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HAUSDORFF AND PACKING DIMENSION OF FIBERS AND

GRAPHS OF PREVALENT CONTINUOUS MAPS

RICHÁRD BALKA, UDAYAN B. DARJI, AND MÁRTON ELEKES

Abstract. The notions of shyness and prevalence generalize the property of
being zero and full Haar measure to arbitrary (not necessarily locally compact)
Polish groups. The main goal of the paper is to answer the following question:
What can we say about the Hausdorff and packing dimension of the fibers of
prevalent continuous maps?

Let K be an uncountable compact metric space. We prove that the preva-
lent f ∈ C(K,Rd) has many fibers with almost maximal Hausdorff dimen-
sion. This generalizes a theorem of Dougherty and yields that the prevalent
f ∈ C(K,Rd) has graph of maximal Hausdorff dimension, generalizing a result
of Bayart and Heurteaux. We obtain similar results for the packing dimension.

We show that for the prevalent f ∈ C([0, 1]m,Rd) the set of y ∈ f([0, 1]m)
for which dimH f−1(y) = m contains a dense open set having full measure with
respect to the occupation measure λm ◦ f−1, where dimH and λm denote the
Hausdorff dimension and the m-dimensional Lebesgue measure, respectively.
We also prove an analogous result when [0, 1]m is replaced by any self-similar
set satisfying the open set condition.

We cannot replace the occupation measure with Lebesgue measure in the
above statement: We show that the functions f ∈ C[0, 1] for which positively
many level sets are singletons form a non-shy set in C[0, 1]. In order to do
so, we generalize a theorem of Antunović, Burdzy, Peres and Ruscher. As
a complementary result we prove that the functions f ∈ C[0, 1] for which
dimH f−1(y) = 1 for all y ∈ (min f,max f) form a non-shy set in C[0, 1].

We also prove sharper results in which large Hausdorff dimension is replaced
by positive measure with respect to generalized Hausdorff measures, which
answers a problem of Fraser and Hyde.
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1. Introduction

Let G be a Polish group, that is, a separable topological group which is endowed
with a compatible complete metric. If G is locally compact then there exists a Haar
measure on G, that is, a left translation invariant regular Borel measure which is
finite on compact sets and positive on non-empty open sets. The concept of Haar
measure does not extend to groups that are not locally compact, but the idea of
Haar measure zero sets does. The following definition is due to Christensen [9] and
was rediscovered by Hunt, Sauer and York [21].

Definition 1.1. For an abelian Polish group G a set A ⊂ G is shy or Haar null if
there exists a Borel set B ⊂ G and a Borel probability measure µ on G such that
A ⊂ B and µ (B + x) = 0 for all x ∈ G. The complement of a shy set is called a
prevalent set.

Christensen proved in [9] that shy sets form a σ-ideal and in locally compact
abelian Polish groups Haar measure zero sets and shy sets coincide. Later Topsøe
and Hoffmann-Jørgensen [42] and Mycielski [32] extended the definition to all Polish
groups, but here we consider only the abelian case.

Notation 1.2. The Hausdorff and packing dimension of a metric space X is de-
noted by dimH X and dimP X . We use the convention dimH ∅ = dimP ∅ = −1.
For a compact metric space K let us denote by C(K,Rd) the set of continuous
functions from K to R

d endowed with the maximum norm. Then C(K,Rd) is a
Banach space. We simply write C[0, 1] = C([0, 1],R).

Over the last 25 years there has been a large interest in studying dimensions of
various sets related to ‘typical’ continuous functions. If typical means generic in
the sense of Baire category, then the following theorem about level sets is folklore.

Theorem 1.3. For the generic f ∈ C[0, 1] for all y ∈ f([0, 1]) we have

dimH f
−1(y) = 0.

Mauldin and Williams [28] proved the next theorem.

Theorem 1.4 (Mauldin-Williams). For the generic f ∈ C[0, 1] we have

dimH graph(f) = 1.

As for the higher dimensional analogues, the next result was obtained by Kirch-
heim [26].
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Theorem 1.5 (Kirchheim). If m, d ∈ N
+ and m ≥ d then for the generic f ∈

C([0, 1]m,Rd) for all y ∈ int f ([0, 1]m) we have

dimH f
−1(y) = m− d.

Now let K be an arbitrary compact metric space. In order to determine the
Hausdorff dimension of the level sets of the generic f ∈ C(K,R), we need a new
notion of dimension, the topological Hausdorff dimension, see [3] and [4]. More
generally, the right concept to describe the Hausdorff dimension of the fibers of the
generic f ∈ C(K,Rd) is the so-called dth inductive topological Hausdorff dimension,
see [2].

The case of graphs is much simpler, the strategy of Mauldin and Williams actu-
ally easily yields the following general result, see also [4].

Theorem 1.6. Let K be an uncountable compact metric space and d ∈ N
+. Then

for the generic f ∈ C(K,Rd) we have

dimH graph(f) = dimH K.

These theorems indicate that the generic f ∈ C[0, 1] behaves quite regularly in a
sense, e.g. its level sets and graph have minimal Hausdorff dimension, similarly to
the case of smooth functions. It is quite natural to expect more chaotic behavior
from typical continuous functions, which is already a reason to replace genericity
with another notion. Moreover, since these problems are measure theoretic in
nature, it is natural to replace Baire category by the more measure theoretic concept
of prevalence.

In contrast to Theorem 1.3, we show that the prevalent f ∈ C[0, 1] has fibers of
maximal Hausdorff dimension. Let us denote by λ the one-dimensional Lebesgue
measure. (Note that dimH X ≤ dimP X for every metric space X , so the packing
dimension analogue of the following statement would be weaker.)

Corollary 4.2. For the prevalent f ∈ C[0, 1] there is an open set Uf ⊂ R such
that λ(f−1(Uf )) = 1 (hence Uf is dense in f([0, 1])) and for all y ∈ Uf we have

dimH f
−1(y) = 1.

In general, prevalent continuous maps have many fibers of cardinality continuum,
for the following theorem see [10, Theorem 11] and the remark following its proof.

Theorem 1.7 (Dougherty). Let K be an uncountable compact metric space1 and
let d ∈ N

+. Then for the prevalent f ∈ C(K,Rd) we have

int f(K) 6= ∅.

Moreover, there is a non-empty open set Uf ⊂ R
d such that for all y ∈ Uf we have

#f−1(y) = 2ℵ0 .

The next theorem widely generalizes Corollary 4.2 and Theorem 1.7 in Euclidean
spaces. We can find many fibers not only of cardinality continuum, but also with
almost maximal Hausdorff and packing dimension. A Borel measure µ on a metric
space X is called a mass distribution if 0 < µ(X) < ∞. For the definition of
dimensions of mass distributions and their properties see the Preliminaries section.

1Dougherty proved this result only if K is the triadic Cantor set. As every uncountable
compact metric space contains a subset homeomorphic to the triadic Cantor set by [24, Cor. 6.5],
Corollary 3.12 yields this more general result.
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Theorem 4.14 (Main Theorem, simplified version). Assume that m, d ∈ N
+ and

K ⊂ R
m is compact. If µ is a continuous mass distribution on K, then for the

prevalent f ∈ C(K,Rd) there is an open set Uf ⊂ R
d such that µ(f−1(Uf )) = µ(K)

and for all y ∈ Uf we have

dimH f
−1(y) ≥ dimH µ and dimP f

−1(y) ≥ dimP µ.

After some technical lemmas in Section 3, we prove the above theorem forK ⊂ R

and µ = λ in Subsection 4.1, which is the most subtle proof of the paper. In
Subsection 4.2 we prove this result for ultrametric spaces using ideas from [25]. In
Subsection 4.3 we finish the proof of the Main Theorem, we trace back the case of
general compact spaces to ultrametric ones by using a theorem of Zindulka [44].
Let us denote by λm the m-dimensional Lebesgue measure.

Corollary 4.15. Let m, d ∈ N
+. Then for the prevalent f ∈ C([0, 1]m,Rd) there is

an open set Uf ⊂ R
d such that λm(f−1(Uf )) = 1 (hence Uf is dense in f([0, 1]m)

and for all y ∈ Uf we have
dimH f

−1(y) = m.

Corollary 4.16 (simplified version). Let m, d ∈ N
+ and let K ⊂ R

m be an un-
countable compact set. Then for the prevalent f ∈ C(K,Rd) for all s < dimP K
there is a non-empty open set Uf,s ⊂ R

d such that for all y ∈ Uf,s we have

dimP f
−1(y) ≥ s.

In particular, we have

sup{dimP f
−1(y) : y ∈ R

d} = dimP K.

In the case of Hausdorff dimension we prove more general versions of the above
two corollaries based on a deep theorem of Mendel and Naor [30].

Theorem 4.18. Let K be an uncountable compact metric space and let d ∈ N
+.

Then for the prevalent f ∈ C(K,Rd) for all s < dimH K there is a non-empty open
set Uf,s ⊂ R

d such that for all y ∈ Uf,s we have

dimH f
−1(y) ≥ s.

In particular, we have

sup{dimH f
−1(y) : y ∈ R

d} = dimH K.

The supremum is not necessarily attained in the second claims of Corollary 4.16
and Theorem 4.18.

Theorem 4.21. There is a compact set K ⊂ R such that dimH K = dimP K = 1
and

{f ∈ C(K,R) : dimH f
−1(y) ≤ dimP f

−1(y) < 1 for all y ∈ R}

is non-shy in C(K,R).

If K is ‘large in its dimension’ then the Main Theorem implies the following.

Corollary 4.22 (simplified version). Let m, d ∈ R
d, and let K ⊂ R

m be compact.
Let dim be one of dimH or dimP . Assume that there is a continuous mass distri-
bution µ on K such that suppµ = K. Then for the prevalent f ∈ C(K,Rd) there
is an open set Uf ⊂ R

d such that µ(f−1(Uf )) = µ(K) and for all y ∈ Uf we have

dim f−1(y) = dimK.
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For sufficiently homogeneous spaces we can generalize the Main Theorem. Let
us denote by Hs and Ps the s-dimensional Hausdorff and packing measure, re-
spectively. For the definitions of packing measure, self-similar set, and open set
condition see [14].

Corollary 4.25. Let m, d ∈ N
+ and let K ⊂ R

m be a self-similar set satisfy-
ing the open set condition. It is well-known that dimH K = dimP K = s and
Hs(K),Ps(K) ∈ R

+. Then for the prevalent f ∈ C(K,Rd) there exists an open set
Uf ⊂ R

d such that Hs(f−1(Uf )) = Hs(K) (hence Uf is dense in f(K)) and

dimH f
−1(y) = s for all y ∈ Uf .

Similarly, for the prevalent f ∈ C(K,Rd) there exists an open set Vf ⊂ R
d such

that Ps(f−1(Vf )) = Ps(K) (hence Vf is dense in f(K)) and

dimP f
−1(y) = s for all y ∈ Vf .

For other results in sufficiently homogeneous spaces see Subsection 4.5, where
we describe the compact metric spaces K for which dimH f

−1(y) = dimH K for
the prevalent f ∈ C(K,Rd) and the generic y ∈ f(K). The characterization is
independent of d.

Corollary 4.2 yields for the prevalent f ∈ C[0, 1] that {y : dimH f
−1(y) = 1} is

co-meager in f([0, 1]) with full λ◦f−1 measure. As the main result of Section 5, we
show that this does not remain true if we replace the occupation measure λ ◦ f−1

by the Lebesgue measure λ on f([0, 1]). Let ∃λ denote that there exists positively
many with respect to λ.

Theorem 5.4. The set

{f ∈ C[0, 1] : ∃λy ∈ R such that f−1(y) is a singleton}

is non-shy in C[0, 1].

Let Z(f) = {x ∈ [0, 1] : f(x) = 0}, the next theorem is [1, Proposition 3.3].

Theorem 1.8 (Antunović-Burdzy-Peres-Ruscher). Let µ be the Wiener measure
on C[0, 1]. Then there exists a function g ∈ C[0, 1] such that

µ({f ∈ C[0, 1] : Z(f − g) \ {0} is a singleton}) > 0.2

The next theorem generalizes Theorem 1.8 and easily implies Theorem 5.4.

Theorem 5.2. Let µ be a Borel probability measure on C[0, 1]. Then there exists
a function g ∈ C[0, 1] such that

µ({f ∈ C[0, 1] : Z(f − g) is a singleton}) > 0.

Consequently, the set {f ∈ C[0, 1] : Z(f) is a singleton} is non-shy.

As a complement to Theorem 5.4, we prove that all non-extremal level sets can
be large. The goal of Section 6 is to prove the following.

Theorem 6.1. The set

{f ∈ C[0, 1] : dimH f
−1(y) = 1 for all y ∈ (min f,max f)}

is non-shy in C[0, 1].

2It is easy to see that if g(x) = x1/3 then Z(f − g) = {0} for positively many f with respect
to the Wiener measure. In order to avoid this degenerate case, we remove the origin.
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Recently, describing the various fractal dimensions of graphs of prevalent con-
tinuous functions has attracted notable attention, this is the topic of Section 7.

First McClure [29] proved that the packing dimension, and thus the upper box
dimension of the graph of the prevalent f ∈ C[0, 1] is 2. The analogous result for
the lower box dimension was proved in [15], [18], and [39], independently.

Fraser and Hyde [16] generalized the above results by showing that the prevalent
f ∈ C[0, 1] has graph of Hausdorff dimension 2. In contrast to Theorem 1.4 this
means that the prevalent value of dimH graph(f) is as large as possible.

Theorem 1.9 (Fraser-Hyde). For the prevalent f ∈ C[0, 1] we have

dimH graph(f) = 2.

The next result was proved by Bayart and Heurteaux, see [6, Theorem 3].

Theorem 1.10 (Bayart-Heurteaux). If K ⊂ R
m is compact with dimH K > 0 then

for the prevalent f ∈ C(K,R) we have

dimH graph(f) = dimH K + 1.

The proof of Theorem 1.10 is based on potential theoretic methods, they give
a lower estimate for the Hausdorff dimension of graph(X + f), where X : K → R

is a fractional Brownian motion restricted to K and f ∈ C(K,R) is a continuous
drift. Note that if X : K → R

d is a fractional Brownian motion restricted to some
K ⊂ [0, 1] and f ∈ C(K,Rd), then Peres and Sousi [36] determined the almost sure
Hausdorff dimension of graph(X + f) in terms of f and the Hurst index of X . It is
not difficult to extend the proof of [6, Theorem 3] to vector valued functions, and
Theorem 1.7 handles the case dimH K = 0. These yield the following theorem.

Theorem 1.11. Let m, d ∈ N
+ and let K ⊂ R

m be an uncountable compact set.
Then for the prevalent f ∈ C(K,Rd) we have

dimH graph(f) = dimH K + d.

We will show that Theorem 4.18 also easily implies the above theorem. Moreover,
the condition K ⊂ R

m is superfluous.

Theorem 7.5. Let K be an uncountable compact metric space and let d ∈ N
+.

Then for the prevalent f ∈ C(K,Rd) we have

dimH graph(f) = dimH K + d.

Much less was known about the prevalent value of the packing dimension of the
graphs. Corollary 4.16 implies the packing dimension analogue of Theorem 1.11.

Theorem 7.6 (simplified version). Let m, d ∈ N
+ and let K ⊂ R

m be an uncount-
able compact set. Then for the prevalent f ∈ C(K,Rd) we have

dimP graph(f) = dimP K + d.

