
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Foundations of Information and Knowledge Systems
Series Title

Chapter Title Semantic Matching Strategies for Job Recruitment: A Comparison of New and Known Approaches

Copyright Year 2016

Copyright HolderName Springer International Publishing Switzerland

Author Family Name Rácz
Particle

Given Name Gábor
Prefix

Suffix

Division Alfréd Rényi Institute of Mathematics

Organization Hungarian Academy of Sciences

Address P.O.Box 127, Budapest, 1364, Hungary

Email gabee33@gmail.com

Corresponding Author Family Name Sali
Particle

Given Name Attila
Prefix

Suffix

Division Alfréd Rényi Institute of Mathematics

Organization Hungarian Academy of Sciences

Address P.O.Box 127, Budapest, 1364, Hungary

Email sali.attila@renyi.mta.hu

Author Family Name Schewe
Particle

Given Name Klaus-Dieter
Prefix

Suffix

Division

Organization Software Competence Center Hagenberg

Address Softwarepark 21, 4232, Hagenberg, Austria

Email kd.schewe@scch.at

Abstract A profile describes a set of skills a person may have or a set of skills required for a particular job. Profile
matching aims to determine how well a given profile fits to a requested profile. The research reported in
this paper starts from exact matching measure of [21]. It is extended then by matching filters in ontology
hierarchies, since profiles naturally determine filters in the subsumption relation. Next we take into
consideration similarities between different skills that are not related by the subsumption relation. Finally,
a totally different approach, probabilistic matching based on the maximum entropy model is analyzed.

Keywords
(separated by '-')

Semantic matching - Ontology - Lattice filters - Probabilistic matching - Maximum entropy model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78475755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Semantic Matching Strategies
for Job Recruitment: A Comparison

of New and Known Approaches

Gábor Rácz1, Attila Sali1(B), and Klaus-Dieter Schewe2

1 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
P.O.Box 127, Budapest 1364, Hungary

gabee33@gmail.com, sali.attila@renyi.mta.hu
2 Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Austria

kd.schewe@scch.at

Abstract. A profile describes a set of skills a person may have or a set
of skills required for a particular job. Profile matching aims to determine
how well a given profile fits to a requested profile. The research reported
in this paper starts from exact matching measure of [21]. It is extended
then by matching filters in ontology hierarchies, since profiles naturally
determine filters in the subsumption relation. Next we take into consid-
eration similarities between different skills that are not related by the
subsumption relation. Finally, a totally different approach, probabilistic
matching based on the maximum entropy model is analyzed.

Keywords: Semantic matching · Ontology · Lattice filters · Probabilis-
tic matching · Maximum entropy model

1 Introduction

A profile describes a set of properties and profile matching is concerned with
the problem to determine how well a given profile fits to a requested one. Profile
matching appears in many application areas such as matching applicants for job
requirements, matching system configurations to requirement specifications, etc.

The simplest idea of profile matching is to consider profiles as sets of unrelated
items. There are several ways to define distances of sets, such as Jaccard or
Sørensen-Dice measures [14] turned out to be useful in ecological applications.
However, many dependencies between skills or properties included in profiles
exist and need to be taken into account. In the human resources area several
taxonomies for skills, competences and education such us DISCO [7], ISCED [9]
and ISCO [10] have been set up. Based on these taxonomies a lattice structure

The research reported in this paper has been [partly] supported by the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of the
COMET center SCCH.

c© Springer International Publishing Switzerland 2016
M. Gyssens and G. Simari (Eds.): FoIKS 2016, LNCS 9616, pp. 1–20, 2016.
DOI: 10.1007/978-3-319-30024-5 9

A
u

th
o

r
P

ro
o

f

2 G. Rácz et al.

of the individual properties can be assumed. Popov and Jebelean [21] exploited
this by defining an asymmetric matching measure on the basis of filters in such
lattices.

However, there are other relations between skills and properties than the
ones given by the ontolgies above. Having some skills imply that the applicant
may have some other skills with certain probabilities, or of some (not complete)
proficiency level. For example, we may reasonably assume that knowledge of
Java implies knowledge of Netbeans up to a grade of 0.7 or with probability
0.7. Our new approach incorporates such relations in the following way. The
subsumption hierarchy of the ontology of skills is considered as a directed graph
with edge weights 1. A lattice filter generated by a profile corresponds to the set
of nodes reachable from the profile’s nodes in the directed graph. Then extra
edges are added with weights representing the probability/grade of the implica-
tion between skills or properties. This may introduce directed cycles. Filters of
application profiles are replaced by nodes reachable in the extended graph from
the profile’s nodes. However, for each vertex x reached a probability/grade is
assigned, the largest probability of a path from the profile’s nodes to x. Path
probability is defined as the product of probabilities of edges of the path. At
first sight it seems that determination of the grade of a vertex involves finding a
longest path in weighted directed graph, known to be an NP-complete problem.
However, in our case the weighting is multiplicative and less than 1, so Dijkstra’s
Algorithm [5] can be applied. This process results in a set of nodes with grades
between zero and one, so it can naturally be interpreted as a fuzzy set. In fact,
we prove that it is a fuzzy filter as defined in [8,16].

Considering the grades as probabilities suggests another approach. They can
be handled from an information theoretic point of view, with probabilistic logic
programs [11] or from set theoretic point of view, with probabilistic models [25],
as well. In the present paper the maximum entropy model is used which adds the
lowest amount of additional information between single elementary probabilities
to the system. In order to apply probabilistic model the information represented
by the extended directed graph is translated into sentences over an appropriate
measurable space. The matching value of a job offer O and an application A is
the result of the probabilistic query obtained from the sentences.

Our paper is organized as follows.
Section 2 contains the description of our novel model of extending the ontol-

ogy hierarchy with cross relations in the form of weighted directed edges. Two
new ranking algorithms are given for job applications and a connection with
fuzzy theory is mentioned.

Section 3 is devoted to the comparison of the different approaches. Our find-
ings show that these are basically independent of each other apart from some
natural dependences as some of the approaches are extensions of some other
ones.

Section 4 discusses related work and how our approach fits into the broad
area of semantic matching.

Finally, Sect. 5 contains conclusions.

