any three other pseudohalfspheres, then we can add a vertex contained in all the pseu-

dohalfspheres of the arrangement. Let X ′ = F̄0 = S \ F0 = F̄0 and denote by H′ the

pseudohalfsphere-hypergraph defined on S by F and X ′. As H ′

0 = F0∆X ′ = F0∆(S\F0) =

S contains all the points, we can apply Corollary 4.13 to H′ and the complement of H ′

0

to conclude that H′ is a pseudohalfplane-hypergraph. It follows from our definitions that

the hyperedges in H and H′ are in bijection such that for every H ∈ H there is an G ∈ H′

(and vice versa) such that H = G∆X ′∆X.

Next, we prove that in H′ any three pseudohalfspheres intersect. Suppose that the

original intersection point of these pseudohalfspheres with H0 in H was some p ∈ H0 ∩

H1 ∩ H2 ∩ H3, where Hi = Fi∆X for 1 ≤ i ≤ 3. This implies p ∈ (F0 \ X) ⊂ (S \ X ′)

or p ∈ (X \ F0) ⊂ X ′. In the first case, p ∈ Fi and p ∈ Fi∆X ′ = H ′

i. In the second case,

p /∈ Fi and p ∈ Fi∆X ′ = H ′

i.
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Therefore, any three pseudohalfplanes of H′ intersect. Using Lemma 4.8 for the pseudohalfplane-

hypergraph representation of H′, we can add a new point q to all the hyperedges of

H′. Denote this new pseudohalfplane-hypergraph by H+, and let S+ = S ∪ {q} and

X+ = X ′∆X (note that q /∈ X+). The hypergraph H′+ = {G+∆X+ | G+ ∈ H+} on the

base set S+ is also a pseudohalfsphere-hypergraph. Moreover, we claim that it is the same

as {H∪{q} | H ∈ H}, which proves the lemma. Indeed, recall that each hyperedge H ∈ H

is in bijection with a hyperedge G ∈ H′ with H = G∆X ′∆X = G∆X+. Thus, each hy-

peredge H+ = G ∪ {q} ∈ H+ is in bijection with the corresponding H ∪ {q} = G∆X+.

This implies that H′+ = {G ∪ {q}∆X+ : G ∈ H′}={H ∪ {q} : H ∈ H}.

Applying this to the complements of the pseudohalfspheres we get the following.

Corollary 4.15. Given a pseudohalfsphere-hypergraph, either there are four hyperedges

that cover all the vertices, or we can add a vertex which is in none of the hyperedges.

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. First we prove that every containment-free dual pseudohalfplane-

hypergraph H has a 3-shallow hitting set. Consider the dual of H, the pseudohalfplane-

hypergraph Ĥ.

If in Ĥ there is a set of at most 3 hyperedges covering every point, then in H the

corresponding 3 vertices form a 3-shallow hitting set. Otherwise, by Corollary 4.9 we could

add a point to Ĥ that is in none of the pseudohalfplanes. In this case, by Lemma 4.12

the dual of Ĥ, which is actually H itself, is a pseudohalfplane-hypergraph (note that we

do not include the empty hyperedge that would be the dual of the newly added point).

By Lemma 3.6 it has a 2-shallow hitting set, which is also a 3-shallow hitting set. This

finishes the proof of the first statement of Theorem 4.5.

Now we can similarly prove that every containment-free pseudohalfsphere-hypergraph

has a 4-shallow hitting set. Let H be this hypergraph and take again its dual, Ĥ. If there

is a set of at most 4 hyperedges covering every point in Ĥ, then in H the corresponding 4

vertices form a 4-shallow hitting set. Otherwise, by Corollary 4.15 we could again add a

point to Ĥ that is in none of the pseudohalfplanes. As before this and Lemma 4.12 imply

that H is a pseudohalfplane-hypergraph and thus by Lemma 3.6 it has a 2-shallow hitting

set.

Proof of Theorem 4.1 and of Corollary 4.4. Being a dual pseudohalfplane hypergraph and

being a pseudohalfsphere hypergraph are hereditary properties. Thus, Theorem 4.5 im-
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Figure 2: H3

plies that all the assumptions of Theorem 2.11 hold with c = 3 and c = 4, respectively,

to get the polychromatic colorings required.

5 ABAB-free hypergraphs and more

Definition 1.1 can be generalized in a straightforward way, similarly to Davenport-

Schinzel sequences [6], to more alternations. Our goal in this section is to show that

already one more alternation gives non-two-colorable hypergraphs.