In Section 8 we indicate how to obtain stronger forms of the main results by
replacing large dimension by positive measure with respect to generalized Hausdorff
measures. Finally, in Section 9 we pose some open problems.
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2. Preliminaries

Let (X, d) be a metric space. ForA,B ⊂ X let us define dist(A,B) = inf{d(x, y) :
x ∈ A, y ∈ B}. Let B(x, r) and U(x, r) be the closed and open ball of radius r
centered at x, respectively. Set B(A, r) = {x ∈ X : dist({x}, A) ≤ r}. We denote
by clA, intA and ∂A the closure, interior and boundary of A, respectively. The
diameter of a set A is denoted by diamA. We use the conventions diam ∅ = 0 and
inf ∅ = ∞. For two metric spaces (X, dX) and (Y, dY ) a map f : X → Y is s-Hölder
for an s > 0 if there is a constant c ∈ R such that dY (f(x1), f(x2)) ≤ c(dX(x1, x2))

s

for all x1, x2 ∈ X . A map f : X → Y is Lipschitz if it is 1-Hölder, and the smallest
c in the definition is called the Lipschitz constant of f and is denoted by Lip(f).
We say that f is bi-Lipschitz if it is one-to-one and both f and f−1 are Lipschitz.

Let s ≥ 0. The s-dimensional Hausdorff measure of a metric space X is

Hs(X) = lim
δ→0+

Hs
δ(X), where

Hs
δ(X) = inf

{
∞∑

i=1

(diamXi)
s : X ⊂

∞⋃

i=1

Xi, ∀i diamXi ≤ δ

}
.

Let dimH ∅ = −1. The Hausdorff dimension of a non-empty X is defined as

dimH X = inf{s ≥ 0 : Hs(X) = 0},

for more information on these concepts see [12] or [27]. Now we define the packing
dimension. If X is non-empty and totally bounded then for all δ > 0 let Nδ(X)
be the smallest number of closed balls of radius δ whose union cover X . Then the
upper box dimension of X is defined as

dimBX = lim sup
δ→0+

logNδ(X)

log(1/δ)
.

Let dimB∅ = −1 and let dimBX = ∞ if X is not totally bounded. The packing
dimension of X is defined as

dimP X = inf

{
sup
i

dimBXi : X =

∞⋃

i=1

Xi

}
.

Then clearly dimP ∅ = −1. Since we do not need the packing measure, it was
more convenient for us to define the packing dimension as the modified upper box
dimension, see e.g. [12] or [31] for more on these concepts. The following fact is an
easy consequence of the definitions.

Fact 2.1. If X,Y are non-empty metric spaces and f : X → Y is s-Hölder then

dimH f(X) ≤
dimH X

s
and dimP f(X) ≤

dimP X

s
.

Let K be a compact metric space an let µ be a mass distribution on K. We
define

dimH µ = inf{dimH B : B ⊂ K is Borel and µ(B) > 0},

dimP µ = inf{dimP B : B ⊂ K is Borel and µ(B) > 0}.

For the following theorem see [14, Proposition 10.2] when K is a subset of a
Euclidean space. In fact, the proof of [14, Proposition 2.2] with the covering theorem
[27, Theorem 2.1] works in an arbitrary compact metric space.
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Theorem 2.2. If µ is a mass distribution on a compact metric space K then

dimH µ = sup

{
s ≥ 0 : lim sup

r→0+

µ(B(x, r))

rs
<∞ for µ-a.e. x ∈ K

}
,

dimP µ = sup

{
s ≥ 0 : lim inf

r→0+

µ(B(x, r))

rs
<∞ for µ-a.e. x ∈ K

}
.

The next theorem states that we can approximate the dimension of a compact
metric spaceK by the dimension of measures supported within it. For the proof see
the theorem above with Frostman’s lemma [27, Theorem 8.17] and [22] in the case of
the Hausdorff and the packing dimension, respectively. Moreover, we may assume
that the measures are Hausdorff and packing measures restricted to a compact
subset of K, see [20] and [23], respectively. See also [14, Proposition 10.1] for the
Euclidean case.

Theorem 2.3. If K is a non-empty compact metric space then

dimH K = sup{dimH µ : µ is a mass distribution on K},

dimP K = sup{dimP µ : µ is a mass distribution on K}.

If K is uncountable then we may assume that the above measures µ are continuous.

The metric space (X, d) is called ultrametric if the triangle inequality is replaced
with the stronger inequality d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X .

Fact 2.4. Let X be an ultrametric space. Then for all x, y ∈ X and r > 0 either
B(x, r) ∩B(y, r) = ∅ or B(x, r) = B(y, r).

Let X be a complete metric space. A set is somewhere dense if it is dense
in a non-empty open set, and otherwise it is called nowhere dense. We say that
A ⊂ X is meager if it is a countable union of nowhere dense sets, and a set is
called co-meager if its complement is meager. By Baire’s category theorem a set is
co-meager iff it contains a dense Gδ set. We say that the generic element x ∈ X
has property P if {x ∈ X : x has property P} is co-meager. Our main example will
be X = C(K,Rd). See e.g. [24] for more on these concepts.

A metric space X is a Polish space if it is complete and separable. We say that
A ⊂ X analytic if it is a continuous image of a Polish space, and co-analytic if
its complement is analytic. A Borel subset of a Polish space is analytic, see [24,
Theorem 13.7]. Continuous images, countable unions and countable intersections
of analytic sets are also analytic [24, Proposition 14.4]. For more on these concepts
see [24].

Let µ be a mass distribution on a Polish space X . Then µ can be extended
to the σ-algebra of the µ-measurable sets as a complete measure, see [17, 113C].
Analytic and co-analytic sets are µ-measurable [17, 434D (c)]. We denote by suppµ
the support of µ, the minimal closed subset F of X so that µ(X \ F ) = 0. The
measure µ is called continuous is µ({x}) = 0 for all x ∈ X . For the following
classical theorems see [17, 433C] and [19, Theorem A, p. 54.], respectively.

Theorem 2.5. If X is a Polish space and µ is a mass distribution on X then there
is a compact set K ⊂ X with µ(K) > 0.

Theorem 2.6 (Carathéodory’s extension theorem). Any σ-finite measure defined
on an algebra A can be uniquely extended to the σ-algebra generated by A.
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Let G be an abelian Polish group and let µ, ν be σ-finite Borel measures on G.
For a Borel set A ⊂ G let us define

(µ ∗ ν)(A) = (µ× ν)({(x, y) ∈ G×G : x+ y ∈ A}),

where µ×ν is the product measure on G×G. Then µ∗ν is a σ-finite Borel measure
on G called the convolution of µ and ν.

For all f ∈ C[0, 1] let Z(f) = {x ∈ [0, 1] : f(x) = 0}. If x = (x1, . . . , xd) ∈ R
d

then the maximum norm of x is defined as ||x|| = max1≤i≤d |xi|. Let χA be the
characteristic function of the set A. If A ⊂ R then let conv(A) be the convex hull
of A. We denote by Pr, E and Var the probability, expected value and variance,
respectively.

3. Technical lemmas

Our definition of prevalence follows Hunt, Sauer and York [21] and differs from
Christensen [9] in which the definition is given for so-called universally measurable
sets (without the Borel hulls). These definitions are equivalent for Borel sets, but
they differ in general, see [11]. The following theorem states that the definitions
are also equivalent for co-analytic sets, see [41, Proposition (i)] for the proof.

Theorem 3.1 (Solecki). Let G be an abelian Polish group and let A ⊂ G be a co-
analytic set. If there exists a Borel probability measure µ on G such that µ(A+g) = 1
for all g ∈ G then A is prevalent.

The following lemma is basically [4, Lemma 2.11]. It is only stated there in the
special case d = 1, but the proof works verbatim for all d ∈ N

+.

Lemma 3.2. Let K be a compact metric space, let d ∈ N
+ and c ∈ R. Then

∆ =
{
(f, y) ∈ C(K,Rd)× R

d : dimH f
−1(y) < c

}

is a Borel set in C(K,Rd)× R
d.

Lemma 3.3. Let K ⊂ R be compact, let d ∈ N
+ and c ∈ R. Then

A = {f ∈ C(K,Rd) : ∃ an open set Uf ⊂ R
d such that

λ
(
f−1(Uf )

)
= λ(K) and dimH f

−1(y) ≥ c for all y ∈ Uf}

is co-analytic in C(K,Rd).

Proof. Let V be a countable basis of Rd and let U be the family of finite unions of
elements of V . Clearly U is countable and A =

⋃
U∈U

⋂∞
n=1 An,U , where

An,U = {f ∈ C(K,Rd) : λ(f−1(U)) > λ(K)− 1/n

and dimH f
−1(y) ≥ c for all y ∈ U}.

As co-analytic sets are closed under countable union and countable intersection, it
is enough to prove that the An,U are co-analytic. Fix n ∈ N

+ and U ∈ U and let

B = {f ∈ C(K,Rd) : dimH f
−1(y) ≥ c for all y ∈ U},

C = {f ∈ C(K,Rd) : λ
(
f−1(U)

)
> λ(K)− 1/n}.

Since An,U = B ∩ C, it is enough to prove that B and C are co-analytic.
First we show that B is co-analytic. By Lemma 3.2 the set

∆ =
{
(f, y) ∈ C(K,Rd)× R

d : dimH f
−1(y) < c

}



10 RICHÁRD BALKA, UDAYAN B. DARJI, AND MÁRTON ELEKES

is Borel. Define pr : C(K,Rd)× R
d → C(K,Rd) as pr(f, y) = f . Then

B =
(
pr
(
∆ ∩ (C(K,Rd)× U)

))c

is the complement of the projection of a Borel set. Hence B is co-analytic.
Finally, we prove that C is Borel. For all r ∈ R let

C(r) = {f ∈ C(K,Rd) : λ
(
f−1(U)

)
> r}.

It is enough to prove that the C(r) are open. Fix r ∈ R and assume that f ∈ C(r),
that is, λ(f−1(U)) > r. We need to find an ε > 0 such that U(f, ε) ⊂ C(r). The
regularity of the Lebesgue measure implies that there is a compact set C ⊂ f−1(U)
with λ(C) > r. As f(C) ⊂ U is compact, we can define ε = dist(f(C),Rd \U) > 0.
Clearly g(C) ⊂ U for every g ∈ U(f, ε), thus λ(g−1(U)) ≥ λ(C) > r. Hence
U(f, ε) ⊂ C(r), and the proof is complete. �

Definition 3.4. Let {an}n∈N+ be a sequence of positive integers. A compact set
K ⊂ R is an (an)-type fat Cantor set if λ(K) > 0 and it is of the form

(3.1) K =

∞⋂

n=1

(
a1⋃

i1=1

· · ·
an⋃

in=1

Ki1...in

)
,

where Ki1...in ⊂ K are compact sets such that for every n ∈ N
+ and for each

distinct (i1, . . . , in), (j1, . . . , jn) ∈
∏n
k=1{1, . . . , ak} we have

(i) conv(Ki1...in) ∩ conv(Kj1...jn) = ∅,
(ii) Ki1...in+1

⊂ Ki1...in ,

(iii) λ(Ki1...in) =
λ(K)
a1···an

.

We say that the Ki1...in are the elementary pieces of K.

Definition 3.5. Let {an}n∈N+ , {bn}n∈N+ be sequences of positive integers such
that an ≥ bn for all n ∈ N

+. A compact set C ⊂ R is an (an, bn)-type Cantor set if
it is of the form

C =
∞⋂

n=1

(
b1⋃

i1=1

· · ·
bn⋃

in=1

Ci1...in

)
,

where Ci1...in ⊂ R are compact sets and there is an (an)-type fat Cantor set K ⊂ R

of the form (3.1) such that for all n ∈ N
+ and (i1, . . . , in) ∈

∏n
k=1{1, . . . , bk}

(3.2) ∅ 6= Ci1...in+1
⊂ Ci1...in ⊂ Ki1...in .

The compact set C ⊂ R is an (an, bn)-type compact set if it satisfies the above
definition after replacing (i) by the weaker property

(1) conv(Ki1...in) ∩ conv(Kj1...jn) is either empty or a singleton.

Example 3.6. The triadic Cantor set C is an (an, bn)-type compact set, where
an = 3 and bn = 2 for all n. Indeed, for each n let {Ki1...in : 1 ≤ i1, . . . , in ≤ 3} be
the set of triadic intervals of [0, 1] of length 3−n and let {Ci1...in : 1 ≤ i1, . . . , in ≤ 2}
be the set of the triadic intervals of length 3−n whose interior intersects C. Indexing
Ki1...in and Ci1...in appropriately witnesses our claim.

For the following well-known lemma see e.g. [31, Theorem 4.19].

Lemma 3.7 (Mass distribution principle). Let µ be a mass distribution on a metric
space X. Assume that there are c, s, δ ∈ R

+ such that µ(B) ≤ c(diamB)s for every
Borel set B ⊂ X with diamB ≤ δ. Then dimH X ≥ s.
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Lemma 3.8. Let C ⊂ R be an (an, bn)-type compact set such that for all n ∈ N
+

we have

(3.3) an ≥

(
a1 · · · an+1

b1 · · · bn+1

)n+1

.

Then dimH C = 1.

Proof. Let Ci1...in be the compact sets corresponding to Definition 3.5. Let K ⊂ R

be a compact set with elementary pieces Ki1...in associated to C. By considering
similar copies of C and K we may assume that λ(K) = 1.

For all n ∈ N
+ let In =

∏n
k=1{1, . . . , bk}. We may suppose that Ci1...in ⊂ C

for all n ∈ N
+ and (i1, . . . , in) ∈ In, otherwise we intersect them with C. Now we

construct a Borel probability measure µ supported on C such that for all n ∈ N
+

and (i1, . . . , in) ∈ In we have

(3.4) µ(Ci1...in) =
1

b1 · · · bn
.

Choose xi1...in ∈ Ci1...in for all n ∈ N
+ and (i1, . . . , in) ∈ In. Define the probability

measures

µn =
∑

(i1,...,in)∈In

(b1 . . . bn)
−1δxi1...in

,

where δx denotes the Dirac measure concentrated on {x}. Let Fn be the distri-
bution function of µn. The definitions of C and µn easily yield that Fn converges
(uniformly) to a continuous distribution function F . Let µ be the Borel probability
measure associated with F . Then µn converges weakly to µ by [31, Theorem 12.7],
so [31, Theorem 12.6] yields that for all n ∈ N

+ and (i1, . . . , in) ∈ In we have

µ(Ci1...in) ≥ lim sup
k→∞

µk(Ci1...in) =
1

b1 · · · bn
.

As µ is continuous, we have
∑

(i1,...,in)∈In
µ(Ci1...in) ≤ 1. These imply that (3.4)

holds and µ is supported on C.
Fix an arbitrary k ∈ N

+ and a Borel set B ⊂ C with diamB ≤ (a1 · · · ak)−1.
We can choose n > k and t ∈ {1, . . . , an − 1} such that

(3.5)
t

a1 · · ·an
≤ diamB ≤

t+ 1

a1 · · ·an
.

Property (iii) yields that for all n ∈ N
+ and (i1, . . . , in) ∈

∏n
k=1{1, . . . , ak}

diam(conv(Ki1...in)) ≥ λ(Ki1...in) =
1

a1 · · · an
,

thus property (1) and (3.5) yield that B can intersect at most t+3 sets of the form
Ki1...in . Since Ci1...in ⊂ Ki1...in for all n ∈ N

+ and (i1, . . . , in) ∈ In, we obtain that
B can intersect at most t+ 3 sets of the form Ci1...in . Therefore

(3.6) µ(B) ≤
t+ 3

b1 . . . bn
.