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 3

2 Semantic Matching

Let S = {s1, s2, . . . , sn} be a finite set of skills. Let a job offer O =
{o1, o2, . . . , ok} be a subset of S which contains the skills that are required for
the job. Then, an application A = {a1, a2, . . . , al} is also a subset of S which
means the applicant possesses these skills. Our task is to find the most suitable
applicant for a job offer. Example 2.1 shows a job offer with four applications.

Example 2.1 (A job offer and four applications)

Offer1 = {Java,Netbeans,XML}
Application1 = {Java,PHP,Eclipse}
Application2 = {Java,Netbeans,HTML}
Application3 = {C,PHP,XML}
Application4 = {C,Netbeans,XML}

Note, that skills are not graded (e.g., basic/medium/expert knowledge in
Java) in our examples. If we need such differentiation, we have to handle the
grades as separate skills.

2.1 Perfect Matching

A simple idea to decide how much an application fits to a job offer is to compute
the number of the matching skills the ones that the applicant possesses and that
are required for the job. The result can be normalized with the number of the
required skills [21]. Formally,

match(O,A) =
|O ∩ A|

|O| . (1)

In the following example, we compute the matching values of the job offer
and the applications from Example 2.1.

Example 2.2 (Perfect matching)

match(O1, A1) = |O1∩A1|
|O1| = |{Java}|

|{Java,Netbeans,XML}| = 1
3

match(O1, A2) = |O1∩A2|
|O1| = |{Java,Netbeans}|

|O1| = 2
3

match(O1, A3) = |O1∩A3|
|O1| = |{XML}|

|O1| = 1
3

match(O1, A4) = |O1∩A4|
|O1| = |{Netbeans,XML}|

|O1| = 2
3

As it can be seen, this matching function cannot sufficiently distinguish
between the applications. It assigned A2, A4 and A1, A3 the same values, respec-
tively. However, as our goal is to find the most suitable applicants, we want to
avoid that two or more candidates get the same values. Therefore, we need extra
knowledge to be able to distinguish A2 from A4 and A1 from A3.

A
u

th
o

r
P

ro
o

f

4 G. Rácz et al.

2.2 Matching Using Ontology Edges

Let us suppose that the skills in S form a hierarchy. We can represent a hierarchy
several ways, for example, with Description Logic [1], with Resource Description
Framework Schema [3] or with Logic programming [17]. We use the description
logic approach here, so let the skills corresponds to concepts and we define a
specialization relation over them.

Let � be a binary specialization (subsumption) relation over S. Let si, sj ∈ S
be two skills, then si � sj if si is a specialization of sj . It means if an applicant
possesses the skill si, he also possesses the skill sj as si is a more specific skill
than sj (sj is more general than si). Let �d denote the direct specialization,
i.e., si �d sj if and only if si � sj and �sk ∈ S such that sk �= si, sk �= sj and
si � sk � sj . Note, that � is a reflexive, antisymmetric and transitive relation,
i.e., it is a partial order over S.

We can always add a top (respectively a bottom) element to the hierarchy
that represents all the skills that everybody (nobody) possesses. In addition, let
us suppose the concepts define a lattice, i.e., for each pair of skills has unique
ancestor (and descendant) that is more general (specific) then both elements of
the pair. Let this lattice be denoted by (S,�).

In Fig. 1, the blue edges form a hierarchy among computer science skills.

Fig. 1. A hierarchy of skills. The ontology edges are the blue ones (solid) and the extra
edges are the orange ones (dashed) (Color figure online).

Definition 2.1. A filter in a lattice (S,�) is a non-empty subset F ⊆ S, such
that for all s, s′ ∈ S with s � s′ whenever s ∈ F holds, then also s′ ∈ F holds.

An A ⊆ S application defines in a natural way an F filter of the (S,�) lattice:

F = {s ∈ S | ∃a ∈ A, a � s}.

This filter is an extension of the original application with the skills that are
more general than the ones in the application. It is reasonable, because if an
application possesses a skill, then he must possesses all the skills that are more

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 5

general by the definition. Note, that a job offer can be extended in the same way
as an application. And then, we can apply, for example, the perfect matching
function on the extended sets.

The next example shows the filters defined by the job offer and of the applica-
tions from Example 2.1, and the values of the perfect matching function applying
on the extensions. As can be seen, this method was already able to distinguish
A2 from A4.

Example 2.3 (Matching based on an ontology)

FO1 = {Java,Netbeans,XML,OOP,PL, IT, IDE,ML}
FA1 = {Java,PHP,Eclipse,OOP,PL, IT,Script, IDE}
FA2 = {Java,Netbeans,HTML,OOP,PL, IT, IDE,ML}
FA3 = {C,PHP,XML,PL, IT,Script,OOP,ML}
FA4 = {C,Netbeans,XML,PL, IT, IDE,ML}

match(FO1 , FA1) = |{Java,OOP,PL,IT,IDE}|
|FO1 | = 5

8

match(FO1 , FA2) = |{Java,OOP,PL,IT,Netbeans,IDE,ML}|
|FO1 | = 7

8

match(FO1 , FA3) = |{XML,PL,IT,OOP,ML}|
|FO1 | = 5

8

match(FO1 , FA4) = |{Netbeans,XML,PL,IT,IDE,ML}|
|FO1 | = 6

8

2.3 Maximal Length Matching

In this section, we are adding extra knowledge to the hierarchy in form of extra
edges, and we are investigating how it can be used to find the most suitable
application for a job. However, these extra edges can form cycles in the hierarchy,
therefore the traditional filters are not applicable in this case. Immediate example
for a cycle could be two skills that are connected with two extra edges which
are pointing in opposite direction. For this reason, we describe a graph based
approach to extend the applications and the offer. Then, we show that this
approach corresponds to the definition of fuzzy filters [8,16].

Let G = (V,E) be a directed weighted graph where V is a finite non-empty
set of nodes and E = {EO ∪EE} ⊆ V ×V is a set of edges. Each node represents
a skill and an eo = (vi, vj) ∈ EO directed edge is added from the skill vi to vj if vi

is a specialization of vj (this type of edges are called ontology edges). Moreover,
an ee = (vi, vj) ∈ EE represents a conditional dependency between the skills vi

and vj . Namely, if a person has the skill vi then he may have the skill vj (this type
of edges are called extra edges). Let w : E → (0, 1] be a weighting function that
assigns a weight to all edges such that for all ontology edges eo ∈ EO w(eo) = 1
and for all extra edges ee ∈ EE let the weight w(ee) represents the conditional
probability between the start and the end node of the edge. The edge weight can
come, for example, from Human Resources experiments or from domain experts.