Definition 5.1. A hypergraph H with an ordered vertex set is called ABAB-free if H does

not contain two hyperedges A and B for which there are four vertices w < x < y < z such

that w, y ∈ A \B and x, z ∈ B \ A.

A hypergraph with an unordered vertex set is ABAB-free if its vertices have an ordering

with which the hypergraph is ABAB-free.

We remark that similarly to Proposition A.1, an ABAB-free hypergraph corresponds

to an arrangement of graphic curves that intersect at most twice.

5.1 ABAB-free hypergraphs that are not two-colorable

We show that there are ABAB-free hypergraphs that do not have a proper 2-coloring.

We prove this by ordering the vertices of a non-2-colorable hypergraph Hk in a tricky

way to give an ABAB-free hypergraph. First we define this hypergraph Hk often used in

counterexamples, e.g., [21].

Definition 5.2. Let Gk be the complete k-ary tree of depth k, i.e., the rooted tree such

that its root r has k children, each vertex of Gk in distance at most k − 2 from r has k
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Figure 3: H′

2 and its realization with pseudoparabolas (for k = 3)

children and the vertices in distance k − 1 from r are the leafs (without children).

Hk is the k-uniform hypergraph which has two types of hyperedges. First, for every

non-leaf vertex the set of its children form an hyperedge. Second, the vertices of every

descending path starting in r and ending in a leaf form an hyperedge.

It is easy to see that Hk is not two-colorable. Now we show how to realize Hk such

that its vertices correspond to points in the plane and its hyperedges correspond to the

points above pseudoparabolas (simple curves such that any two intersect at most twice).

This implies that the x-coordinates define an ordering of the vertices of Hk showing that

Hk is ABAB-free. We fix k and define H′

l (resp. G′

l) to be the hypergraph (resp. graph)

induced by Hk (resp. Gk) and the subset of the vertices that are in distance at most

l− 1 from the root r in Gk (H′

l is a simple hypergraph, i.e., if multiple hyperedges induce

the same hyperedge, we take it only once). Thus in particular G′

1 has one vertex and no

hyperedges while H′

1 has one vertex and one hyperedge containing it, while H′

k = Hk and

G′

k = Gk. Note that in G′

l every non-leaf vertex has k children, and H′

l has hyperedges of

size l corresponding to descending paths (which we usually denote by Hi for some i) and

hyperedges of size k corresponding to the set of children of some vertex (which we usually

denote by Ji for some i). See Figure 2.

In our realization, to simplify the presentation, points corresponding to vertices will

be denoted with the same label, and similarly hyperedges and the corresponding pseu-

doparabolas will have the same label.

We will recursively realize H′

l, for an illustration see Figure 4. We additionally main-

tain that each hyperedge (pseudoparabola) Hi corresponding to a descending path has

a vertical strip Si associated to it, such that inside Si there are no points and Hi has

the lowest boundary (thus no other hyperedge intersects Hi inside Si). For l = 1, this is

trivial to do as H′

1 has one vertex and one hyperedge containing this vertex. For l = 2,

Figure 3 shows a way to achieve this (for k = 3). Now suppose that for some l we have H′

l
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Figure 4: Recursive realization of H′

l: adding k children to a leaf

and we want to construct H′

l+1
. Take the construction of H′

l, and for each hyperedge Hi

corresponding to a descending path Pi with endvertex pi, do the following. First make k

vertically translated copies of Hi very close to each other. Denote these by K1, K2, . . .Kk.

Next, using these k copies of Hi, realize H′

2 (except the root r) in an appropriately small

area inside Si, by adding k more points k1, k2, . . . kk such that for every i, ki is above

Ki and below every other pseudoparabola. These points correspond to the children of pi.

Finally, define the pseudoparabola Ji, which corresponds to the hyperedge containing all

the ki’s but no other vertex, as a parabola very close to the vertical strip containing the

ki’s. For each i, the vertical strip that belongs to Ki in the inner copy of H′

2 is the strip

corresponding to the descending hyperedge that ends at ki. Therefore all properties are

maintained, and by repeating the above procedure for each of the leafs pi of H′

l we get a

realization of H′

l+1
.

We are not aware of any nice characterization for the dual of ABAB-free hypergraphs,

like we had for ABA-free hypergraphs in Proposition 2.16.
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Figure 5: A containment-free bottomless rectangle family without a shallow hitting set

5.2 Bottomless rectangles and balanced colorings

Every hypergraph given by a set of points and a collection of bottomless rectangles

is ABAB-free, but not necessarily ABA-free. In fact, it is not hard to see that such

hypergraphs would correspond exactly to “aBAb”-free hypergraphs, which can be defined

similarly to Definition 1.1 as follows.