Inequalities (3.3) and t+ 1 ≤ an yield

(3.7)

(
a1 · · · an
b1 · · · bn

)n
≤ an−1 ≤

a1 · · ·an
t+ 1

.
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Inequalities (3.6), (3.7), (3.5) and n > k with diamB ≤ 1 imply

µ(B) ≤
t+ 3

b1 . . . bn

≤
4t

a1 · · · an
·
a1 · · ·an
b1 · · · bn

≤ 4(diamB)

(
a1 · · · an
t+ 1

)1/n

≤ 4(diamB)(diamB)−1/n

≤ 4(diamB)1−1/k.

Thus Lemma 3.7 yields that dimH K ≥ 1 − 1/k. As k ∈ N
+ was arbitrary, we

obtain that dimH K = 1. The proof is complete. �

Lemma 3.9. Let C ⊂ R be compact with λ(C) > 0, and let {an}n∈N+ be an
arbitrary sequence of positive integers. Then for every ε > 0 there is an (an)-type
fat Cantor set K ⊂ C such that λ(K) ≥ λ(C) − ε.

Proof. Let ε > 0. It is straightforward to construct an (an)-type fat Cantor set
D ⊂ [0, 1] with elementary pieces Di1...in ⊂ D such that λ(D) ≥ 1 − ε. By
considering a similar copy of C we may assume that λ(C) = 1. Let φ : C → [0, 1]
be the onto map defined as

φ(x) = λ((−∞, x] ∩ C).

For every Borel set B ⊂ [0, 1] we have

(3.8) λ(φ−1(B)) = λ(B),

since (3.8) holds for all intervals in [0, 1] by the definition of φ, thus Carathéodory’s
extension theorem yields that the Borel probability measures λ ◦ φ−1 and λ|[0,1]
coincide.

Let us define K = φ−1(D) ⊂ C and Ki1...in = φ−1(Di1...in) for all n ∈ N
+ and

(i1, . . . , in) ∈
∏n
k=1{1, . . . , ak}. Applying that φ preserves the order ≤ and (3.8)

yields that K is an (an)-type fat Cantor set with elementary pieces Ki1...in such
that λ(K) = λ(D) ≥ 1− ε = λ(C)− ε. �

Corollary 3.10. Let K ⊂ R be a compact set with λ(K) > 0 and let {an}n∈N+

be an arbitrary sequence of positive integers. Then there exist (an)-type fat Cantor
sets Ki ⊂ K such that λ(

⋃∞
i=1Ki) = λ(K).

Lemma 3.11. Let G,H be abelian Polish groups and let Φ: G→ H be a continuous
onto homomorphism. If S ⊂ H is prevalent then so is Φ−1(S) ⊂ G.

For the proof of the above lemma see [10, Proposition 8.]. The following corollary
follows from Lemma 3.11 and the fact that Tietze’s extension theorem holds in R

d.

Corollary 3.12. Let K1 ⊂ K2 be compact metric spaces and let d ∈ N
+. Define

R : C(K2,R
d) → C(K1,R

d), R(f) = f |K1
.

If A ⊂ C(K1,R
d) is prevalent then so is R−1(A) ⊂ C(K2,R

d).
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Lemma 3.13. Let K be a compact metric space and let µ be a mass distribution
on K. Let Kn ⊂ K be compact sets with µ(K) = µ(

⋃∞
n=1Kn). If ∆ is an upward

closed family of subsets of K and for all n ∈ N
+ the

An = {f ∈ C(Kn,R
d) : ∃ an open set Uf ⊂ R

d such that

µ(f−1(Uf )) = µ(Kn) and f
−1(y) ∈ ∆ for all y ∈ Uf}

are prevalent then so is

A = {f ∈ C(K,Rd) : ∃ an open set Uf ⊂ R
d such that

µ(f−1(Uf )) = µ(K) and f−1(y) ∈ ∆ for all y ∈ Uf}.

We will apply the above lemma for families of the form ∆ = {A : dimH A ≥ c}
and ∆ = {A : dimH A ≥ c1 and dimP A ≥ c2}.

Proof. For all n ∈ N
+ let

Rn : C(K,R
d) → C(Kn,R

d), Rn(f) = f |Kn
.

Corollary 3.12 implies that the R−1
n (An) are prevalent in C(K,R

d). As a countable
intersection of prevalent sets,

⋂∞
n=1R

−1
n (An) is also prevalent in C(K,Rd). Thus

it is enough to prove that
⋂∞
n=1R

−1
n (An) ⊂ A. For all f ∈

⋂∞
n=1R

−1
n (An) let

Uf =
⋃∞
n=1 Uf |Kn

. Then Uf ⊂ R
d is open and for all y ∈ Uf there is an n ∈ N

+

such that y ∈ Uf |Kn
. Then f−1(y) ⊃ (f |Kn

)−1(y) ∈ ∆ implies that f−1(y) ∈ ∆.

Finally, we need to show that µ(f−1(Uf )) = µ(K). By µ(K) = µ(
⋃∞
n=1Kn) it

is enough to prove that µ(f−1(Uf ) ∩Kn) = µ(Kn) for an arbitrary fixed n ∈ N
+.

The definitions of Uf and An yield that

µ
(
f−1(Uf ) ∩Kn

)
≥ µ

(
(f |Kn

)−1(Uf |Kn
)
)
= µ(Kn),

and the proof is complete. �

Lemma 3.14. Let u, v ∈ N
+ and 0 < p ≤ 1/v. Assume that ξ1, . . . , ξu are in-

dependent random variables such that Pr(ξi = j) = p for all i ∈ {1, . . . , u} and
j ∈ {1, . . . , v}. Then

Pr (#{i : ξi = j} < up/2 for some j ∈ {1, . . . , v}) ≤
4v

up
.

Proof. Let us fix j ∈ {1, . . . , v} arbitrarily and for all i ∈ {1, . . . , u} let Xi = 1
if ξi = j, and let Xi = 0 otherwise. Set X =

∑u
i=1Xi. Then E(Xi) = p and

Var(Xi) = p− p2 < p for all i ∈ {1, . . . , u}, thus E(X) = up and the independence
of Xi yields Var(X) =

∑u
i=1 Var(Xi) < up. Then Chebyshev’s inequality [7, (5.32)]

implies

Pr(#{i : ξi = j} < up/2) = Pr(X < up/2)

≤ Pr (|X − E(X)| > E(X)/2)

≤ Var(X)/(E(X)/2)2 ≤
4

up
.

Hence

Pr (#{i : ξi = j} < up/2 for some j ∈ {1, . . . , v}) ≤
4v

up
,

and this concludes the proof. �
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Lemma 3.15. If X,Y are independent Rd-valued random variables and r > 0 then

Pr(|X − Y | ≤ r) ≤ sup
y∈Rd

Pr(|X − y| ≤ r).

Proof. Let µX , µY and µX,Y be the distribution measure of X , Y and (X,Y ),
respectively. The independence of X and Y yields µX,Y = µX × µY , thus

Pr(|X − Y | ≤ r) =

∫∫

R2d

χ{(x,y): |x−y|≤r} dµX,Y (x, y)

=

∫

Rd

∫

Rd

χ{(x,y): |x−y|≤r} dµX(x) dµY (y)

=

∫

Rd

Pr(|X − y| ≤ r) dµY (y)

≤ sup
y∈Rd

Pr(|X − y| ≤ r).

The proof is complete. �

4. Dimensions of fibers of prevalent continuous maps

4.1. The real case. First we prove the Main Theorem for K ⊂ R and µ = λ.

Theorem 4.1. Let K ⊂ R be a compact set with λ(K) > 0 and let d ∈ N
+.

Then for the prevalent f ∈ C(K,Rd) there exists an open set Uf ⊂ R
d such that

λ(f−1(Uf )) = λ(K) and for all y ∈ Uf we have

dimH f
−1(y) = 1.

In the special case K = [0, 1] we obtain the following:

Corollary 4.2. For the prevalent f ∈ C[0, 1] there is an open set Uf ⊂ R such
that λ(f−1(Uf )) = 1 (hence Uf is dense in f([0, 1])) and for all y ∈ Uf we have

dimH f
−1(y) = 1.

Proof of Theorem 4.1. Consider

A = {f ∈ C(K,Rd) : ∃ an open set Uf ⊂ R
d such that

λ(f−1(Uf )) = λ(K) and dimH f
−1(y) = 1 for all y ∈ Uf}.

Lemma 3.3 with c = 1 yields that A is co-analytic. By Theorem 3.1 it is enough
to show that there exists a Borel probability measure µ on C(K,Rd) such that
µ(A− g) = 1 for all g ∈ C(K,Rd).

Now we construct the measure µ. Let us endow R
d with the maximum norm,

which we simply denote by | · |. Let s = 2d and let Sn = {−2−n, 2−n}d for all
n ∈ N

+, then #Sn = s. Clearly for all z ∈ R
d and n ∈ N we obtain that

(4.1) B(z, 2−n) =
⋃

y∈Sn+1

B(z + y, 2−(n+1)).

For all n ∈ N
+ let us define the positive integers an and bn by

an = (2s)4
n

and bn = (2s)−(n+3)an,

easy calculations show that there is an n0 ∈ N
+ such that for all n ≥ n0 we have

(4.2) an ≥ max

{
(2s)8n(a1 · · · an−1),

(
a1 · · ·an+1

b1 · · · bn+1

)n+1
}
.
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For all n ∈ N
+ let

In =

n∏

i=1

{1, . . . , ai}.

Let us recall Definition 3.4. Corollary 3.10 implies that there exist (an)-type fat
Cantor sets Ki ⊂ K such that λ(

⋃∞
i=1Ki) = λ(K). Therefore, by Lemma 3.13 we

may assume that K is an (an)-type fat Cantor set with elementary pieces Ki1...in .
By considering a similar copy of K we may suppose that λ(K) = 1. Then for all
n ∈ N

+ and (i1, . . . , in) ∈ In we have

λ(Ki1...in) =
1

a1 · · · an
.

For all Borel sets A,B ⊂ K with λ(B) > 0 let us use the notation

λ(A |B) =
λ(A ∩B)

λ(B)
.

For all n ∈ N
+ and (i1, . . . , in) ∈ In let us define countably many independent

random variables Xi1...in and Yi1...in such that for all y ∈ Sn we have

(4.3) Pr(Xi1...in = y) = Pr(Yi1...in = y) = 1/s.

For every n ∈ N
+ and x ∈ K there exists a unique (i1, . . . , in) ∈ In for which

x ∈ Ki1...in . Then let us define the random function fn ∈ C(K,Rd) as

fn(x) = Xi1...in − Yi1...in .

Note that the dependence of the right hand side on x is simply that the indices
depend on x. Let Pn be the probability measure on C(K,Rd) corresponding to
this method of randomly choosing fn, and let Rn ⊂ C(K,Rd) be its finite support.
Clearly for all fn ∈ Rn and x ∈ K we have

(4.4) |fn(x)| ≤ 21−n.

Thus
∑∞

n=1 fn always converges uniformly. Let P =
∏∞
n=1 Pn be a probability

measure on the Borel subsets of R =
∏∞
n=1 Rn and let

π : R → C(K,Rd), π((fn)) =
∞∑

n=1

fn.

Let us define

µ = P ◦ π−1.

Now we prove that µ(A − g) = 1 for all g ∈ C(K,Rd). More precisely, we will
show that for each g ∈ C(K,Rd) the stochastic process W =

∑∞
n=1 fn satisfies

g +W ∈ A almost surely. Let g ∈ C(K,Rd) and ε > 0 be arbitrarily fixed, it is
enough to show that µ(A− g) ≥ 1− ε. As g(K) is compact, we can fix an integer
m > n0 such that 2m > 1/ε and g(K) can be covered by 2m closed balls of radius
1, it is sufficient to prove that

(4.5) µ(A− g) = P(π−1(A− g)) ≥ 1− 2−m.
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For all n ∈ N consider

hn = g +
m+n∑

i=1

fi,

rn = (2s)−(m+n+2),

pn =
(2s)m+n+5

am+n+1
.

Statement 4.3. Let n ∈ N and assume that z ∈ R
d and for all i ∈ {1, . . . ,m+ n}

the functions fi ∈ Ri and σ ∈ Im+n are fixed. Let A ⊂ h−1
n (B(z, 2−(m+n))) with

λ(A |Kσ) ≥ rn.

For all y ∈ Sm+n+1 let us define the random set I(y) ⊂ {1, . . . , am+n+1} as

I(y) =
{
i : λ

(
A ∩ h−1

n+1

(
B
(
z + y, 2−(m+n+1)

)) ∣∣Kσi

)
≥ rn+1

}
,

where σi is the concatenation of σ and i. Then

Pm+n+1 (#I(y) < bm+n+1 for some y ∈ Sm+n+1) ≤ pn.

Proof of Statement 4.3. Let us define I ⊂ {1, . . . , am+n+1} as

I = {i : λ(A |Kσi) ≥ rn/2}.

First we prove that

(4.6) #I ≥
rnam+n+1

2
.

Our assumption and the definition of I imply that

rnλ(Kσ) ≤ λ(A ∩Kσ) =

am+n+1∑

i=1

λ(A ∩Kσi)

≤

am+n+1∑

i=1

rn
2
λ(Kσi) +

∑

i∈I

λ(Kσi)

=
rn
2
λ(Kσ) + (#I)

λ(Kσ)

am+n+1
,

which easily yields (4.6). Then A ⊂ h−1
n (B(z, 2−(m+n))) and (4.1) imply that

A ⊂
⋃

y∈Sm+n+1

h−1
n

(
B
(
z + y, 2−(m+n+1)

))
.

Thus the definition of I and rn+1 = rn/(2s) yield that for all i ∈ I there exists
y(i) ∈ Sm+n+1 such that

(4.7) λ
(
A ∩ h−1

n

(
B
(
z + y(i), 2−(m+n+1)

)) ∣∣Kσi

)
≥ rn+1.

Let Sm+n+1 = {yj : 1 ≤ j ≤ s}. Define for all i ∈ I independent random variables

(4.8) ξi =

{
j if Xσi = yj and Yσi = y(i),

0 otherwise.
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For all j ∈ {1, . . . , s} let us define the random set

Ij = {i ∈ I : ξi = j}.

Now we show that for all j ∈ {1, . . . , s} we have

(4.9) Ij ⊂ I(yj).

Assume that i ∈ Ij and x ∈ Kσi, then

hn+1(x) = hn(x) + fn+1(x) = hn(x) +Xσi − Yσi = hn(x) + yj − y(i),

therefore

(4.10) h−1
n

(
B
(
z + y(i), 2−(m+n+1)

))
∩Kσi ⊂ h−1

n+1

(
B
(
z + yj, 2

−(m+n+1)
))

.

Formulae (4.10) and (4.7) imply

(4.11) λ
(
A ∩ h−1

n+1

(
B
(
z + yj, 2

−(m+n+1)
)) ∣∣Kσi

)
≥ rn+1,

thus i ∈ I(yj), so (4.9) holds. The definitions yield that

(4.12)
rnam+n+1

4s2
= bm+n+1 and

8s3

rnam+n+1
= pn.

Clearly, we have Pr(ξi = j) = 1/s2 for all i ∈ I and j ∈ {1, . . . , s}. We apply
Lemma 3.14 for ξi with u = #I, v = s and p = 1/s2. Then (4.6) and the first part
of (4.12) yield that bm+n+1 ≤ up/2. Therefore (4.9), Lemma 3.14, (4.6) and the
second part of (4.12) imply that

Pm+n+1 (#I(y) < bm+n+1 for some y ∈ Sm+n+1)

≤ Pr (#Ij < bm+n+1 for some j ∈ {1, . . . , s})

≤ Pr (#{i ∈ I : ξi = j} < up/2 for some j ∈ {1, . . . , v})

≤
4v

up
≤

8s3

rnam+n+1
= pn.