Definition 2.2. Let G = (V,EO ∪ EE) a directed weighted graph with a w :
E → (0, 1] weighting function and let (S,�) be a lattice. We say that G is built
on (S,�) if V = S and for all vi, vj ∈ V (vi, vj) ∈ EO if and only if vi �d vj.

A
u

th
o

r
P

ro
o

f

6 G. Rácz et al.

Let s, t ∈ V be two nodes, then denote by pE(s, t) all the directed paths
between s and t, i.e.,

pE(s, t) = {(s = v1, v2, . . . , vn = t) | vi ∈ V and (vi, vi+1) ∈ E}.

The extra edges and the directed paths are used to extend the applications
with skills that the applicant possibly possesses. Since both sets and uncertainty
occur, fuzzy sets [28] are suitable to model the extended applications. A fuzzy set
assigns a value for each element that expresses the certainty of that the element
is in the set or not.

Definition 2.3. A fuzzy set in S is a mapping f : S → [0, 1]. A fuzzy set
is called empty if f is identically zero on S. Let t be a real number such that
t ∈ [0, 1], then the set ft = {s ∈ S | f(s) ≥ t} is called a level subset of f .

Note that, as S is a finite set, we can define a fuzzy set by enumerating all
elements in S with their assigned values (called the grade of membership) if that
value is greater than zero, i.e.,

f = {(s, f(s)) | s ∈ S and f(s) > 0}.

The intersection and the union of tho fuzzy sets can be defined axiomatically
with t-norms and t-conorms [20]. For clarity we use min and max as t-norm and
t-conorm, i.e., for fuzzy sets f, g in S, we define the intersection and the union
operations as (f ∩g)(s) := min{f(s), g(s)} and (f ∪g)(s) := max{f(s), g(s)} for
all s ∈ S, respectively.

We extend the job offer and the applications to fuzzy sets in the following
way. Let O ⊆ V be a set of skills. The extension of O w.r.t. EO is defined as the
set of all the skills that are available from O via directed paths containing edges
only from EO. We assign 1.0 to each element of the extension to create a fuzzy
set, that is

extendEO
(O) = ̂O = {(v, 1.0) | v ∈ V and ∃o ∈ O : |pEO

(o, v)| ≥ 1}.

Let A ⊆ V be a set of skills. The extension of A w.r.t. E is defined as the set of
all the skills that are available from A via directed paths containing ontology or
extra edges, and we assign the length of the longest path between the node and
the elements of A to each element of the extended set, namely

extendE(A) = ̂A = {(v, μv) | v ∈ V and ∃a ∈ A : |pE(a, v)| ≥ 1 and
μv = max

a∈A,p∈pE(a,v)
length(p)},

where length(p) =
∏n−1

i=1 w((vi, vi+1)) is the product of the weights of the edges
on the path p. The μv is the length of the longest path from A to v. If the
edge weights mean uncertainty or probability, the length of longest path means
the joint probability of the applicant possessing all the skills on the path (if we
assume some independence), which seems a rational decision.

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 7

Note that finding the longest path between two nodes in a graph is gen-
erally a hard problem. However, in our case the length of a path is defined
as the product of the weight of the edges on the path. Therefore, because of
the strict monotonicity of the logarithm function, we can apply the following
transformations:

max
p∈pE(v,a)

n−1
∏

i=1

w((vi, vi+1)) = max
p∈pE(v,a)

log {
n−1
∏

i=1

w((vi, vi+1))} =

max
p∈pE(v,a)

n−1
∑

i=1

log w((vi, vi+1)) = − min
p∈pE(v,a)

n−1
∑

i=1

− log w((vi, vi+1)).

Moreover, the weighting function w assigns a weight from the (0, 1] interval to
each edge, thus − log w((vi, vi+1)) ∈ [0,+ inf). With these transformation, we
got a single-source shortest path problem with non-negative edge weights. That
problem can be solved with Dijkstra’s algorithm in O(|E| + |V | log |V |) time [5].

Definition 2.4. Let (S,�) be a lattice, and let f be a fuzzy set in S. f is called
a fuzzy filter if for all t ∈ [0, 1], ft is either empty or a filter of S.

Next, we show that the extensions presented above define fuzzy filters in S.

Lemma 2.1. Let (S,�) be a lattice, let G = (V,EO ∪EE) be a directed weighted
graph built on the lattice with the weighting function w and let s, s′ ∈ S be a skill
pair such that s � s′. Then, there is a p ∈ PE(s, s′) path such that length(p) = 1.

Proof. Since s � s′, an s = s1, . . . , sk = s′ sequence of skills exists such that
si �d si+1 holds for i = 1, . . . , k − 1. As G is built on the lattice, each skill is
represented by a node in the graph, and (si, si+1) ∈ EO and w((si, si+1)) = 1 for
i = 1, . . . , k−1. Let p = (s1, . . . , sk) be a path between v1 and vn. Consequently,
length(p) =

∏k−1
i=1 w((si, si+1)) = 1 ��

Theorem 2.1. Let (S,�) be a lattice, let G = (V,EO ∪ EE) be a directed
weighted graph built on the lattice with weighting function w, let A ⊆ S be a
non-empty application, and let ̂A be the extension of A w.r.t. E. Then, ̂A is a
fuzzy filter in S.

Proof. For t ∈ [0, 1], ̂At = {s ∈ S| ̂A(s) ≥ t}. ̂At is a filter in S if for all s, s′ ∈ S

with s � s′ whenever s ∈ ̂At holds, then also s′ ∈ ̂At holds. It means if ̂A(s) ≥ t,
then ̂A(s′) ≥ t.

Let s be in ̂At and let pa,s = (a = si1 , si2 , . . . , sik
= s) be one of the maximal

length path between A and s. We have to show that if an s′ ∈ S is a generalization
of s, i.e., s � s′, then a pa,s′ path exists such that length(pa,s′) ≥ length(pa,s).