Definition 5.3. A hypergraph whose vertices are real numbers is aBAb-free if for any

two of its hyperedges, A and B, and vertices x1 < x2 < x3 < x4 it does not hold that

x1 ∈ A, x2 ∈ B \ A, x3 ∈ A \B, x4 ∈ B.

It was shown in [1] that any finite set of points can be colored with k colors such that

any bottomless rectangle that contains at least 3k−2 points contains a point of every color.

Unfortunately, we were not able to prove this using our methods, because containment-free

bottomless rectangle families do not have a shallow hitting set, as shown by the following

example.

Example 5.4. Consider the set of points X = {(i, i) | i = 1..k} and Y = {(k+i, k+1−i) |

i = 1..k} and the bottomless rectangle family that consists of the following.

1. A rectangle HX containing X.

2. A rectangle HY containing Y .

3. Rectangles Hi containing (i, i) and (2k + 1− i, i) for i = 1..k.

Any hitting set for the Hi rectangles contains k/2 points from X or Y , thus it is not

(k/2− 1)-shallow for HX or HY (for an illustration for k = 4 see Figure 5).

Instead of shallow hitting sets, we can ask whether a k-coloring exists for any containment-

free bottomless rectangle family that satisfies a certain nice property, that can be achieved
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by repeatedly finding c-shallow hitting sets and making each of them a separate color class.

In the proofs in earlier sections, after k shallow hitting sets were found and colored to

different colors, we did not care about the remaining points, they were colored arbitrarily.

Instead, we could find a (k+1)-st shallow hitting set for the remaining points and use the

first color for them, then the second color for the (k + 2)-nd shallow hitting set, and so

on, until there are no more points left. In general in the i-th step the shallow hitting set is

colored with color i (mod k), where color 0 and color k denote the same color. This way

we achieve a coloring that is not just polychromatic, but also has the following balanced

property.

Definition 5.5. We say that a k-coloring is c-balanced if for any given set (hyperedge)

of our family denoting the sizes of any two color classes in it by n1 and n2, then we have

n1 ≤ c(n2 + 1).

As we have seen above, if a family has a c-shallow hitting set, then it also has a c-

balanced k-coloring for any k. For uniform families, a converse also holds; if every set

has size n, then any color class of a c-balanced n/c-coloring is a c2-shallow hitting set.

For non-uniform families, however, these notions might differ, so it is natural to ask the

following.

Problem 5.6. Is there a balanced coloring for any family of bottomless rectangles?

Example 5.4 generalizes easily to other families, such as the translates or homothets

of a convex polygon, so there is not much hope to achieve shallow hitting sets for other

interesting planar families. We do not, however, know whether a balanced coloring exists

for the above families.
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A Simple facts about pseudolines

An infinite pseudoline arrangement is such that cutting a pseudoline in two, both parts

are unbounded. A curve is graphic if it is the graph of a function, i.e., an x-monotone

infinite curve that intersects every vertical line of the plane. A graphic pseudoline arrange-

ment is such that every curve is graphic. We say that two pseudoline arrangements are

equivalent if there is a bijection between their pseudolines such that the order in which a

pseudoline intersects the other pseudolines remains the same. A pseudohalfplane arrange-

ment is an infinite pseudoline arrangement, with a side of each pseudoline selected (note

that the two sides of a pseudoline are well-defined regions in this case).

Facts about pseudoline arrangements

I. (Levi Enlargement Lemma) Given a pseudoline arrangement, any two points of the

plane can be connected by a new pseudoline (if they are not connected already).

II. Given a pseudoline arrangement, we can find a(n infinite) pseudoline arrangement

in which every pair of pseudolines intersects exactly once, and the order in which

a pseudoline intersects the other pseudolines remains the same (ignoring the new

intersections).

III. Given an infinite pseudoline arrangement, we can find an equivalent graphic pseu-

doline arrangement.

From these facts it follows that in the definition of a pseudohalfplane we can (and will)

suppose that the underlying pseudoline arrangement is a graphic pseudoline arrangement.

Notice that ABA-free hypergraphs are in a natural bijection with (graphic) pseudoline

arrangements and sets of points, such that each hyperedge corresponds to the subset of

points above a pseudoline.
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Figure 6: Redrawing a lens to decrease the number of intersections

Proposition A.1. Given in the plane a set of points S (with all different x-coordinates)

and a graphic pseudoline arrangement L, define the hypergraph HS,L with vertex set S

such that for each pseudoline l ∈ L the set of points above l is a hyperedge of HS,L. Then

HS,L is ABA-free with the order on the vertices defined by the x-coordinates.