The proof of the statement is complete. �

Now we return to the proof of Theorem 4.1. For all k ∈ N let Yk,k = Jk,k = {∅}.
For all natural numbers k < n let

Yk,n =
n∏

i=k+1

Sm+i and Jk,n =
n∏

i=k+1

{1, . . . , bm+i}.

Let (f1, . . . , fm) ∈ R1× · · ·×Rm be arbitrary. By the definition of m we can cover
B(g(K), 2) by 2m closed balls of radius 3, and so by 2msm+2 < (2s)m+2 closed balls
of radius 2−m. Let Tm ⊂ R

d be the set of their centers, that is, #Tm ≤ (2s)m+2

and B(g(K), 2) ⊂
⋃
y∈Tm

B(y, 2−m). Let

T0 = {y0 ∈ Tm : λ(h−1
0 (B(y0, 2

−m))) ≥ r0}.

As (4.4) yields h0 = g +
∑m

i=1 fi ∈ B(g, 2), we have h0(K) ⊂
⋃
y∈Tm

B(y, 2−m).

Therefore r0 = (2s)−(m+2) and #Tm ≤ (2s)m+2 imply that T0 6= ∅. Let us fix
(f1, . . . , fm) and for all y0 ∈ T0 fix σy0 ∈ Im such that

λ(h−1
0 (B(y0, 2

−m)) |Kσy0
) ≥ r0.
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Let n ∈ N and suppose that fi ∈ Ri are fixed for all i ∈ {1, . . . ,m+n}. Assume

by induction that for all k ∈ {0, . . . , n} the sets Tk ⊂ Tm ×
∏k
i=1 Sm+i and for all

(y0, . . . , yk) ∈ Tk, (yk+1, . . . , yn) ∈ Yk,n and (jk+1, . . . , jn) ∈ Jk,n the index sets

(4.13) σ = σy0...yk(yk+1, . . . , yn; jk+1, . . . , jn) ∈ Im+n

are already defined (we use the convention that σy0...yn(∅; ∅) = σy0...yn) such that

λ(Ank (y0, . . . , yn) |Kσ) ≥ rn, where

Ank (y0, . . . , yn) =

n⋂

i=k

h−1
i

(
B
(
(y0 + · · ·+ yi), 2

−(m+i)
))

.
(4.14)

Let us consider the functions fm+n+1 ∈ Rm+n+1 for which for every σ from (4.13)
and for every yn+1 ∈ Sm+n+1 and jn+1 ∈ {1, . . . , bm+n+1} we can define i as the
jn+1st smallest element of {1, . . . , am+n+1} that satisfies

λ
(
Ank (y0, . . . , yn) ∩ h

−1
n+1

(
B
(
(y0 + · · ·+ yn+1), 2

−(m+n+1)
)) ∣∣Kσi

)
≥ rn+1,

and let us define

σy0...yk(yk+1, . . . , yn+1; jk+1, . . . , jn+1) = σi ∈ Im+n+1.

Statement 4.3 implies that the Pm+n+1-probability that fm+n+1 ∈ Rm+n+1 does
not have this property is at most

n∑

k=0

(#Tk)(#Yk,n)(#Jk,n)pn ≤
n∑

k=0

(2s)m+2sn(bm+k+1 · · · bm+n)pn

≤ (2s)m+n+2(b1 · · · bm+n)pn

≤ (2s)7(m+n+1)(a1 · · · am+n)(am+n+1)
−1

≤ 2−(m+n+1),

(4.15)

where we used n + 1 ≤ 2n, bn ≤ an and (4.2). Let us fix fm+n+1 with the above

property and define Tn+1 ⊂ Tm ×
∏n+1
i=1 Sm+i as

Tn+1 =
{
(y0, . . . , yn+1) : λ

(
h−1
n+1

(
B
(
(y0 + · · ·+ yn+1), 2

−(m+n+1)
)))

≥ rn+1

}
,

and for all (y0, . . . , yn+1) ∈ Tn+1 let us fix σy0...yn+1
∈ Im+n+1 such that

λ
(
h−1
n+1

(
B
(
(y0 + · · ·+ yn+1), 2

−(m+n+1)
)) ∣∣Kσy0...yn+1

)
≥ rn+1.

Let F be the set of sequences (fi) ∈ R which can be defined by this process. Then
(4.15) yields

(4.16) P(F) ≥ 1−
∞∑

n=0

2−(m+n+1) = 1− 2−m.

For all (fi) ∈ R let h = g +
∑∞
i=1 fi and for all (fi) ∈ F let

Uh =

∞⋃

k=0

⋃

(y0,...,yk)∈Tk

U
(
(y0 + · · ·+ yk), 2

−(m+k)
)
.

Now we are ready to prove (4.5). By (4.16) it is enough to show that for P-
almost every (fi) ∈ F we have (fi) ∈ π−1(A− g). Therefore it is sufficient to prove
that dimH h

−1(y) = 1 for every (fi) ∈ F and y ∈ Uh, and λ(h
−1(Uh)) = λ(K) for
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P-almost every (fi) ∈ F . Therefore the following three lemmas will complete the
proof of Theorem 4.1.

Lemma 4.4. For all (fi) ∈ F and y ∈ Uh we have dimH h
−1(y) = 1.

Proof. Fix k ∈ N and (y0, . . . , yk) ∈ Tk such that y ∈ U((y0 + · · · + yk), 2
−(m+k)).

Then (4.1) yields that for all n ∈ N
+ we can fix yk+n ∈ Sm+k+n such that

(4.17) y ∈ B
(
(y0 + · · ·+ yk+n), 2

−(m+k+n)
)
.

For all n ∈ N
+ and (j1, . . . , jn) ∈ Jk,k+n =

∏n
i=1{1, . . . , bm+k+i} let

σ(j1, . . . , jn) = σy0...yk(yk+1, . . . , yk+n; j1, . . . , jn) ∈ Im+k+n

and

Cj1...jn = Kσ(j1,...,jn) ∩A
k+n
k (y0, . . . , yk+n),

where we recall (4.13) and (4.14). Let us define

C =

∞⋂

n=1



bm+k+1⋃

j1=1

· · ·

bm+k+n⋃

jn=1

Cj1...jn


 .

Then (4.14) yields that hk+n(Cj1...jn) ⊂ B((y0 + · · · + yk+n), 2
−(m+k+n)) for all

n ∈ N
+ and (j1, . . . , jn) ∈ Jk,k+n. Thus (4.17) and uniform convergence imply

h(x) = y for all x ∈ C, so

(4.18) C ⊂ h−1(y).

Let us recall Definitions 3.4 and 3.5. Let cn = am+k+n and dn = bm+k+n for
all n ∈ N

+. As K is an (an)-type fat Cantor set, the (m + k)th level elementary
pieces of K are (cn)-type fat Cantor sets. Inequality (4.14) yields that Cj1...jn 6= ∅
for all n ∈ N

+ and (j1, . . . , jn) ∈
∏n
i=1{1, . . . , di}, thus K witnesses that C is a

(cn, dn)-type Cantor set. Then (4.2) easily implies that

cn ≥

(
c1 · · · cn+1

d1 · · · dn+1

)n+1

,

therefore Lemma 3.8 yields that dimH C = 1. Hence (4.18) implies that

(4.19) dimH h
−1(y) ≥ dimH C = 1,

which completes the proof. �

Lemma 4.5. Let (fi) ∈ F be fixed such that λ ◦ h−1 is absolutely continuous with
respect to λd. Then λ(h−1(Uh)) = λ(K).

Proof. There exists a measurable function ϕ : Rd → [0,∞) such that for every Borel
set B ⊂ R

d we have

(4.20) λ(h−1(B)) =

∫

B

ϕ(y) dλd(y).

Assume to the contrary that λ(h−1(h(K)\Uh)) > 0. Then there exist a measurable
set E ⊂ h(K) \ Uh and c > 0 such that λd(E) > 0 and ϕ|E ≥ c. By Lebesgue’s
density theorem [17, 261D] we can fix a density point z ∈ E. As z is a density point
of E, there is an n ∈ N

+ such that r = 2−(m+n) satisfies r ≤ c and if B ⊂ B(z, 2r)
is a ball with radius at least r/4 then

(4.21) λd(B ∩E) ≥ λd(B)/2.
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As z ∈ E ⊂ h(K) ⊂ B(g(K), 2), there exists (y0, . . . , yn) ∈ Tm×Sm+1×· · ·×Sm+n

with z ∈ B((y0 + · · ·+ yn), r). Let y = y0 + · · · + yn and D = B(y, r/2), then we
have B(D, r/2) = B(y, r) ⊂ B(z, 2r). Then (4.20), the definition of c and (4.21)
yield

(4.22) λ(h−1(D)) =

∫

D

ϕ(y) dλd(y) ≥ cλd(D ∩ E) ≥ (c/2)λd(D).

Let B = {B(y + yn+1 + yn+2, r/4) : yn+i ∈ Sm+n+i}, clearly #B = s2. If x ∈ K
and h(x) ∈ D then (4.4) and the definition of D imply

hn+2(x) ∈ B(h(x), 2−(m+n+1)) ⊂ B(D, r/2) = B(y, r) =
⋃

B.

Hence there exists a B ∈ B such that λ(h−1
n+2(B)) ≥ s−2λ(h−1(D)). Then (4.22),

λd(D) = s−(m+n) and c ≥ 2−(m+n) yield

λ(h−1
n+2(B)) ≥

λ(h−1(D))

s2
≥
cλd(D)

2s2
> (2s)−(m+n+4) = rn+2.

Let y0+· · ·+yn+2 be the center of B. The definition of Tn+2 and λ(h
−1
n+2(B)) > rn+2

imply that (y0, . . . , yn+2) ∈ Tn+2. Hence the definition of Uh yields that B ⊂ Uh.
Then (4.21) implies that λd(B∩E) ≥ λd(B)/2 > 0, thus E ∩B 6= ∅, so E ∩Uh 6= ∅.
This contradicts the definition of E, thus λ(h−1(Uh)) = λ(K). �

Lemma 4.6. For P-almost every (fi) ∈ R the measure λ ◦ h−1 is absolutely con-
tinuous with respect to λd.

Proof. For all (fi) ∈ R and n ∈ N
+ let Fn =

∑∞
i=n fi. For all distinct x, z ∈ K

let i(x, z) be the minimal number i such that x and z are in different ith level
elementary pieces of K. Fix n ∈ N

+ and x, z ∈ K with i(x, z) = n and also fix
r > 0. Pick indexes {ik}k≥1 such that x ∈ Ki1...ik for all k ∈ N

+ and define

Xn(x) =

∞∑

k=n

Xi1...ik and Yn(x) =

∞∑

k=n

Yi1...ik ,

where we recall (4.3). Then clearly Xn(x) is uniformly distributed in B(0, 21−n),
therefore for all y ∈ R

d we have

(4.23) P(|Xn(x) − y| ≤ r) ≤ (r2n−1)d ≤ (r2n)d.

Then i(x, z) = n implies thatXn(x) and Yn(x)−g(x)+Fn(z)+g(z) are independent.
Since fi(x) = fi(z) for all i < n, the difference of the above two variables equals
h(x)− h(z). Thus Lemma 3.15 and (4.23) imply

P(|h(x) − h(z)| ≤ r) = P(|Xn(x)− (Yn(x)− g(x) + Fn(z) + g(z))| ≤ r)

≤ sup
y∈Rd

P(|Xn(x)− y| ≤ r) ≤ (r2n)d.(4.24)

Let An = {(x, z) ∈ K ×K : i(x, z) = n} for all n ∈ N
+, then

(4.25) (λ× λ)(An) =
a1 · · · an(an − 1)

(a1 · · · an)2
≤

1

a1 · · · an−1
,

where a1 · · · a0 = 1 by convention. Let us use the notation λh = λ ◦ h−1 and define
the random function q : Rd → [0,∞] as

q(y) = lim inf
r→0+

λh(B(y, r))

λd(B(y, r))
.
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By [27, Theorem 2.12] it is enough to show that, almost surely, q(y) < ∞ for λh
almost every y ∈ R

d. Therefore it is enough to prove that the following expected
value is finite. Applying Fatou’s lemma, the substitution formula

∫
Rd ψ dλh =∫

K ψ ◦ h dλ, Fubini’s theorem, (4.24), (4.25) and an ≥ s2n = 22dn yield

E

∫

Rd

q(y) dλh(y) ≤ lim inf
r→0+

1

(2r)d
E

∫

Rd

λh(B(y, r)) dλh(y)

= lim inf
r→0+

1

(2r)d

∫

K

∫

K

P(|h(x) − h(z)| ≤ r) dλ(x) dλ(z)

= lim inf
r→0+

1

(2r)d

∞∑

n=1

∫∫

An

P(|h(x) − h(z)| ≤ r) dλ(x) dλ(z)

≤ lim inf
r→0+

1

(2r)d

∞∑

n=1

(r2n)d

a1 · · · an−1

=

∞∑

n=0

2dn

a1 · · · an
≤

∞∑

n=0

2−dn <∞,

and the proof is complete. �

Therefore the proof of Theorem 4.1 is also complete. �

4.2. The ultrametric case. Before turning to the general case, we prove the Main
Theorem for ultrametric spaces. The key step is the following lemma, where the
construction of the map h is based on the proof of [25, Theorem 2.1].

Lemma 4.7. Let (K, d) be a compact ultrametric space. If µ is a continuous mass
distribution on K, then there is a map h : K → [0, 1] and there are compact sets
Kn ⊂ K such that if hn = h|Kn

and Dn = h(Kn) then for all n ∈ N
+ we have

(i) µ(
⋃∞
n=1Kn) = µ(K) and λ(Dn) > 0;

(ii) the maps hn : Kn → Dn are homeomorphisms;
(iii) for every Borel set B ⊂ Dn we have µ(h−1

n (B)) = λ(B);
(iv) for every non-empty B ⊂ Dn we have dimH h

−1
n (B) ≥ dimH µ · dimH B;

(v) for every non-empty B ⊂ Dn we have dimP h
−1
n (B) ≥ dimP µ · dimH B.

Remark 4.8. We may assume that the compact sets in the above lemma satisfy
Kn ⊂ Kn+1 for all n ≥ 1, but we will not use this property later.

Proof. We may assume that µ(K) = 1. By [25, Lemma 2.3] we obtain that K
is a 1-monotone metric space, that is, there exists a linear order ≺ on K such
that diam[a, b] = d(a, b) for all a, b ∈ K, where [a, b] denotes the closed interval
{x ∈ K : a � x � b}. It is easy to show (see also in [33]) that each open interval
(a, b) = {x ∈ K : a ≺ x ≺ b} and every open half-line (−∞, x) = {z ∈ K : z ≺ x},
(x,∞) = {z ∈ K : x ≺ z} is open in K, so every interval is Borel. Let us define

h : K → [0, 1], h(x) = µ((−∞, x)).

Then for every Borel set B ⊂ [0, 1] we have

(4.26) µ(h−1(B)) = λ(B),

since it holds for intervals in [0, 1] by the definition of h, so Carathéodory’s extension
theorem yields that the Borel probability measures µ ◦ h−1 and λ|[0,1] coincide.
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Now we show that h(K) = [0, 1]. The continuity of µ implies that h is continuous,
so h(K) is compact. Since K is compact and the intervals of the form (−∞, b)
and (a,∞) are open, there exists a minimal element x− and a maximal element
x+ in (K,≺). Then h(x−) = µ(∅) = 0, and the continuity of µ yields h(x+) =
µ((−∞, x+)) = µ(K\{x+}) = µ(K) = 1. Hence {0, 1} ⊂ h(K) and h(K) is a subset
of [h(x−), h(x+)] = [0, 1]. Thus it is enough to prove that there are no u, v ∈ h(K)
with u < v and (u, v) ∩ h(K) = ∅. Assume to the contrary that there exist such u
and v. Let S be a countable dense subset of K and let S1 = {s ∈ S : h(s) ≤ u} and
S2 = {t ∈ S : h(t) ≥ v}. Then (u, v) ∩ h(K) = ∅ implies that S = S1 ∪ S2. Since
S1 and S2 are countable and h(x) = µ((−∞, x)), we obtain µ(

⋃
s∈S1

(−∞, s)) ≤ u

and µ(
⋂
t∈S2

(−∞, t)) ≥ v. Let E =
⋂
t∈S2

(−∞, t) \
⋃
s∈S1

(−∞, s), then we have
µ(E) ≥ v − u > 0. But E can contain at most two points: If a, b, c ∈ E and
a ≺ b ≺ c, then (a, c) would be a non-empty open set not containing any point of
the dense set S = S1 ∪ S2. Then the continuity of µ implies that µ(E) = 0, which
is a contradiction. Thus h(K) = [0, 1].