Lemma 2.1 states that a ps,s′ = (s = sj1 , sj2 , . . . , sjl
= s′) path exists such

that length(ps,s′) = 1. If pa,s and ps,s′ are disjoint, so they do not have any
node in common except s, then we can concatenate them to pa,s′ = (a =
si1 , . . . , sik

, sj1 , . . . , sjl = s′) and its length is length(pa,s′) = length(pa,s) ∗ 1 ≥

A
u

th
o

r
P

ro
o

f

8 G. Rácz et al.

length(pa,s). Otherwise recursively, let t = minx∈[1,k]{six
|∃y ∈ [1, l] : six

= sjy
}

be the first common node. Then, consider the pa,t = (a = si1 ,
′ ldots, six

= t) and
the pt,s′ = (t = sjy

, sjy+1 , . . . , sjl
= s′) paths. Where length(pa,t) ≥ length(pa,s)

as w(e) ≤ 1 for all e ∈ E and length(pt,s′) = 1 as it contains ontology edges
only. If these paths are disjoint except t then we can concatenate them, other-
wise repeat this step. Since the number of nodes that are contained in the paths
are limited and every step reduces that number, the iteration will stop in finite
step. ��

Let ̂O be an extended job offer w.r.t. EO and let ̂A be an extended application
w.r.t. E, both are fuzzy sets. We can define a matching value between ̂O and ̂A
in a similar way as we did in Eq. 1.

match(̂O, ̂A) =
|| ̂O ∩ ̂A||

|| ̂O|| , (2)

where ||.|| denotes the sum of the grades of membership of the elements in a fuzzy
set, formally || ̂A|| =

∑

(a,µa)∈A μa. Note that, besides the sigma cardinality used
here, many other options are available on the cardinality of a fuzzy set [27].

Algorithm 1 shows how can we find the most suitable applicant for a job
using the extensions defined above. The algorithm works as follows:

Algorithm 1. MaximalLengthMatching
Input: a graph G = (V, E = {EO ∪EE}), a job offer O ⊆ V , and a set of applications

A = {A0, A2, . . . , An}.
Output: the most suitable application Am for the job
1: Oe ← extendEO (O)
2: Am ← A[0], max← extendE(A[0])
3: for i = 1→ n do
4: Ae ← extendE(A[i])
5: if match(Oe, Ae) > match(Oe, max) then
6: Am ← A[i], max← Ae

7: end if
8: end for
9: return Am

First, we extend the job offer O with the skills that are available from O via
ontology edges (line 1). It is a reasonable extension because the ontology edges
represent specialization relation between to skills. And if an applicant possesses
a more general skill than the required one, then he could specialize faster than
an applicant that does not possess even that general skill. As everyone possesses
the skill at the top of the hierarchy, that does not distinguish one applicant from
another.

Next, we also extend each application (line 2, 4). In this step, however, we
take into consideration the extra edges as well. This is because, if the skill vi is

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 9

a specialization (or conditionally depends, respectively) of another skill vj , and
a person possesses the skill vi, then he also possesses (may possess) the skill vj .
The matching value of the extended job offer and the extended application is
then computed using Eq. 2 (line 5). The most suitable application is stored in
the variable Am (line 6).

The next example shows the extension of the Offer1 and the Application1

from Example 2.1, and their matching value.

Example 2.4 (Maximal length matching).

̂O1 = {(Java, 1.0), (Netbeans, 1.0), (XML, 1.0), (OOP, 1.0),
(PL, 1.0), (IT, 1.0), (IDE, 1.0), (ML, 1.0)}

̂A1 = {(Java, 1.0), (PHP, 1.0), (Eclipse, 1.0), (OOP, 1.0), (PL, 1.0),
(IT, 1.0), (Script, 1.0), (IDE, 1.0), (Netbeans, 0.7),
(Javascript, 0.9), (HTML, 1.0), (ML, 1.0), (XML, 0.7)}

̂O1 ∩ ̂A1 = {(Java, 1.0), (OOP, 1.0), (PL, 1.0), (IT, 1.0),
(IDE, 1.0), (Netbeans, 0.7), (XML, 0.7), (ML, 1.0)}

m(̂O1, ̂A1) =
||̂O1 ∩ ̂A1||

||̂O1||
=

7.4
8

As one can see, OOP, PL, IT, IDE and ML appeared in the offer as they are
available from the originally specified skills (Java, Netbeans, XML) via ontology
edges (the solid ones) as Fig. 1 shows. In addition, the extendEO

method assigned
1.0 to each skills in the offer and transformed ̂O1 to fuzzy set. The application
was also extended but the extendE method used the extra edges (the dashed
ones) as well during the extension. The intersection of the two extended sets
consists of those elements that appeared in both sets and the assigned values
are computed with the min function as t-norm. Finally, the ratio of the sum
cardinalities is calculated.

2.4 Probabilistic Matching

The ontology and the extra edges can be handled from an information theoretic
point of view, with probabilistic logic programs [11] or from set theoretic point
of view, with probabilistic models [25] as well. In this paper, we use the latter,
the set theoretical approach and we apply the maximum entropy model to give a
probabilistic matching method. The following definitions were presented in [25].

2.4.1 Preliminaries
Let Θ be a finite set. Let R := {a1, . . . , al} be a set of subsets of the power set
P(Θ) of Θ, namely ai ∈ P(Θ), i = 1, . . . , l. The elements of R are called events.

A
u

th
o

r
P

ro
o

f

10 G. Rácz et al.

Definition 2.5. Let X be some set. Let A be a subset of P(X). Then, A is a
σ-algebra over X, denoted by A(X), if

– X ∈ A;
– if Y ∈ A, then (X \ Y) ∈ A; and

– if Y1, Y2, . . . is a countable collection of sets in A, then their union
∞
⋃

n=1
Yn is

in A as well.

The set of full conjunction over R is given by

Ω :=

{

l
⋂

i=1

ei | ei ∈ {ai,¬ai}
}

,

where ai ∈ P(Θ), i = 1, . . . , l, and ¬ai = Θ \ ai. It is well known that the 2l

elements of Ω are mutually disjoint and span the set R (any ai can be expressed
by a disjunction of elements of Ω). Therefore the smallest (σ-) algebra A(R) that
contains R is identical to A(Ω). For that reason we restrict the set of elementary
events (set of possible worlds) to Ω instead of the underlying Θ.

Definition 2.6. Over a set R := {a1, . . . , al}, a measurable space (Ω,A) is
defined by

– Ω :=
{

l
⋂

i=1

ei | ei ∈ {ai,¬ai}
}

; and

– A = A(Ω) = P(Ω).