Conversely, given an ABA-free hypergraph H, there exists a set of points S and a

graphic pseudoline arrangement L such that H = HS,L.

Proof. The first part is almost trivial, suppose that there are two hyperedges A,B in

HS,L having an ABA-sequence on the vertices corresponding to the points a, b, c ∈ S. The

pseudolines corresponding to the hyperedges A and B are denoted by ℓA and ℓB. The

pseudoline ℓA intersects the vertical line through a below a, the vertical line through b

above b and the vertical line through c above c, while ℓA intersects these in the opposite

way (above/below/above). Thus these lines must intersect in the vertical strip between a

and b and also in the strip between b and c, thus having two intersections, a contradiction.

The second part of the proof is also quite natural. Given an ABA-free hypergraph

H(V,E) with an ordering on V , we want to realize it with a planar point set S and a

graphic pseudoline arrangement L. Let S be |V | points on the x axis corresponding to the

vertices in V such that the order on V is the same as the order given by the x-coordinates

on S. From now on we identify the vertices of V with the corresponding points of V .

For a given A ∈ H it is easy to draw an ℓA graphic curve for which the points of S

above ℓA are exactly in A. Draw a pseudoline ℓA for every A ∈ H, such that there are

finitely many intersections among these pseudolines, all of them crossings. What we get is

an arrangement of graphic curves, but it can happen that they intersect more than twice.

Now among such drawings take one which has the minimal number of intersections, we

claim that this is a pseudoline arrangement.

Assume on the contrary, that there are two curves ℓA and ℓB intersecting (at least)

twice. Let two consecutive (in the x-order) intersection points be p and q, where p has

smaller x-coordinate than q. Without loss of generality, ℓA is above ℓB close to the left of

p and close to the right of q, while ℓA is below ℓB in the open vertical strip between p and
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q. This structure is usually called a lens, and we want to eliminate it in a standard way,

decreasing the number of intersections. We can change the part of ℓA and ℓB to the left of

p (and to the right from the intersection p′ next to and left of p if there is any) and change

their drawing locally around p (and p′ if it exists) such that we get rid of the intersection

at p, see Figure 6. If there are no points of S between ℓA and ℓB and to the left of p (and

to the right of p′), then this redrawing does not change the hyperedges defined by ℓA and

ℓB, so we get a representation of H with less intersections, a contradiction. Thus there is a

point (p′ <)a < p below ℓA and above ℓB. Similarly, there must be a point p < b < q above

ℓA and below ℓB and finally a point q < c below ℓA and above ℓB, otherwise we could

redraw the pseudolines with less intersections. These three points a < b < c contradict the

ABA-freeness of H as by the definition of the pseudolines, b ∈ A\B and a, c ∈ B \A.

B Small epsilon-nets for pseudohalfplanes

Here we briefly mention the consequences of our results to ǫ-nets of hypergraphs defined

by pseudohalfplanes. We omit proofs as they are not hard and can be obtained exactly as

the corresponding results in [27].

Let H = (V,E) be a hypergraph where V is a finite set. Let ǫ ∈ (0, 1] be a real number.

A subset N ⊆ V is called an ǫ-net if for every hyperedge S ∈ E such that |S| ≥ ǫ|V |, we

also have S ∩ N 6= ∅, i.e., N is a hitting set for all “large” hyperedges. It is known that

hypergraphs with VC-dimension d have small ǫ-nets (of size O(d/ǫ log(1/ǫ)) [10] and in

general this is best possible [17]. However, for geometric hypergraphs this is usually not

optimal, in particular for halfplanes the following is true. Consider a hypergraph H =

(P,E) where P is a finite set of points in the plane and E = {P ∩H | H is a halfplane}.

For this hypergraph there is an ǫ-net of size 2/ǫ−1 for every ǫ [28, 27]. Theorem 3.3 implies

that the same bound holds if the hypergraph is defined by pseudohalfplanes instead of

halfplanes. Also, for the dual hypergraph H̄ Theorem 4.1 implies that for ǫ ≤ 2/3 there

exists an ǫ-net of size 2/ǫ. Note that our results are in fact stronger as in the appropriate

polychromatic coloring each color class intersects all large enough hyperedges, thus we

get a partition of the vertices into ǫ-nets (and at least one of them is a small ǫ-net by the

pigeonhole principle).
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