We prove that Y = {y ∈ [0, 1] : #h−1(y) ≥ 2} is countable. For all n ∈ N
+ let

Yn = {y ∈ [0, 1] : diamh−1(y) ≥ 2/n}.

As Y =
⋃∞
n=1 Yn, it is enough to show that Yn is finite for all n ∈ N

+. Let us fix n
and for all y ∈ Yn pick ay, by ∈ h−1(y) such that ay ≺ by and d(ay , by) > 1/n. Let
us say that a set is 1/n-separated if the distance between every pair of its points is
at least 1/n. Since a compact metric space does not have an infinite 1/n-separated
subspace, it is enough to prove that An = {ay : y ∈ Yn} is 1/n-separated. Let
y, w ∈ Yn such that y < w. Then the definition of h yields ay ≺ by � aw. Thus the
definition of the order ≺ implies

1/n < d(ay, by) = diam[ay, by] ≤ diam[ay, aw] = d(ay, aw),

so An is 1/n-separated.
Let us define

X =

{
x ∈ K : lim sup

r→0+

µ(B(x, r))

rs
<∞ for all s < dimH µ

}
,

Z =

{
x ∈ K : lim inf

r→0+

µ(B(x, r))

rs
<∞ for all s < dimP µ

}
.

Theorem 2.2 yields that µ(X ∩ Z) = 1. Since Y is countable and µ is continuous,
(4.26) implies that µ(h−1(Y )) = 0. Therefore we can choose compact sets Kn ⊂
(X∩Z)\h−1(Y ) such that µ(Kn) > 0 for all n ∈ N

+ and µ(
⋃∞
n=1Kn) = 1. Clearly,

the hn are one-to-one, so (ii) holds. Then (4.26) yields (iii) and λ(Dn) > 0, thus
(i) is satisfied.

Now we prove (iv). We may assume that dimH µ > 0, otherwise we are done.
Let us fix 0 < s < dimH µ. As Kn ⊂ X for all n ∈ N

+, it is enough to show that
for each non-empty A ⊂ X we have

(4.27) dimH h(A) ≤
dimH A

s
,

then letting sր dimH µ yields (iv). Fix a non-empty A ⊂ X and for all i ∈ N
+ let

Xi = {x ∈ X : µ(B(x, r)) ≤ irs for all r ≥ 0}.
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The definition of X clearly implies that X =
⋃∞
i=1Xi. The definitions of h and the

linear order ≺ yield that for all x, z ∈ Xi with x � z we have

|h(x)− h(z)| = µ([x, z)) ≤ µ(B(x, d(x, z))) ≤ i(d(x, z))s,

so the h|Xi
are s-Hölder. By Fact 2.1 we have dimH h(A∩Xi) ≤ (dimH(A∩Xi))/s

for all i ∈ N
+. Therefore A ⊂ X =

⋃∞
i=1Xi and the countable stability of the

Hausdorff dimension imply that

dimH h(A) = sup
i∈N+

dimH h(A ∩Xi) ≤ sup
i∈N+

dimH(A ∩Xi)

s
=

dimH A

s
,

thus (4.27) holds. Hence (iv) is satisfied.
Finally, we show (v). We may assume that dimP µ > 0, otherwise we are done.

Let us fix an arbitrary 0 < s < dimP µ. As Kn ⊂ Z for all n ∈ N
+, it is enough

to show that for each fixed non-empty A ⊂ Z we have dimH h(A) ≤ (dimP A)/s,
then letting s ր dimP µ yields (v). We may suppose that dimP A < ∞, otherwise
we are done. It is enough to show that for each fixed t > dimP A we have

(4.28) dimH h(A) ≤ t/s,

then letting tց dimP A finishes the proof. The definition of the packing dimension
implies that there are sets Ai such that A =

⋃∞
i=1 Ai and dimBAi < t for all i ∈ N

+.
For all j ∈ N

+ let

Zj = {x ∈ Z : µ(B(x, 2−n)) ≤ j2−ns for infinitely many n ∈ N
+}.

The definition of Z implies that Z =
⋃∞
j=1 Zj. Let us fix i, j ∈ N

+ and let D =
Ai ∩ Zj. Now we show that

(4.29) dimH h(D) ≤ t/s.

Since dimBD < t, we can fix u such that dimBD < u < t. For all n ∈ N
+ let

Nn = {B(x, 2−n) : x ∈ D},

Sn = {B(x, 2−n) : x ∈ D and µ(B(x, 2−n)) ≤ j2−ns}.

Then clearly Sn ⊂ Nn. Fact 2.4 and the compactness of K yield that Nn consists of
finitely many pairwise disjoint balls, so #Nn = N2−n(D) for all n ∈ N

+, where we
recall that N2−n(D) is the smallest number of closed balls with radius 2−n whose
union cover D. Thus dimBD < u and the definition of the upper box dimension
yield that for all n ∈ N

+ we have

(4.30) #Sn ≤ N2−n(D) ≤ c12
nu,

where c1 ∈ R
+. Let S ∈ Sn for some n ∈ N

+. For all x, z ∈ S with x � z the
definition of ≺ implies that [x, z) ⊂ B(x, d(x, z)) ⊂ B(x, 2−n). Thus the definition
of h and x ∈ Zj yield

|h(x)− h(z)| = µ([x, z)) ≤ µ(B(x, 2−n)) ≤ c22
−ns,

where c2 = j. Therefore for all n ∈ N
+ and S ∈ Sn we obtain that

(4.31) diamh(S) ≤ c22
−ns.

Since D ⊂ Zj, we have D ⊂
⋃∞
n=N

⋃
S∈Sn

S for all N ∈ N
+. Thus for all N ∈ N

+

we have

(4.32) h(D) ⊂
∞⋃

n=N

⋃

S∈Sn

h(S).
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For all N ∈ N
+ let δN = j2−Ns. Then (4.32), (4.30), (4.31) and u < t imply

H
t/s
δN

(h(D)) ≤
∞∑

n=N

∑

S∈Sn

(diamh(S))t/s

≤
∞∑

n=N

c12
nu(c22

−ns)t/s = c32
N(u−t),

where c3 = c1c2
t/s(1 − 2u−t)−1. Thus u < t yields that limN→∞ H

t/s
δN

(h(D)) = 0,

so Ht/s(h(D)) = 0. Therefore dimH h(D) ≤ t/s, thus (4.29) holds.
As A =

⋃∞
i=1

⋃∞
j=1(Ai ∩ Zj), the countable stability of the Hausdorff dimension

and (4.29) imply

dimH h(A) = sup
i,j∈N+

dimH h(Ai ∩ Zj) ≤ t/s,

thus (4.28) holds. This implies (v), and the proof is complete. �

Theorem 4.9. Let K be a compact ultrametric space, and let d ∈ N
+. If µ is a

continuous mass distribution on K, then for the prevalent f ∈ C(K,Rd) there is
an open set Uf ⊂ R

d such that µ(f−1(Uf )) = µ(K) and for all y ∈ Uf we have

dimH f
−1(y) ≥ dimH µ and dimP f

−1(y) ≥ dimP µ.

Proof. For all n ∈ N
+ let us choose compact sets Kn ⊂ K and Dn ⊂ R and

homeomorphisms hn : Kn → Dn according to Lemma 4.7. As µ(
⋃∞
n=1Kn) = µ(K),

Lemma 3.13 yields that it is enough to prove that the sets

An = {f ∈ C(Kn,R
d) : ∃ an open set Uf ⊂ R

d such that µ(f−1(Uf )) = µ(Kn)

and dimH f
−1(y) ≥ dimH µ and dimP f

−1(y) ≥ dimP µ for all y ∈ Uf}

are prevalent in C(Kn,R
d). As λ(Dn) > 0 by (i), Theorem 4.1 implies that

Bn = {f ∈ C(Dn,R
d) : ∃ an open set Uf ⊂ R

d such that

λ(f−1(Uf )) = λ(Dn) and dimH f
−1(y) = 1 for all y ∈ Uf}

are prevalent in C(Dn,R
d). Fix n ∈ N

+ and define

Hn : C(Kn,R
d) → C(Dn,R

d), Hn(f) = f ◦ h−1
n .

Then Hn is a continuous group isomorphism, so Lemma 3.11 yields that H−1
n (Bn)

is prevalent in C(Kn,R
d). Therefore it is enough to prove that H−1

n (Bn) ⊂ An. Let
us fix f ∈ H−1

n (Bn), we need to prove that f ∈ An. Let g = Hn(f) = f ◦h−1
n ∈ Bn,

then there exists a non-empty open set Ug ⊂ R
d such that λ(g−1(Ug)) = λ(Dn)

and dimH g
−1(y) = 1 for all y ∈ Ug. Let Uf = Ug. Applying (iii) twice with

Kn = h−1
n (Dn) implies that

µ(f−1(Uf )) = µ(h−1
n (g−1(Ug))) = λ(g−1(Ug)) = λ(Dn) = µ(Kn).

Let us fix y ∈ Uf . Then (iv) and (v) yield that

dimH f
−1(y) = dimH h

−1
n (g−1(y)) ≥ dimH µ · dimH g

−1(y) = dimH µ,

dimP f
−1(y) = dimP h

−1
n (g−1(y)) ≥ dimP µ · dimH g

−1(y) = dimP µ.

These imply that f ∈ An, and the proof is complete. �
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4.3. The Main Theorem. We prove the Main Theorem after some preparation.

Definition 4.10. Let X be a metric space. For all r > 0 let N(r) be the minimal
number such that every closed ball B(x, r) can be covered by N(r) closed balls of
radius r/2. Then X is called doubling if sup{N(r) : r > 0} <∞. We say that X is
non-exploding if

lim
r→0+

logN(r)

log r
= 0.

Every subspace of Rm is doubling, and every doubling space is non-exploding.

Definition 4.11. Let X,Y be metric spaces. A map f : X → Y is called nearly
Lipschitz if f is s-Hölder for all s < 1. We say that f is nearly bi-Lipschitz if it
is one-to-one and both f and f−1 are nearly Lipschitz. The spaces X and Y are
nearly Lipschitz equivalent if there exists a nearly bi-Lipschitz onto map f : X → Y .

Fact 4.12. If X,Y are metric spaces and f : X → Y is a nearly bi-Lipschitz map
then dimH f(A) = dimH A and dimP f(A) = dimP A for all A ⊂ X.

The above fact follows from Fact 2.1. For the following theorem see [44].

Theorem 4.13 (Zindulka). Let K be a non-exploding compact metric space. If
µ is a mass distribution on K, then there exists a compact set C ⊂ K such that
µ(C) > 0 and C is nearly bi-Lipschitz equivalent to an ultrametric space.

Theorem 4.14 (Main Theorem). Let K be a non-exploding compact metric space,
and let d ∈ N

+. If µ is a continuous mass distribution on K, then for the prevalent
f ∈ C(K,Rd) there is an open set Uf ⊂ R

d such that µ(f−1(Uf )) = µ(K) and for
all y ∈ Uf we have

dimH f
−1(y) ≥ dimH µ and dimP f

−1(y) ≥ dimP µ.

In the special case K = [0, 1]m we obtain the following:

Corollary 4.15. Let m, d ∈ N
+. Then for the prevalent f ∈ C([0, 1]m,Rd) there is

an open set Uf ⊂ R
d such that λm(f−1(Uf )) = 1 (hence Uf is dense in f([0, 1]m)

and for all y ∈ Uf we have we have

dimH f
−1(y) = m.

Proof of the Main Theorem. By Theorem 4.13 there exist compact sets Kn ⊂ K
such that µ(Kn) > 0 for all n ∈ N

+ and µ(
⋃∞
n=1Kn) = µ(K), and there are

compact ultrametric spaces Cn and nearly bi-Lipschitz onto maps hn : Kn → Cn.
Define the measures µn = µ|Kn

on Kn and νn = µ◦h−1
n on Cn for all n ∈ N

+. Since
νn(Cn) = µ(Kn) > 0, the measures µn and νn are continuous mass distributions.
Then dimH µn ≥ dimH µ and dimP µn ≥ dimP µ by the definition, thus Lemma 3.13
yields that it is enough to prove that the sets

An = {f ∈ C(Kn,R
d) : ∃ an open set Uf ⊂ R

d such that µn(f
−1(Uf )) = µn(Kn)

and dimH f
−1(y) ≥ dimH µn and dimP f

−1(y) ≥ dimP µn for all y ∈ Uf}

are prevalent in C(Kn,R
d). Theorem 4.9 implies that the sets

Bn = {f ∈ C(Cn,R
d) : ∃ an open set Uf ⊂ R

d such that νn(f
−1(Uf )) = νn(Cn)

and dimH f
−1(y) ≥ dimH νn and dimP f

−1(y) ≥ dimP νn for all y ∈ Uf}
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are prevalent in C(Cn,R
d). Fix n ∈ N

+ and define Hn : C(Kn,R
d) → C(Cn,R

d) as
Hn(f) = f ◦h−1

n . Then Hn is a continuous isomorphism, so Lemma 3.11 yields that
H−1
n (Bn) is prevalent in C(Kn,R

d). Since hn is nearly bi-Lipschitz, by Fact 4.12 we
have dimH h

−1
n (B) = dimH B and dimP h

−1
n (B) = dimP B for all B ⊂ Cn. Hence

µ◦h−1
n = νn yields that dimH µn = dimH νn and dimP µn = dimP νn. These easily

imply that H−1
n (Bn) = An, so An is prevalent. The proof is complete. �

Corollary 4.16. Let K be an uncountable, non-exploding compact metric space
and let d ∈ N

+. Then for the prevalent f ∈ C(K,Rd) for all s < dimP K there is
a non-empty open set Uf,s ⊂ R

d such that for all y ∈ Uf,s we have

dimP f
−1(y) ≥ s.

In particular, we have

sup{dimP f
−1(y) : y ∈ R

d} = dimP K.

Proof. Fix s = 0 if dimP K = 0 and s ∈ (0, dimP K) if dimP K > 0. Theorem 2.3
implies that there is a continuous mass distribution µ on K with dimP µ ≥ s.
Applying the Main Theorem for µ yields that

A(s) = {f ∈ C(K,Rd) : ∃ a non-empty open set Uf ⊂ R
d

such that dimP f
−1(y) ≥ s for all y ∈ Uf}

is prevalent in C(K,Rd). If dimP K = 0 then we are done, otherwise choose a
sequence sn ր dimP K, then

⋂∞
n=1 A(sn) is the desired prevalent set. �

In the case of Hausdorff dimension we generalize the above two corollaries. For
the following theorem see [30, Theorem 1.4].

Theorem 4.17 (Mendel-Naor). If K is a compact metric space and s < dimH K
then there exists a compact set C ⊂ K such that dimH C > s and C is bi-Lipschitz
equivalent to an ultrametric space.