Definition 2.7. Let (Ω,A) be a measurable space over R with Ω = {ω1, . . . , ωn}.
A discrete probability measure P or a probability model (P-model) is an assign-
ment of non-negative numerical values to the elements of Ω, which sum up to
unity. Formally,

pi := P (ωi) ≥ 0, i = 1, . . . , n and
∑

ai = 1.

The n-tuple p = (p1, . . . , pn) is called a probability vector (P-vector). WΩ (respec-
tively, VΩ) denotes the set of all possible P-models (P-vectors) for (Ω,A).

Definition 2.8. For given (Ω,A), P ∈ WΩ a, b ∈ A, P (a) > 0 and [l, u] ⊆ [0, 1]
the term1

〈P (b|a) = δ, δ ∈ [l, u]〉 or P (b|a)[l, u]

is called a sentence in (Ω,A), where P (b|a) = P (a ∩ b)/P (a) denotes the condi-
tional probability of the event b given a. The sentence given above is called true
in P ∈ WΩ, if and only if P (b|a) ∈ [l, u]. Otherwise it is called false.

1 P (a) = P (a|Ω).

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 11

A sentence P (b|a)[l, u] defines two inequalities, namely

– P (b|a) ≤ u (be less than the upper bound); and
– P (b|a) ≥ l (be greater than the lower bound).

These inequalities can be further transformed in the following way:

P (b|a) ≤ u ⇔ P (a ∩ b) ≤ u · P (a) ⇔ P (a ∩ b) ≤ u · (P (a ∩ b) + P (a ∩ ¬b))
P (b|a) ≥ l ⇔ P (a ∩ b) ≥ l · P (a) ⇔ P (a ∩ b) ≥ l · (P (a ∩ b) + P (a ∩ ¬b))

Rearranging the inequalities and using the elementary probabilities pi, i =
1, . . . , n yields

P (b|a) ≤ u ⇔ (1 − u) ·
∑

i:wi∈a∩b

pi + u ·
∑

j:wj∈a∩¬b

pj ≥ 0

P (b|a) ≥ l ⇔ (1 − l) ·
∑

i:wi∈a∩b

pi − l ·
∑

j:wj∈a∩¬b

pj ≥ 0

Note, that, if u = 1 (respectively, l = 0), then the first (second) inequality is
always satisfied as pi ≥ 0.

Definition 2.9. Let DB := {c1, . . . , cm} be a set of m sentences in (Ω,A). WDB

is defined as the set of all P-models P ∈ WΩ in which c1, . . . , cm are true. We
call c1, . . . , cm constraints on WΩ, and WDB denotes the set of all elements of
WΩ that are consistent with the constraints in DB.

If WDB is empty, the information in DB is inconsistent. If WDB contains
more than one element, the information in DB is incomplete for determining a
single P-model.

In the next section, we discuss how the maximum entropy model copes with
incomplete information.

2.4.2 Maximum Entropy Model
If WDB contains more than one element, the information in DB is incomplete
for determining a single P-model. Therefore, we must add further constraints to
the system to get a unique model.

It was shown in [25] that the maximum entropy model adds the lowest amount
of additional information between single elementary probabilities to the system.
Moreover, the maximum entropy model also satisfies the principle of indifference
and the principle of independence. The principle of indifference states that if we
have no reason to expect one event rather than another, all the possible events
should be assigned the same probability. The principle of independence states the
if the independence of two events a and b in a P-model ω is given, any knowledge
about the event a does not change the probability of b (and vice verse) in ω,
formally P (b|a) = P (b).

To get the consistent P-model to a DB that has the maximum entropy, we
have to solve the following linear optimization problem:

A
u

th
o

r
P

ro
o

f

12 G. Rácz et al.

Definition 2.10. Let DB := {c1, . . . , cm} be a set of m sentences in (Ω,A)
with Ω = {ω1, . . . , ωn}. Let WDB (respectively VDB) be the set of all P-models
P ∈ WΩ (P-vectors p ∈ VΩ) in which c1, . . . , cm are true. The maximum entropy
problem is

max
v=(p1,...,pn)∈[0,1]n

−
n

∑

i=1

pi log pi

subject to

n
∑

i=1

pi = 1

(1 − u) ·
∑

i:wi∈a∩b

pi + u ·
∑

j:wj∈a∩¬b

pj ≥ 0 (for all c = P (b|a)[l, u] ∈ DB, l > 0)

(1 − l) ·
∑

i:wi∈a∩b

pi − l ·
∑

j:wj∈a∩¬b

pj ≥ 0 (for all c = P (b|a)[l, u] ∈ DB,u < 0)

pi ≥ 0(i = 1, . . . , n)

Denote by me[DB] the P-model that solves the maximum entropy problem
if such model exists.

Definition 2.11. Let DB be a set of sentences and let c = 〈P (b|a)[l, u]〉 be a
sentence. We say that c is a maximum entropy consequence of DB, denoted by
DB ‖∼me c, if and only if either

– DB is inconsistent, or
– me[DB](b|a) ∈ [l, u].

Definition 2.12. A probabilistic query is an expression QPDB(b|a) where a and
b are two events, i.e., a, b ∈ A, and DB is a set of sentences. The query means,
what is the probability of b given a with respect to DB.

Definition 2.13. Let DB be a set of sentences and let QP (b|a) be a probabilistic
query. Then, the answer δ to the query is

δ := me[DB](b|a) =
me[DB](a ∩ b)

me[DB](a)

if DB ‖∼me P (a)(0, 1]. Otherwise, δ := −1 means that the set DB∪{P (a)(0, 1]}
is inconsistent.

The next section shows how an ontology can be transformed into a set of
sentences, and how the semantic matching problem can be expressed with prob-
abilistic queries.

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 13

2.4.3 Probabilistic Matching
Let G = (V, {EO ∪ EE}) be a directed weighted graph as it was defined in
Sect. 2.3. We construct a DB from G in the following way:

– We assign a new set (event) av to each node v of G which contains the appli-
cants who possess the skill v.

– Next, for each ontology edge (vi, vj) ∈ EO we add a new sentence sij to the DB
in the form of P (avj

|avi
)[1, 1]. The sentence means if an applicant possesses

the skill vi (is an element of avi
), then the applicant possesses vj (is an element

of avj
) as well.

– Then, for every extra edge (vi, vj) ∈ EE , we also add a new statement in the
form of P (avj

|avi
) = [l, u]. The weight of an edge can be handled in two different

ways. In the first approach, let the lower bound of the interval l be equal to the
weight of the edge w(vi, vj) and let the upper bound of the interval u be equal
to 1. In the second approach, let l = u = w(vi, vj). The latter is the stricter
approach as it adds constraints to the upper bounds as well.

An application A = {v1, . . . , vn} is translated into the event a = av1∩· · ·∩avn
.

The conjunction means that the applicant possesses all the skills v1, . . . , vn at
the same time. A job offer O = {v1, . . . , vn} is translated into o = av1 ∩ ... ∩ avn

.
It represents the skills that required for the job. The matching value of an job
offer O and an application A is the result of the probabilistic query QP(o|a):

match(O,A) = QPDB(o|a). (3)

The formula gives the probability of that the applicant possesses the skills that
required for the job (supposed that the constructed DB is consistent).

Example 2.5 shows a part of the transformed ontology from Fig. 1 and the
matching value of the Offer1 and Application1.

Example 2.5 (Probabilistic matching).

DB = {
ontology edges extra edges (l = w, u = 1.0)

(it(R)|ide(R))[1, 1], (eclipse(R)|java(R))[0.6, 1.0],
(ide(R)|eclipse(R))[1, 1], (nb(R)|java(R))[0.7, 1.0],

...
...

(ml(R)|xml(R))[1, 1], (xml(R)|html(R))[0.7, 1.0] }
QO1,A1 = QP (java(a) ∧ nb(a) ∧ xml(a)|java(a) ∧ php(a) ∧ eclipse(a)). δ = 0.51

The next algorithm shows how the probabilistic model and the probabilistic
matching can be used to find the most suitable applicant for a job. It works
similarly to the MaximalLengthMatching algorithm, but it construct a DB from
G first (line 1). Then, instead of extending the offer and the applications, it
translates them to probabilistic sentences (line 2, 3, 5) as described above. Next,
the algorithm computes the matching values by solving the corresponding proba-
bilistic queries (line 7), and it stores the most suitable application in Am (line 8).

A
u

th
o

r
P

ro
o

f

14 G. Rácz et al.

Algorithm 2. ProbabilisticMatching
Input: a graph G = (V, E = {EO ∪EE}), a job offer O ⊆ V , and a set of applications

A = {A1, A2, ..., An}.
Output: the most suitable application Am for the job
1: DB← constructDBFrom(G)
2: O′ ← translate(O)
3: Am ← A[0], max← translate(A[0])
4: for i = 1→ n do
5: A′ ← translate(A[i])
6: QO′,A′ = ∃(φO′(a′)|φA′)[X, Y]
7: if solve(QO′,A′ , P) > solve(QO′,max, P) then
8: Am ← A[i], max← A′

9: end if
10: end for
11: return Am

3 Comparison

We compared the presented methods on the job offer and applications from
Example 2.1. The skills, their hierarchy, and the conditional dependencies are
shown in Fig. 1. The matching values of the applications to the job can be seen
in the value columns and the order of the applications based on the different
methods can be seen in the order columns in Table 1, where PM, UO, ML, PrM
denote the Perfect Matching, the Matching using ontology edges, the Maximal
Length Matching and the Probabilistic Matching, respectively. The probabilistic
matching values were computed with SPIRIT [23] and PIT [24].

We investigated the matching values of the different algorithms from multiple
aspects see [30–32]. We examined whether there is some kind of regularity among
the values of the algorithms. We compared how the methods sort the applicants,
and how the methods distinguish the applicants from each other. We tried to
abstract from the concrete examples and to describe general observation about
the algorithms.

Table 1. Comparison of the different matching values on the offer {Java,Netbeans,
XML} and the applications from Example 2.1

Application PM UO ML PrMEO
PrMl=w,u=1 PrMl=u=w

value order value order value order value order value order value order

A1 0.33 3,4 0.63 3,4 0.93 2 0.20 4 0.51 2 0.51 3

A2 0.66 1,2 0.88 1 0.96 1 0.50 1 0.70 1 0.70 1

A3 0.33 3,4 0.63 3,4 0.68 4 0.22 3 0.32 4 0.14 4

A4 0.66 1,2 0.75 2 0.75 3 0.43 2 0.49 3 0.54 2

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 15

3.1 Perfect Matching vs. Matching Using Ontology Edges

As we saw, the Perfect Matching method assigns the same values to too many
applicants as it defines too strictly the matching between an offer and an appli-
cation. In Sect. 2.2 we introduced a specialization relation among the skills which
forms a hierarchy from the skills. We can use that additional knowledge to find
the most suitable applicant for a job. We extended the job offer and the applica-
tions using the edges of the ontology, and then we applied the perfect matching
on the extended sets. This method was called the matching using ontology edges.
If only the applications were extended, the matching values on the extended sets
would always be greater or equal than on the original sets. Formally, let O an
job offer and let A an application, then

PM(O,A) ≤ UOapps(O,A), (4)

where UOapps means that only the applications are extended. It is because the
application appears only in the numerator in Eq. 1. However, if the job offer is
also extended, the inequality above generally does not hold as the offer appears in
the denominator as well. For this reason, the two methods can give different order
between the applicants. Note, that the extension of the job offer is reasonable
when the skills in the job offer are more specific as in the applications. In this
case, we would not get different result from the result of the perfect matching if
only the applications were extended.

3.2 Matching Using Ontology Edges vs. Maximal Length Matching

The maximal length matching is a generalization of the matching that uses the
ontology edges to extend the applications and the job offer. It also extends
the original sets, however, it takes into account the so called extra edges as
well. The extra edges could form cycles in the hierarchy graph but it does not
affect the computation. Note, that the following connection immediately follows
from the definitions:

UO(O,A) ≤ ML(O,A). (5)

Furthermore, if no extra edge is given, then UO = ML. However, the order of the
applicants can be changed using the two methods as it can be seen in Table 1.
For example, A1 has the lowest matching value in UO, but in ML it has the
second greatest value because of the (Java,Netbeans) and (PHP,HTML,XML)
paths.

3.3 Probabilistic Matchings

The PrM method uses a totally different strategy to compute the matching value.
We tried three different versions; the results are shown in Table 1. In of PrMEO

,
only the ontology edges were translated into probabilistic sentences while in the
other two cases the extra edges were also translated; in PrMl=w,u=1, the lower
bound of a sentence was equal to the weight of the edge that the constraint was

A
u

th
o

r
P

ro
o

f

16 G. Rácz et al.

generated from and the upper bound of the sentence was 1; and in PrMl=u=w,
both the lower and the upper bound of a sentence were also equal to the weight
of the edge.