Theorem 4.18. Let K be an uncountable compact metric space and let d ∈ N
+.

Then for the prevalent f ∈ C(K,Rd) for all s < dimH K there is a non-empty open
set Uf,s ⊂ R

d such that for all y ∈ Uf,s we have

dimH f
−1(y) ≥ s.

In particular, we have

sup{dimH f
−1(y) : y ∈ R

d} = dimH K.

Proof. By Theorem 1.7 we may assume dimH K > 0. Fix s ∈ (0, dimH K) and let

A = {f ∈ C(K,Rd) : ∃ a non-empty open set Uf ⊂ R
d

such that dimH f
−1(y) ≥ s for all y ∈ Uf}.

It is enough to prove that A = A(s) is prevalent, since we can choose a sequence
sn ր dimH K and

⋂∞
n=1 A(sn) will be a prevalent set in C(K,Rd) satisfying the

theorem. By Theorem 4.17 there is a compact set C ⊂ K such that dimH C > s and
there exist a compact ultrametric space D and a bi-Lipschitz onto map h : C → D.
By Fact 4.12 we have dimH D > s, so Theorem 2.3 yields that there exists a
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continuous mass distribution µ on D such that dimH µ ≥ s. Therefore Theorem 4.9
implies that

B = {g ∈ C(D,Rd) : ∃ a non-empty open set Ug ⊂ R
d

such that dimH g
−1(y) ≥ s for all y ∈ Ug}

is prevalent in C(D,Rd). Consider

R : C(K,Rd) → C(D,Rd), R(f) = f |C ◦ h−1.

As h is a homeomorphism, R is a composition of two continuous onto homomor-
phisms, so R is a continuous onto homomorphism. Thus Lemma 3.11 implies that
R−1(B) ⊂ C(K,Rd) is prevalent, so it is enough to prove that R−1(B) ⊂ A. Let
us fix f ∈ R−1(B), we need to prove that f ∈ A. Let g = R(f) = f |C ◦ h−1 ∈ B,
then there exists a non-empty open set Ug ⊂ R

d such that dimH g
−1(y) ≥ s for all

y ∈ Ug. Let Uf = Ug and fix y ∈ Uf . Then h−1(g−1(y)) = (f |C)−1(y) ⊂ f−1(y),
so applying Fact 4.12 for the bi-Lipschitz map h yields that

dimH f
−1(y) ≥ dimH h

−1(g−1(y)) = dimH g
−1(y) ≥ s.

Hence f ∈ A, and the proof is complete. �

4.4. Fibers of maximal dimension. First we prove that one cannot replace
supremum with maximum in the second claims of Corollary 4.16 and Theorem 4.18.
For the following well-known lemmas see e.g. [44, Lemma 4] and [5], respectively.
Note that Lemma 4.20 is stated in [5] only in the case K = [0, 1], but the proof
works verbatim for all K.

Lemma 4.19. Let G be an abelian Polish group and let A ⊂ G. If for all compact
set K ⊂ G there exists a g ∈ G such that K + g ⊂ A then A is non-shy.

Lemma 4.20. Let K ⊂ [0, 1] and K ⊂ C(K,R) be compact sets. Then there is a
strictly increasing function h ∈ C[0, 1] such that h(0) = 0 and for all f ∈ K and
x, z ∈ K, x 6= z we have

|f(x) − f(z)| < h(|x− z|).

Theorem 4.21. There is a compact set K ⊂ R such that dimH K = dimP K = 1
and

A = {f ∈ C(K,R) : dimH f
−1(y) ≤ dimP f

−1(y) < 1 for all y ∈ R}

is non-shy in C(K,R).

Proof. For all n ∈ N
+ let Kn ⊂ [0, 1/n] be compact sets such that dimH Kn =

dimP Kn = 1 − 1/n and let K =
⋃∞
n=1Kn ∪ {0}. Then K ⊂ [0, 1] is compact and

dimH K = dimP K = 1. Define

B = {f ∈ C(K,R) : f−1(f(0)) = {0}}.

Now we show that B ⊂ A, that is, dimH f
−1(y) ≤ dimP f

−1(y) < 1 for every
f ∈ B and y ∈ R. The first inequality clearly holds, so it is enough to prove
that dimP f

−1(y) < 1. Let us fix f ∈ B, by definition f−1(f(0)) = {0}. For all
y ∈ R \ {f(0)} the level set f−1(y) ⊂ K \ {0} is compact, thus it can be covered
by finitely many sets Kn. Therefore the countable stability of packing dimension
yields that dimP f

−1(y) < 1.
Finally, it is enough to show that B is non-shy in C(K,R). Let K ⊂ C(K,R) be

an arbitrary compact set, by Lemma 4.19 it is enough to prove that there exists
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a g ∈ C(K,R) with K + g ⊂ B. By Lemma 4.20 there is a strictly increasing
function h ∈ C[0, 1] such that h(0) = 0 and |f(x)− f(0)| < h(x) for all f ∈ K and
x ∈ K \ {0}. Let g = h|K , then for all f ∈ K and x ∈ K \ {0} we have

f(x) + g(x) = f(x) + h(x) > f(0) = f(0) + h(0) = f(0) + g(0),

thus f + g ∈ B. This completes the proof. �

The Main Theorem easily implies that if K is ‘large in its dimension’ then Corol-
lary 4.16 and Theorem 4.18 can be strengthened as follows.

Corollary 4.22. Let d ∈ N
+ and let dim be one of dimH or dimP . Assume that K

is a non-exploding compact metric space and there is a continuous mass distribution
µ on K such that dimµ = dimK. Then for the prevalent f ∈ C(K,Rd) there is an
open set Uf ⊂ R

d such that µ(f−1(Uf )) = µ(K) and for all y ∈ Uf we have

dim f−1(y) = dimK.

Remark 4.23. Note that the compact set K in Theorem 4.21 can be decomposed
as K =

⋃∞
n=1An such that dimH An < dimH K. Assume that K is a non-exploding

compact metric space such that dimH K < ∞ and such a decomposition does not
exist. We sketch that there is a mass distribution µ on K with dimH µ = dimH K,
so Corollary 4.22 holds for K in the case of Hausdorff dimension. Indeed, [38,
Theorem 2] (see also the more general [40, Theorem 6.4]) implies that there is a
gauge function (see Section 8 for the definition) ϕ : [0,∞) → [0,∞) such that

lim inf
r→0+

logϕ(r)

log r
= dimH K and Hϕ(K) > 0,

where Hϕ denotes the ϕ-Hausdorff measure (see Section 8 for the definition). As
dimH K < ∞, we may assume that ϕ is of finite order, that is, ϕ(2r) ≤ cϕ(r)
for some c ∈ R

+ and for all r ∈ [0,∞). By [20] there is a compact set C ⊂ K
such that 0 < Hϕ(C) < ∞. Then µ = Hϕ|C is a mass distribution on K with
dimH µ = dimH K.

4.5. The homogeneous case. Let us now consider continuous mass distributions
µ on K such that suppµ = K. Then the larger dimH µ or dimP µ can be, the more
homogeneous K is. The Main Theorem yields the following corollary.

Corollary 4.24. Let d ∈ N
+ and let K be a non-exploding compact metric space.

Assume that there is a continuous mass distribution µ on K such that suppµ = K.
Then for the prevalent f ∈ C(K,Rd) there exists an open set Uf ⊂ R

d such that
µ(f−1(Uf )) = µ(K) (hence Uf is dense in f(K)) and for all y ∈ Uf we have

dimH f
−1(y) ≥ dimH µ and dimP f

−1(y) ≥ dimP µ.

If K ⊂ R
m is a self-similar set satisfying the open set condition, we can say

more. Recall that Ps denotes the s-dimensional packing measure.

Corollary 4.25. Let m, d ∈ N
+ and let K ⊂ R

m be a self-similar set satisfy-
ing the open set condition. It is well-known that dimH K = dimP K = s and
Hs(K),Ps(K) ∈ R

+. Then for the prevalent f ∈ C(K,Rd) there exists an open set
Uf ⊂ R

d such that Hs(f−1(Uf )) = Hs(K) (hence Uf is dense in f(K)) and

dimH f
−1(y) = s for all y ∈ Uf .
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Similarly, for the prevalent f ∈ C(K,Rd) there exists an open set Vf ⊂ R
d such

that Ps(f−1(Vf )) = Ps(K) (hence Vf is dense in f(K)) and

dimP f
−1(y) = s for all y ∈ Vf .

Proof. For dimH K = dimP K = s and Hs(K),Ps(K) ∈ R
+ see [14, Theorem 2.7].

Applying the Main Theorem for the mass distributions µ = Hs and µ = Ps con-
cludes the proof, we need to show only that Uf and Vf are dense in f(K). Let
U be a non-empty open set in K, then it is enough to prove that Hs(U) > 0 and
Ps(U) > 0. Since K is self-similar, U contains a similar copy of K with some
similarity ratio r > 0. Then the scaling property of the Hausdorff and the packing
measures yields that Hs(U) ≥ rsHs(K) > 0 and Ps(U) ≥ rsPs(K) > 0. �

Finally, we prove two characterization theorems.

Theorem 4.26. If K is a compact metric space and d ∈ N
+ then the following

statements are equivalent:

(i) dimH f
−1(y) = dimH K for the prevalent f ∈ C(K,Rd) and for the generic

y ∈ f(K);
(ii) dimH U = dimH K for every non-empty open set U ⊂ K.

Proof. (ii) ⇒ (i): We may assume that dimH K > 0, otherwise the statement is
trivial. Choose a positive sequence si ր dimH K and let V = {Vn : n ∈ N

+}
be a countable basis of K consisting of non-empty open sets. For all n ∈ N

+ let
Kn = clVn, then dimH Kn = dimH K. For all i, n ∈ N

+ consider

Ai,n = {f ∈ C(Kn,R
d) : ∃ a non-empty open set Uf,si ⊂ R

d

such that dimH f
−1(y) ≥ si for all y ∈ Uf,si}.

Theorem 4.18 implies that the Ai,n are prevalent. For all n ∈ N
+ let us define

Rn : C(K,R
d) → C(Kn,R

d), Rn(f) = f |Kn
.

Corollary 3.12 yields that the R−1
n (Ai,n) are prevalent in C(K,R

d) for all i, n ∈ N
+.

As a countable intersection of prevalent sets, A =
⋂∞
i=1

⋂∞
n=1R

−1
n (Ai,n) is also

prevalent in C(K,Rd). For all f ∈ A let

Uf =
∞⋂

i=1

(
∞⋃

n=1

Uf |Kn ,si

)
.

As a countable intersection of dense open sets, Uf is co-meager in f(K). Let us
fix f ∈ A and y ∈ Uf , it is enough to prove that dimH f

−1(y) = dimH K. For all
i ∈ N

+ there is an n ∈ N
+ such that y ∈ Uf |Kn ,si

, therefore

dimH f
−1(y) ≥ dimH(f |Kn

)−1(y) ≥ si.

As si ր dimH K, we obtain that dimH f
−1(y) = dimH K. Hence (i) holds.

(i) ⇒ (ii): Assume to the contrary that there exist x ∈ K and r > 0 such
that dimH U(x, r) < dimH K. Tietze’s extension theorem implies that there is a
g ∈ C(K,Rd) such that g(K \ U(x, r)) and g(B(x, r/2)) are distinct points in R

d.
Then there exist an ε > 0 and an open set U ⊂ R

d such that f(B(x, r/2)) ⊂ U and
f(K \U(x, r)) ⊂ R

d \U for all f ∈ B(g, ε). Clearly, B(g, ε) is non-shy in C(K,Rd).
If f ∈ B(g, ε) then U ∩ f(K) is a non-empty open set in f(K) such that for every
y ∈ U we have dimH f

−1(y) ≤ dimH U(x, r) < dimH K, which contradicts (i). �
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Theorem 4.27. If K is a non-exploding compact metric space and d ∈ N
+ then

the following statements are equivalent:

(i) dimP f
−1(y) = dimP K for the prevalent f ∈ C(K,Rd) and for the generic

y ∈ f(K);
(ii) dimP U = dimP K for every non-empty open set U ⊂ K.

Proof. Repeat the proof of Theorem 4.26, only replace Hausdorff dimension with
packing dimension, and apply Corollary 4.16 instead of Theorem 4.18. �

5. Positively many level sets can be singletons

In this section we only consider the space C[0, 1], our main goal is to prove
Theorem 5.4. The heart of the proof is the Theorem 5.2, which generalizes a result
of Antunović et al. [1, Proposition 3.3], see also Theorem 1.8. First we need an
easy lemma. Recall that Z(f) = {x ∈ [0, 1] : f(x) = 0}.

Lemma 5.1. The set A = {f ∈ C[0, 1] : Z(f) is a singleton} is Borel.

Proof. Clearly A = B1 \ B2, where Bi = {f ∈ C[0, 1] : #Z(f) ≥ i}. Since B1 is
closed, it is enough to prove that B2 is Borel. If I denotes the pairs of disjoint
closed rational subintervals of [0, 1], then B2 =

⋃
(I1,I2)∈I BI1,I2 , where

BI1,I2 = {f ∈ C[0, 1] : 0 ∈ f(I1) ∩ f(I2)}.

Clearly BI1,I2 are closed, therefore B2 is Fσ, thus Borel. �

Theorem 5.2. Let µ be a Borel probability measure on C[0, 1]. Then there exists
a function g ∈ C[0, 1] such that

µ({f ∈ C[0, 1] : Z(f − g) is a singleton}) > 0.

Consequently, the set A = {f ∈ C[0, 1] : Z(f) is a singleton} is non-shy.

Proof. It is enough to prove the first statement, because the definition of shyness
readily implies the second one. Lemma 5.1 implies that A is Borel, so the set
{f ∈ C[0, 1] : Z(f − g) is a singleton} = A+ g is also Borel for each g ∈ C[0, 1].

By Theorem 2.5 we may assume by shifting, restricting and normalizing µ that
there is a compact set K ⊂ C[0, 1] such that µ(K) = 1 and f(x) ∈ [0, 1] for all
f ∈ K and x ∈ [0, 1]. For each compact set Γ ⊂ [0, 1]2 let us define the compact set

π(Γ) = {f ∈ K : ∃(x, y) ∈ Γ such that f(x) = y}.

First assume that there exists a point (x0, y0) ∈ [0, 1]2 with µ(π({(x0, y0)})) > 0.
By Lemma 4.20 there is a strictly increasing function h ∈ C[0, 1] such that h(0) = 0
and for all f ∈ K and x, z ∈ [0, 1], x 6= z we have

(5.1) |f(x) − f(z)| < h(|x− z|).

Let us define g ∈ C[0, 1] as g(x) = y0 + h(|x− x0|). Then clearly Z(f − g) = {x0}
for all f ∈ π({(x0, y0)}), thus

µ({f ∈ K : Z(f − g) is a singleton}) ≥ µ(π({(x0, y0)})) > 0,

which concludes the proof.
Therefore we may assume that µ(π(∆)) = 0 for every finite set ∆ ⊂ [0, 1]2. We

prove that it is enough to find a function g ∈ C[0, 1] such that

(5.2) µ({f ∈ K : Z(f − g) has an isolated point}) > 0.
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Indeed, by (5.2) we may assume that there are rational numbers 0 ≤ a < b ≤ 1
with

(5.3) µ({f ∈ K : Z(f − g) ∩ [a, b] is a singleton, g(a) ≤ f(a), f(b) ≤ g(b)}) > 0,

since the other three cases with reversed inequalities are similar. Define ĝ ∈ C[0, 1]
as

ĝ(x) =





g(a)− h(a− x) if x ∈ [0, a),

g(x) if x ∈ [a, b],

g(b) + h(x− b) if x ∈ (b, 1].

Then for all f ∈ K we have ĝ(x) < f(x) if x ∈ [0, a) and f(x) < ĝ(x) if x ∈ (b, 1].
Thus Z(f − ĝ) = Z(f − g) ∩ [a, b] for all f ∈ K, so (5.3) implies that

µ({f ∈ C[0, 1] : Z(f − ĝ) is a singleton}) > 0,

and we are done.
Now we show (5.2). First we define the function g ∈ C[0, 1]. Let {αn}n∈N be a

sequence of positive reals such that

(5.4) α0 = 1/2 and αn+1 ≤ αn/2 for all n ∈ N,

the exact values will be given later. For all n ∈ N
+ and (k1, . . . , kn) ∈ {−1, 1}n let

zk1...kn =
1

2
+

n∑

i=1

kiαi.

Consider

Z = {0} ∪
{
zk1...kn : (k1, . . . , kn) ∈ {−1, 1}n, n ∈ N

+
}
.

Let g(0) = 0, and for all n ∈ N
+ and (k1, . . . , kn) ∈ {−1, 1}n let

(5.5) g(zk1...kn) =
1

2
+

n∑

i=1

ki
2i+1

.

For all x ∈ [0, 1] let

(5.6) g(x) = sup{g(z) : z ∈ Z, z ≤ x}.

Then (5.4) and (5.5) easily imply that g|Z is well-defined and non-decreasing, so g
is also well-defined and non-decreasing. Therefore the definitions yield g([0, 1]) ⊂
[g(0), g(1)] = [0, 1]. As a monotone function can have only jump discontinuities and
g(Z) is dense in [0, 1] by (5.5), we obtain that g : [0, 1] → [0, 1] is continuous.

We prove that if the numbers αn are small enough then g satisfies (5.2). For all
n ∈ N

+ and i ∈ {1, . . . , 2n} let φ(i, n) be the ith element of {−1, 1}n with respect to
the lexicographical ordering. Note that φ(i, n) precedes φ(j, n) with respect to this
ordering iff zφ(i,n) < zφ(j,n) with respect to the usual ordering of the real numbers.
Let C0 = [0, 1] and Γ0 = {1/2}× [0, 1]. For the definition of h recall (5.1). Assume
by induction that αn, Cn and Γn are already defined for some n ∈ N and let

Cn+1 = Cn \
2n+1⋃

i=0

U

(
i

2n+1
, h(4αn+1)

)
,(5.7)

Γn+1 =
2n+1⋃

i=1

({
zφ(i,n+1)

}
×

([
i− 1

2n+1
,

i

2n+1

]
∩ Cn+1

))
.(5.8)
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We show that if αn+1 ∈ (0, αn/2] is small enough then

(5.9) µ(π(Γn+1) ∩ π(Γn)) ≥ µ(π(Γn))−
1

2n+2
.

For all m ∈ N
+ let Cmn+1 and Γmn+1 be the sets Cn+1 and Γn+1 defined by the value

αn+1 = 1/m. For (5.9) it is enough to prove that

(5.10) lim
m→∞

µ(π(Γmn+1) ∩ π(Γn)) = µ(π(Γn)).

Observe that Γn consists of finitely many vertical line segments and let

∆n = {(x, y) ∈ Γn : 2n+1y ∈ N or (x, y) is an endpoint of a segment of Γn}.

As ∆n is finite, µ(π(∆n)) = 0 by our assumption. Since h(4/m) → 0 as m→ ∞, it
is easy to see that for every given (x, y) ∈ Γn\∆n there is a constant c = c(x, y) > 0
such that if m is large enough then Γmn+1 contains either the vertical line segment
{x−1/m}×[y−c, y+c] or {x+1/m}×[y−c, y+c]. Thus for every f ∈ π(Γn)\π(∆n)
there exists an M(f) ∈ N

+ such that for all m ≥ M(f) we have f ∈ π(Γmn+1). For
all m ∈ N

+ define

Am = {f ∈ (π(Γmn+1) ∩ π(Γn)) \ π(∆n) :M(f) ≤ m},

then clearly for all m ∈ N
+ we have Am ⊂ π(Γmn+1) ∩ π(Γn). The definition of

M(f) implies that Am ⊂ Am+1 and the existence of M(f) yields that
⋃∞
m=1 Am =

π(Γn) \ π(∆n). Therefore µ(π(∆n)) = 0 implies that

lim inf
m→∞

µ(π(Γmn+1) ∩ π(Γn)) ≥ lim
m→∞

µ(Am) = µ(π(Γn) \ π(∆n)) = µ(π(Γn)),

so (5.10) is satisfied. Thus αn, Cn and Γn can be defined for all n ∈ N such that
(5.7), (5.8) and (5.9) hold. Then (5.9) and µ(π(Γ0)) = 1 imply that

(5.11) µ

(
∞⋂

n=1

π(Γn)

)
≥ 1−

∞∑

n=1

1

2n+1
=

1

2
> 0.

Let us consider

C =
∞⋂

n=1

Cn and K = g−1(C).

We show that for all f ∈ K

(5.12) Z(f − g) ∩K ⊂ {isolated points of Z(f − g)}.

For each n ∈ N
+ and i ∈ {1, . . . , 2n} define the open interval

Ii,n =

(
i− 1

2n
,
i

2n

)
,

first we prove that

(5.13) diam g−1(Ii,n) = 2

∞∑

k=n+1

αk ≤ 4αn+1.

The inequality is clearly implied by (5.4), so we only need to check the equality.
Note that it is important that the Ii,n are open, otherwise the constant pieces of
the graph would make the pre-image much bigger. If y = 2i−1

2n+1 is the midpoint of

Ii,n then it is easy to see that g−1(y) = {zk1...kn} for some (k1, . . . , kn) ∈ {−1, 1}n.
Then Ii,n = U(y,

∑∞
k=n+1

1
2k+1 ), and one can check using the definition of g that

this corresponds to g−1(Ii,n) = U(zk1...kn ,
∑∞

k=n+1 αk), which proves (5.13).
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Let x ∈ Z(f−g)∩K, it is enough to show that if z ∈ [0, 1] with 0 < |x−z| ≤ 4α1

then f(z) 6= g(z). As αn ց 0, there exists a unique number n ∈ N
+ such that

(5.14) 4αn+1 < |x− z| ≤ 4αn.

Since x ∈ K implies that g(x) ∈ Cn, there exists an i ∈ {1, . . . , 2n} such that

(5.15) g(x) ∈ Ii,n and dist({g(x)}, ∂Ii,n) ≥ h(4αn).

Then (5.13) and (5.14) imply that |x− z| > diam g−1(Ii,n), so x ∈ g−1(Ii,n) yields
that z /∈ g−1(Ii,n). Therefore g(z) /∈ Ii,n and (5.15) imply that

(5.16) |g(x) − g(z)| ≥ dist({g(x)}, ∂Ii,n) ≥ h(4αn).

The monotonicity of h and (5.14) yield that

(5.17) h(|x− z|) ≤ h(4αn).

Therefore f(x) = g(x), the triangle inequality, (5.16), (5.1) and (5.17) imply that

|f(z)− g(z)| = |(g(x) − g(z))− (f(x)− f(z))|

≥ |g(x)− g(z)| − |f(x)− f(z)|

> h(4αn)− h(|x− z|) ≥ 0,

thus f(z) 6= g(z). Hence (5.12) holds.
By (5.11) and (5.12) it is enough to show that

(5.18)

∞⋂

n=1

π(Γn) ⊂ {f ∈ K : Z(f − g) ∩K 6= ∅}.

Let us fix f ∈
⋂∞
n=1 π(Γn), we need to find an x ∈ K such that f(x) = g(x).

For every n ∈ N
+ we can select a point (xn, f(xn)) ∈ Γn. We can choose a

convergent subsequence limk→∞ xnk
= x for some x ∈ [0, 1]. Then (5.8) yields

that for every k ∈ N
+ we have xnk

= zφ(ik,nk) and f(xnk
) ∈ Iik,nk

for some
ik ∈ {1, . . . , 2nk}. The definition of g implies that g(xnk

) is the midpoint of Iik,nk
,

so |f(xnk
)− g(xnk

)| ≤ 2−nk ≤ 2−k for all k ∈ N
+. Therefore

f(x) = lim
k→∞

f(xnk
) = lim

k→∞
g(xnk

) = g(x).

Then (5.8) yields f(xnk
) ∈ Cnk

for all k ∈ N
+. By (5.7) we have Cn+1 ⊂ Cn for all

n ∈ N
+, so f(x) ∈

⋂∞
k=1 Cnk

=
⋂∞
n=1 Cn = C. Thus x = g−1(f(x)) ∈ g−1(C) = K,

hence (5.18) holds. The proof is complete. �

Now we turn to the question concerning positively many level sets.

Lemma 5.3. Let ∆ be a family of subsets of [0, 1] and consider

A = {f ∈ C[0, 1] : f−1(0) ∈ ∆},

B = {f ∈ C[0, 1] : ∃λy ∈ R such that f−1(y) ∈ ∆}.

If A is a non-shy Borel set then B is a non-shy Borel set, too.

Proof. Let L be the one-dimensional Lebesgue measure defined on the constant
functions of C[0, 1], then clearly

(5.19) B = {f ∈ C[0, 1] : L(A − f) > 0}.
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As A is a Borel set, the function f 7→ L(A−f) is Borel measurable by [17, 417A], so
B is Borel. Assume to the contrary that B is shy. Then there is a Borel probability
measure µ on C[0, 1] such that µ(B − g) = 0 for all g ∈ C[0, 1], so (5.19) yields

µ({f ∈ C[0, 1] : L(A + g − f) > 0}) = µ(B − g) = 0.

Therefore we obtain by Fubini’s theorem that for all g ∈ C[0, 1]

(µ ∗ L)(A+ g) =

∫

C[0,1]

L(A + g − f) dµ(f) = 0.

Although µ ∗ L is only σ-finite, by restricting and normalizing it we obtain a prob-
ability measure witnessing the shyness of A. This is a contradiction, thus the proof
is complete. �

Theorem 5.4. The set

B = {f ∈ C[0, 1] : ∃λy ∈ R such that f−1(y) is a singleton}

is non-shy in C[0, 1].

Proof. Lemma 5.1 and Theorem 5.4 yield that A = {f ∈ C[0, 1] : #f−1(0) = 1} is
a non-shy Borel set. Lemma 5.3 with ∆ = {{x} : x ∈ [0, 1]} implies that B is also
a non-shy Borel set. �

Remark 5.5. Similar arguments yield that for all n ∈ N
+ the sets

An = {f ∈ C[0, 1] : #f−1(0) = n},

Bn = {f ∈ C[0, 1] : ∃λy ∈ R with #f−1(y) = n}

are non-shy, the details are left to the reader. The sets An are pairwise disjoint.

6. All non-extremal level sets can be of maximal dimension

For the prevalent f ∈ C[0, 1] the sets f−1(min f) and f−1(max f) are singletons,
see e.g. [5]. The aim of this section is to prove that all other non-empty level sets
can be of Hausdorff dimension one. This is a complementary result to Theorem 5.4.

Theorem 6.1. The set

C = {f ∈ C[0, 1] : dimH f
−1(y) = 1 for all y ∈ (min f,max f)}

is non-shy in C[0, 1].

Proof. Let K ⊂ C[0, 1] be an arbitrarily fixed compact set. By Lemma 4.19 it is
enough to construct a g ∈ C[0, 1] such that K + g ⊂ C. First we construct g. By
Lemma 4.20 there is a strictly increasing function h ∈ C[0, 1] such that h(0) = 0
and for all f ∈ K and x, z ∈ [0, 1] we have

|f(x) − f(z)| ≤ h(|x− z|).

For all n ∈ N
+ fix positive integers an > bn such that

(6.1) an ≥ max

{
1

h−1(2−(n+2))
, 25n

2

}
and bn =

⌈an
32

⌉
,

where ⌈·⌉ denotes the upper integer part. For all n ∈ N
+ let

pn =
1

a1 · · · an
.
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Define gn ∈ C[0, 1] for all n ∈ N
+ as

gn(x) =

{
(−1)i2−n if x = ipn and 0 ≤ i ≤ a1 · · · an,

affine on [(i − 1)pn, ipn] for all 1 ≤ i ≤ a1 · · · an.

Let us define g ∈ C[0, 1] and Gn ∈ C[0, 1] for all n ∈ N
+ as

g =
∞∑

i=1

gi and Gn =
n∑

i=1

gi.

Now we prove that K+g ⊂ C. Let us fix f ∈ K and y ∈ (min(f+g),max(f+g)),
we need to prove that dimH(f + g)−1(y) = 1. As f + Gn uniformly converges to
f+g, the intermediate value theorem implies that there is anm ∈ N

+ and x∅ ∈ [0, 1]
such that (f +Gm)(x∅) = y. For all n ∈ N let

In =

n∏

i=1

{1, . . . , bm+i} and

Jn = {[(i− 1)pm+n, ipm+n] : 1 ≤ i ≤ a1 · · · am+n},

where we use the convention I0 = {∅} and (i1, . . . , i0) = ∅. Let I∅ ∈ J0 such that
x∅ ∈ I∅. We construct for each n ∈ N and (i1, . . . , in) ∈ In an interval Ii1...in ∈ Jn
and a point xi1...in ∈ Ii1...in such that for all (i1, . . . , in+1) ∈ In+1 we have

(1) Ii1...in+1
⊂ Ii1...in ,

(2) (f +Gm+n)(xi1...in) = y.

By definition (2) holds for x∅ and I∅. Assume by induction that for some fixed
n ∈ N for each (i1, . . . , in) ∈ In the interval Ii1...in and the point xi1...in ∈ Ii1...in
are defined. Let us fix (i1, . . . , in) ∈ In. We can choose bm+n+1 distinct elements
of Jn+1 which are subsets of Ii1...in ∩ U(xi1...in , pm+n/16), let us enumerate them
as Ii1...in+1

(1 ≤ in+1 ≤ bm+n+1), then (1) holds. Fix in+1 ∈ {1, . . . , bm+n+1} and
define ui1...in+1

, vi1...in+1
∈ Ii1...,in+1

such that

gm+n+1(ui1...in+1
) = −2−(m+n+1) and gm+n+1(vi1...in+1

) = 2−(m+n+1).

It is enough to prove that

(6.2) (f +Gm+n+1)(ui1...in+1
) ≤ y ≤ (f +Gm+n+1)(vi1...in+1

),

then by the intermediate value theorem we can choose an xi1...in+1
∈ Ii1...in+1

satisfying (2). We prove the second inequality of (6.2) only, the proof of the first
one is analogous. As (f +Gm+n)(xi1...in) = y and gm+n+1(vi1...in+1

) = 2−(m+n+1),
it is enough to prove that

(6.3) |(f +Gm+n)(xi1...in)− (f +Gm+n)(vi1...in+1
)| ≤ 2−(m+n+1).

Since xi1...in , vi1...in+1
∈ Ii1...in , the definition of h, pm+n and am+n imply that

(6.4) |f(xi1...in)− f(vi1...in+1
)| ≤ h(pm+n) ≤ h(1/am+n) ≤ 2−(m+n+2).
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It is easy to show that for all i ∈ N
+ the function gi is Lipschitz and Lip(gi) =

21−ip−1
i = 21−ia1 · · · ai. Thus Gm+n is Lipschitz and am+n ≥ 2m+n implies that

Lip(Gm+n) ≤
m+n∑

i=1

Lip(gi) =

m+n∑

i=1

21−ia1 · · · ai

≤ 2a1 · · · am+n−1 + 21−(m+n)a1 · · · am+n

≤ 22−(m+n)a1 · · · am+n =
22−(m+n)

pm+n
.

Therefore Ii1...in ⊂ U(xi1...in , pm+n/16) yields that

|Gm+n(xi1...in)−Gm+n(vi1...in+1
)| ≤ Lip(Gm+n)|xi1...in − vi1...in+1

|

≤
22−(m+n)

pm+n
·
pm+n

16
= 2−(m+n+2).

(6.5)

Equations (6.4) and (6.5) imply (6.3), and the induction is complete. For all n ∈ N
+

let cn = am+n and dn = bm+n. Set

C =

∞⋂

n=1

(
d1⋃

i1=1

· · ·
dn⋃

in=1

Ii1···in

)
.

Then C is a (cn, dn)-type compact set, see Definition 3.5. Then (6.1) implies that

ai ≥ 25i
2

and 32 ≥ ai/bi, so for all n ∈ N
+ we have

cn ≥ 25(m+n)2 ≥ 25(n+1)2 ≥

(
c1 · · · cn+1

d1 · · · dn+1

)n+1

.

Therefore Lemma 3.8 implies that dimH C = 1.
Finally, in order to prove dimH(f + g)−1(y) = 1, it is enough to show that

C ⊂ (f + g)−1(y). Let us fix x ∈ C, we prove that (f + g)(x) = y. For all n ∈ N
+

pick indices in ∈ {1, . . . , dn} such that x ∈ Ii1...in , then clearly limn→∞ xi1...in = x.
As f +Gm+n converges uniformly to f + g, property (2) implies that

(f + g)(x) = lim
n→∞

(f +Gm+n)(xi1...in) = y,

and the proof is complete. �

Theorems 5.4 and 6.1 yield the following.

Corollary 6.2. The sets

B = {f ∈ C[0, 1] : ∃λy ∈ R such that f−1(y) is a singleton},

C = {f ∈ C[0, 1] : dimH f
−1(y) = 1 for all y ∈ (min f,max f)}

are disjoint non-shy sets in C[0, 1], so they are neither shy nor prevalent.

7. Dimensions of graphs of prevalent continuous maps

By product of two metric spaces (X, dX) and (Y, dY ) we will always mean the
l2-product, that is,

dX×Y ((x1, y1), (x2, y2)) =
√
d2X(x1, x2) + d2Y (y1, y2).

For E ⊂ X × Y and y ∈ Y let Ey = {x ∈ X : (x, y) ∈ E}.
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The following lemma is basically [27, Theorem 7.7]. It is only stated there in the
special case X = A ⊂ R

m, but the proof works verbatim for all metric spaces X .

Lemma 7.1. Let X be a metric space and let d ∈ N
+. If f : X → R

d is Lipschitz
and t ≥ d then

∫ ⋆

Rd

Ht−d(f−1(y)) dλd(y) ≤ c(d) Lip(f)dHt(X),

where
∫ ⋆

denotes the upper integral and c(d) is a finite constant depending on d
only.

Let E ⊂ X ×R
d and define f : E → R

d as f(x, y) = y. Applying Lemma 7.1 for
f yields the following lemma.

Lemma 7.2. Let X be a metric space and let d ∈ N
+. If E ⊂ X × R

d then for
λd-almost every y ∈ R

d we have

dimH(Ey) ≤ max{0, dimH E − d}.

Recently Orponen [34, Cor. 1.2] has shown that Lemma 7.1 does not remain true
if we replace Hausdorff measures by packing measures. The analogous version of
Lemma 7.2 holds, see the proof of [13, Lemma 5] with the natural modifications.

Lemma 7.3. Let X be a metric space and let d ∈ N
+. If E ⊂ X × R

d then for
λd-almost every y ∈ R

d we have

dimP (E
y) ≤ max{0, dimP E − d}.

For the following lemma see [27, Theorem 8.10]. It is only stated there for subsets
of Euclidean spaces, but the same proof works here as well.

Lemma 7.4. If X,Y are non-empty metric spaces then

dimH(X × Y ) ≤ dimH X + dimP Y,

dimP (X × Y ) ≤ dimP X + dimP Y.

Theorem 7.5. Let K be an uncountable compact metric space and let d ∈ N
+.

Then for the prevalent f ∈ C(K,Rd) we have

dimH graph(f) = dimH K + d.

Proof. Lemma 7.4 and dimP R
d = d yield that for all f ∈ C(K,Rd)

dimH graph(f) ≤ dimH(K × R
d) ≤ dimH K + d,

so it is enough to prove the opposite inequality for the prevalent f .
If dimH K = 0 then Theorem 1.7 yields that for the prevalent f ∈ C(K,Rd) we

have int f(K) 6= ∅, so dimH f(K) = d. As f(K) is a Lipschitz image of graph(f)
and Hausdorff dimension cannot increase under a Lipschitz map, we obtain

dimH graph(f) ≥ dimH f(K) = d = dimH K + d,

and we are done. Hence we may assume that dimH K > 0. Consider

A = {f ∈ C(K,Rd) : for all s < dimH K there exists a non-empty

open set Uf,s ⊂ R
d such that dimH f

−1(y) > s for all y ∈ Uf,s}.

Let f ∈ A and s ∈ (0, dimH K) be arbitrarily given. Since Theorem 4.18 yields that
A is prevalent in C(K,Rd), it is enough to show that dimH graph(f) ≥ s+ d. Let
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E = graph(f) ⊂ K×R
d, then for all y ∈ Uf,s we have dimH E

y = dimH f
−1(y) ≥ s.

As λd(Uf,s) > 0 and s > 0, Lemma 7.2 implies that dimH E ≥ s+ d. The proof is
complete. �

Theorem 7.6. Let K be an uncountable, non-exploding compact metric space and
let d ∈ N

+. Then for the prevalent f ∈ C(K,Rd) we have

dimP graph(f) = dimP K + d.

Proof. We can repeat the proof of Theorem 7.5, only replace Hausdorff dimen-
sion with packing dimension, and apply Corollary 4.16 and Lemma 7.3 instead of
Theorem 4.18 and Lemma 7.2, respectively. �

8. Finer results with generalized Hausdorff measures

In this section we indicate how to obtain sharper versions of the main results.
Since the proofs were quite technical already, we decided not to include these
stronger forms in the main body of the paper, only give a brief sketch in this
separate section.

A function ϕ : [0,∞) → [0,∞) is defined to be a gauge function if it is non-
decreasing and ϕ(0) = 0. For a metric space X let

Hϕ(X) = lim
δ→0+

Hϕ
δ (X), where

Hϕ
δ (X) = inf

{
∞∑

i=1

ϕ(diamAi) : X ⊂
∞⋃

i=1

Ai, ∀i diamAi ≤ δ

}
.

We call Hϕ the ϕ-Hausdorff measure, which extends the concept of classical Haus-
dorff measure. There are examples when this finer notion of measure is needed, this
is the case when we want to measure the level sets of the linear Brownian motion
or the range of a d-dimensional Brownian motion. For more information see [31]
and [37].

Let G be the set of gauge functions and for all s > 0 let

G(s) =

{
ϕ ∈ G : lim

r→0+

ϕ(r)

rs
= ∞

}
.

Now we show how to generalize Theorem 4.1, Theorem 6.1 and Theorem 1.9. First
we need to extend Lemma 3.8.

Lemma 8.1. Let ϕ ∈ G(1) be a gauge function. Let us define the non-decreasing
function Φ: [1,∞) → [1,∞) as

(8.1) Φ(x) = sup{r ∈ R
+ : rϕ(1/r) ≤ x}+ 1,

where sup ∅ = 0 by convention. Let C ⊂ R be an (an, bn)-type compact set such
that for all n ∈ N

+

an ≥ Φ

(
a1 · · · an+1

b1 · · · bn+1

)
.

Then Hϕ(C) > 0.

Proof. Let µ be the same measure as in the proof of Lemma 3.8, then similar
arguments yield that all Borel sets B ⊂ C with diamB ≤ 1 satisfy

µ(B) ≤ 4ϕ(diamB).
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Therefore the mass distribution principle for generalized Hausdorff measures implies
that Hϕ(C) > 0, see also [31, Proposition 6.44 (i)]. �

Instead of Theorem 4.1 we can prove the following stronger form.

Theorem 8.2. Let K ⊂ R be a compact set with λ(K) > 0 and let d ∈ N
+. Let

ϕ ∈ G(1) be a gauge function. Then for the prevalent f ∈ C(K,Rd) there exists an
open set Uf ⊂ R

d such that λ(f−1(Uf )) = λ(K) and for all y ∈ Uf we have

Hϕ(f−1(y)) > 0.

Proof. Let Φ: [1,∞) → [1,∞) be the function defined in (8.1). Let us follow the
proof of Theorem 4.1, the only difference is that we define the numbers an by
induction such that bn = (2s)−(n+3)an are integers and for all n ∈ N

+ we have

an ≥ max

{
(2s)8n(a1 · · ·an−1),Φ

(
a1 · · · an+1

b1 · · · bn+1

)}
.

Then applying Lemma 8.1 instead of Lemma 3.8 concludes the proof. �

Instead of Theorem 6.1 we can prove the following stronger form.

Theorem 8.3. Let ϕ ∈ G(1) be a gauge function. Then the set

C = {f ∈ C[0, 1] : Hϕ(f−1(y)) > 0 for all y ∈ (min f,max f)}

is non-shy in C[0, 1].

Proof. Let Φ: [1,∞) → [1,∞) be the function defined in (8.1). Let us follow the

proof of Theorem 6.1, the only difference is that in (6.1) we replace 25n
2

by Φ(25n)
and we apply Lemma 8.1 instead of Lemma 3.8. �

Fraser and Hyde proved in [16] that the prevalent C[0, 1] has graph of Hausdorff
dimension 2. They observed that H2(graph(f)) = 0 for all f ∈ C[0, 1] by Fubini’s
theorem, and raised the problem what we can say using different gauge functions.
The following theorem solves this problem by stating that the graph of the prevalent
f ∈ C[0, 1] is as large as possible according to this finer scale, too.

Theorem 8.4. Let d ∈ N
+ and let ψ ∈ G(d+1) be a gauge function. Then for the

prevalent f ∈ C([0, 1],Rd) we have

Hψ(graph(f)) > 0.

Before sketching the proof of Theorem 8.4 we need two lemmas.

Lemma 8.5. Let d ∈ N
+ and let ψ ∈ G(d+ 1) be a gauge function. Then there is

a gauge function ϕ ∈ G(1) such that for all r ∈ [0, 1] we have

ϕ(r)rd ≤ ψ(r).

Proof. Let ϕ(0) = 0 and ϕ(r) = ψ(1) for all r > 1. Define ϕ(r) = infs∈[r,1] ψ(s)s
−d

if 0 < r ≤ 1. Then clearly ϕ(r)rd ≤ ψ(r) for all r ∈ [0, 1], and it is easy to check
that ϕ is a gauge function with ϕ ∈ G(1). �

For the following lemma see the proof of [27, Theorem 7.7] with the natural
modifications.
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Lemma 8.6. Let X be a metric space and let d ∈ N
+. Let ϕ, σ be gauge functions

such that σ(r) = ϕ(r)rd for all r ≥ 0. If g : X → R
d is Lipschitz then

∫ ⋆

Rd

Hϕ(g−1(y)) dλd(y) ≤ c(d) Lip(g)dHσ(X),

where
∫ ⋆

denotes the upper integral and c(d) is a finite constant depending on d
only.

Proof of Theorem 8.4. By Lemma 8.5 there is a gauge function ϕ ∈ G(1) such that
ϕ(r)rd ≤ ψ(r) for all r ∈ [0, 1]. Let us define σ(r) = ϕ(r)rd for all r ≥ 0. Consider

A = {f ∈ C([0, 1],Rd) : there exists a non-empty open set

Uf ⊂ R
d such that Hϕ(f−1(y)) > 0 for all y ∈ Uf}.

Theorem 8.2 yields that A is prevalent in C(K,Rd). Let us fix f ∈ A, it is enough
to prove that Hψ(graph(f)) > 0. Let g : [0, 1] × R

d → R
d, g(x, y) = y be the

natural projection onto R
d and let X = graph(f). Applying Lemma 8.6 for X and

g|X implies that Hσ(graph(f)) > 0. Since σ(r) ≤ ψ(r) for all r ∈ [0, 1], we obtain
that Hψ(graph(f)) > 0. The proof is complete. �

9. Open problems

Let {B(t) : t ∈ [0, 1]} be a standard linear Brownian motion. Antunović et al. [1,
Theorem 1.5] proved that for every f ∈ C[0, 1] the zero set Z(B− f) has Hausdorff
dimension at least 1/2 with positive probability. Moreover, their proof gives that
Hh(Z(B − f)) > 0, where h is a gauge function such that h(2−n) = 2−(β1+···+βn)

and βn ր 1/2. Fubini’s theorem implies that, with positive probability, we have
Hh((B − f)−1(y)) > 0 for positively many y. Peres and Sousi proved a general 0-1
law [35, Theorem 2.1], which yields that the above property holds with probability
one.3 Therefore, almost surely, dimH(B−f)−1(y) ≥ 1/2 for positively many y. We
would like to know whether ‘positively many’ can be replaced by ‘non-empty open’
and ‘almost every with respect to the occupation measure’. The following problem
asks whether the Wiener measure witnesses a weaker form of Corollary 4.2.

Problem 9.1. Let {B(t) : t ∈ [0, 1]} be a standard one-dimensional Brownian
motion and let f ∈ C[0, 1]. Does there exist a random non-empty open set U ⊂ R

such that, almost surely, for all y ∈ U we have

dimH(B − f)−1(y) ≥ 1/2?

Let U be the maximal such open set. Does λ((B−f)−1(U)) = 1 hold almost surely?

Let 0 < α < 1 and let Cα[0, 1] denote the set of α-Hölder continuous functions
f : [0, 1] → R endowed with the norm

||f ||α = sup
x∈[0,1]

|f(x)|+ sup
0≤x<y≤1

|f(x)− f(y)|

|x− y|α
.

Clearly Cα[0, 1] is a Banach space. Clausel and Nikolay [8, Theorem 2] proved that
the graph of the prevalent f ∈ Cα[0, 1] is of Hausdorff dimension 2−α, see also [6]
for a generalization. Studying the level sets seems to be a more delicate matter.

3More precisely, for every closed set A ⊂ [0, 1] define the random variable Ψ(A) such that
Ψ(A) = 1 if Hh(A ∩ (B − f)−1(y)) > 0 for positively many y and Ψ(A) = 0 otherwise. Applying
[35, Theorem 2.1] for Ψ yields that P(Ψ([0, 1]) > 0) ∈ {0, 1}.
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Problem 9.2. Let 0 < α < 1. Is it true that for the prevalent f ∈ Cα[0, 1] there
exists an open set Uf ⊂ R such that λ(f−1(Uf )) = 1 and for all y ∈ Uf we have

dimH f
−1(y) ≥ 1− α?

Does dimH f
−1(y) ≥ 1− α hold at least for positively many y?

Problem 9.3. Can we omit the condition that K is non-exploding from the Main
Theorem, or more generally, from Theorem 4.13?

We would like to describe the compact metric spaces K for which Theorem 4.18
can be strengthened. Here we consider only the one-dimensional case.

Problem 9.4. Characterize the compact sets K ⊂ R such that for the prevalent
f ∈ C(K,R) there is a non-empty open set Uf ⊂ R such that for all y ∈ Uf we
have dimH f

−1(y) = dimH K.

Problem 9.5. Characterize the compact sets K ⊂ R such that for the prevalent
f ∈ C(K,R) there exists a yf ∈ R such that dimH f

−1(yf ) = dimH K.

Acknowledgments. We are indebted to Y. Peres, M. Vizer and O. Zindulka for
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