Generally, the matching values of the three versions are not comparable
because of the selection of the underlying probabilistic model. Each algorithm
selects a probabilistic model that satisfies the set of sentences generated from
the edges, and that has the maximum entropy value among such models. How-
ever, the sets of the sentences of the three versions are different from each other.
I.e., PrMl=w,u=1 added extra constraints to PrMEO

that were generated from
the extra edges, and PrMl=u=w added further constraints that came from the
limitation of the upper bounds as well. As expected, the entropy of the maxi-
mum entropy model of the first version was the greatest (81.68), the entropy of
the second model was the next (16.48), and the entropy of third model was the
lowest (16.37).

The different probabilistic models give different matching values and it is not
guaranteed that the models preserve the order of the applicants. For example,
the applicant A1 is the forth best in PrMEO

, is the second in PrMl=w,u=1 and
is the third in PrMl=u=w in Table 1.

However, adding extra constraints results in that the algorithms assign the
same value to fewer applicants, therefore they distinguish them from each other.
It is because while we have no reason to expect one event rather than another,
all the possible events should be assigned the same probability as the principle
of indifference states.

3.4 Matching Using Ontology Edges vs Probabilistic Matching

When the skills form a hierarchy and no extra edges are given, then the matching
using ontology edges and the probabilistic matching PrMEO

can be used.
Unfortunately, there is no connection between the orders of the applicants

that the two methods give as Table 1 shows. Although the table suggests that the
values of ML are always greater than the values of PrMEO

, but it is generally
not true. In that example, all the required skills in the offer and the skills in
the applications were selected from the bottom of the hierarchy, therefore the
extensions covered large parts of the ontology and the intersections contained
many elements. Table 2 shows how the same applications match to another offer
which is Offer2 = {IDE,OOP,XML}. This offer contains skills from the inner
nodes of the ontology as well. It can be seen in Table 2 that all the probabilistic
matching methods gave higher values for A3 and A4 than the ML method.

3.5 Maximal Length Matching vs. Probabilistic Matching

When the skills form a hierarchy and there are extra edges given as well, then
the maximal length matching and the probabilistic matchings PrMl=w,u=1 and
PrMl=u=w can be used. As we saw the maximal length matching is a general-
ization of the matching using ontology edges which uses the extra edges too.

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 17

Table 2. Comparison of the different matching values on the offer {IDE,OOP,XML}
and the applications from Example 2.1

Application PM UO ML PrMEO
PrMl=w,u=1 PrMl=u=w

value order value order value order value order value order value order

A1 0 3,4 0.67 4 0.95 1,2 0.40 4 0.70 3,4 0.70 3,4

A2 0 3,4 0.83 1,2,3 0.95 1,2 0.50 3 0.70 3,4 0.70 3,4

A3 0.33 1,2 0.83 1,2,3 0.87 3 0.89 1 0.92 1 0.85 2

A4 0.33 1,2 0.83 1,2,3 0.83 4 0.87 2 0.86 2 0.88 1

The PrMl=w,u=1 and PrMl=u=w methods also use the extra edges in the trans-
formations, and PrMl=u=w generates additional constraints to the linear opti-
mization problem of PrMl=w,u=1 that comes from the limitation of the upper
bounds.

As it can be seen in Table 1 and in Table 2, these methods can give totally
different orders, and the matching values are incomparable. However, our exper-
iments suggests that the probabilistic matching algorithms can distinguish more
applicants from each other than the ML method.

4 Related Work

Semantic matchmaking has become a widely investigated topic recently, due
to broad applicability in todays competitive business environment. Its origins
go back to Vague query answering, proposed by Motro [19] that was an initial
effort to overcome limitations of relational databases, using weights attributed
to several search variables. More recent approaches along these lines aim at
extending SQL with “preference” clauses (Kießling [12]).

Our main focus in the present paper is facilitating the management of avail-
able human resources’ competencies. Fully or partially automated techniques
were developed (see Colucci et al. [4], Bizer et al. [2], Malinowski et al. [18]).

Several matchmaking approaches exist in the literature that could be applied
for matching job applications for job offers. Text based information retrieval
techniques such as database querying and similarity between weighted vectors
of terms were used by Veit et al. [26]. Ontology based skill profile matching was
considered in many papers. Lau and Sure [13] propose an ontology based skill
management system for eliciting employee skills and searching for experts within
an insurance company. Liu and Dew [15] gives a system that integrates the accu-
racy of concept search with the flexibility of keyword search to match expertise
within academia. Colucci et al. [4] proposes a semantic based approach to the
problem of skills finding in an ontology based framework. They use description
logic inferences to handle background knowledge and deal with incomplete infor-
mation. They use profile descriptions sharing a common ontology, our approach
is based on this, as well. A fundamental difference between the aforementioned
works and our paper is that they facilitate search for matching profiles, while
we focus on ranking already given applications.

A
u

th
o

r
P

ro
o

f

18 G. Rácz et al.

Di Noia et al. [6] places matchmaking on a consistent theoretical foundation
using description logic. They define matchmaking as “an information retrieval
task whereby queries (also known as demands) and resources (also known as
supplies) are expressed using semi-structured data in the form of advertise-
ments, and task results are ordered (ranked) lists of those resources best fulfilling
the query.” They also introduce match types and rank individual profiles using
penalty function. However, they do not apply the filter approach used in our
paper.

Fuzzy techniques are introduced in Ragone et al. [22] where they consider
a peer-to-peer e-marketplace of used cars. Also a form of logic programming is
applied using fuzzy extension of Datalog. Papers [6,22] contain extensive lists of
further references concerning practical algorithms, related areas of multiobjective
decision making, logic programming, description logic, query reformulation and
top-k query answering.

The manuscript [29] uses exact match in ontologies extended with Euclidean-
like distance or similarity measure. They apply different levels of given skills,
furthermore the job offer may contain “nice-to-have requirements.” In our paper
we do not apply different grade levels of skills, instead, we consider them separate
skills, so we “blow up” the ontology.

Finally, the use of filters in the ontology hierarchy lattice was initiated by
Popov et al. [21].

5 Conclusion

In this paper we described the problem of the semantic matching by examples
from the field of human resources management, namely matching job offers with
applications. However, the presented methods can be used for other fields as
well. We investigated the problem from different aspects with different models.

First, we represented the offers and the applications with set of skills, and
we introduced the perfect matching. It is a naive approach that computes the
matching value of a job offer and an application based on the intersection of two
sets. However, it could not be able to sufficiently distinguish the applicants from
each other because of its simplicity.

Next, we defined a specialization relation on the skills and built an ontology
over them which was represented with directed graph. Then, we presented a
method that can use this additional knowledge to find the best applicant for
a job. It extends the set of skills of both the job offer and the applications
with the more general skills that are available from the original sets on the
edges of the ontology. And on the extended sets the perfect matching is already
applicable. Beside the ontology edges, we introduced extra edges as well that
express conditional dependencies between skills. And then, we generalized the
extension of the sets of skills of the applications to use the extra edges too.

In Sect. 2.4, we presented the probabilistic models and we showed how the
ontology edges and extra edges can be translated into probabilistic sentences, and
how the problem of the semantic matching can be translated into probabilistic

A
u

th
o

r
P

ro
o

f

Semantic Matching Strategies for Job Recruitment 19

queries. Two different approaches were discussed as the edges can be handled.
We used the maximum entropy model to answer the probabilistic queries as it
adds the lowest amount of additional information to the system when the given
information is incomplete.

Finally, we compared the presented methods from various aspects. We inves-
tigated whether there is any connection of the matching values that give the
methods. Furthermore, we examined how the methods sort the applicants and
how they can distinguish the applicants form each other. We showed that the
PM(O,A) ≤ UOapps(O,A) and the UO(O,A) ≤ ML(O,A) connections hold
between the matching values of the perfect matching PM the matching using
ontology edges UO and the maximal length matching for arbitrary job offer O
and application A. However, our results revealed that the algorithms can give
totally different order among the same applicants matching to the same job offer.
Therefore, it highly depends on the field which algorithm gives the most suitable
order.

References

1. Baader, F., Nutt, W.: Basic description logic. In: Description Logic Handbook,
pp. 43–95 (2003)

2. Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The
impact of semantic web technologies on job recruitment processes. In: Proceedings
of the 7th International Conference Wirtschaftsinformatik (2005)

3. Brickley, D., Ramanathan, V.G.: RDF Schema 1.1: W3C Recommendation 25,
February 2014

4. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: Concept abduc-
tion and contraction in description logics. In: Proceedings of the 16th International
Workshop on Description Logics (DL 2003). CEUR Workshop Proceedings, vol. 81
(2003)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

6. Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-
monotonic reasoning: a description logic approach. J. Artif. Intell. Res. 29, 269–307
(2007)

7. European Dictionary of Skills and Competences. http://www.disco-tools.eu
8. Hájek, P.: Mathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht

(1998)
9. International Standard Classification of Education. http://www.uis.unesco.org/

Education/Pages/international-standard-classification-of-education.aspx
10. International Standard Classification of Occupations (2008)
11. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming

with the power of maximum entropy. Artif. Intell. 157(1), 139–202 (2004)
12. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of

the 28th International Conference on Very Large Data Bases, pp. 311–322 (2002)
13. Lau, T., Sure, Y.: Introducing ontology-based skills management at a large insur-

ance company. In: Proceedings of the Modellierung, pp. 123–134 (2002)
14. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5), 34–35 (1971)

A
u

th
o

r
P

ro
o

f

http://www.disco-tools.eu
http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx
http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx

20 G. Rácz et al.

15. Liu, P., Dew, P.: Using semantic web technologies to improve expertise matching
within academia. In: Proceedings of I-KNOW 2004, pp. 370–378 (2004)

16. Liu, L., Li, K.: Fuzzy filters of BL-algebras. Inf. Sci. 173(1), 141–154 (2005)
17. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (2012)
18. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from concep-

tual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)
19. Motro, A.: VAGUE: a user interface to relational databases that permits vague

queries. ACM Trans. Off. Inf. Syst. 6(3), 187–214 (1988)
20. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design.

MIT Press, Cambridge (1998)
21. Popov, N., Jebelean, T.: Semantic Matching for Job Search Engines: A Logical

Approach. Technical report 13–02, Research Institute for Symbolic Computation,
JKU Linz (2013)

22. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, T., Donini, F.M.: Fuzzy match-
making in e-marketplaces of peer entities using Datalog. Fuzzy Sets Syst. 160(2),
251–268 (2009)

23. Rödder, W., Meyer, C.-H.: Coherent knowledge processing at maximum entropy
by SPIRIT. In: Proceedings of the 12th International Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann Publishers Inc. (1996)

24. Schramm, M., Ertel, W.: Reasoning with probabilities, maximum entropy: the
system PIT and its application in LEXMED. In: Inderfurth, K., Schwödiauer,
G., Domschke, W., Juhnke, F., Kleinschmidt, P., Wäscher, G. (eds.) Operations
Research Proceedings, vol. 1999, pp. 274–280. Springer, Heidelberg (2000)

25. Schramm, M., Greiner, M.: Non-Monotonic Reasoning on Probability Models:
Indifference, Independence. Inst. für Informatik (1995)

26. Veit, D., Müller, J., Schneider, M., Fiehn, B.: Matchmaking for autonomous agents
in electronic marketplaces. In: Proceedings of the International Conference on
Autonomous Agents 2001, pp. 65–66 (2001)

27. Wygralak, M.: Cardinalities of Fuzzy Sets. Springer, Heidelberg (2003)
28. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
29. https://users.soe.ucsc.edu/∼darrell/tmp/search subm06.pdf
30. http://www.renyi.hu/∼sali/sms/ide oop xml.xlsx
31. http://www.renyi.hu/∼sali/sms/java nb xml.xlsx
32. http://www.renyi.hu/∼sali/sms/queries.xlsx

A
u

th
o

r
P

ro
o

f

https://users.soe.ucsc.edu/~darrell/tmp/search_subm06.pdf
http://www.renyi.hu/~sali/sms/ide_oop_xml.xlsx
http://www.renyi.hu/~sali/sms/java_nb_xml.xlsx
http://www.renyi.hu/~sali/sms/queries.xlsx

MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character

new characters

through all characters to be deleted

through letter or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character or

where required

between characters or

words affected

through character or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly

