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The allocation problem for a d-dimensional Poisson point process
is to find a way to partition the space to parts of equal size, and to
assign the parts to the configuration points in a measurable, “deter-
ministic” (equivariant) way. The goal is to make the diameter R of
the part assigned to a configuration point have fast decay. We present
an algorithm for d≥ 3 that achieves an O(exp(−cRd)) tail, which is
optimal up to c. This improves the best previously known allocation
rule, the gravitational allocation, which has an exp(−R1+o(1)) tail.
The construction is based on the Ajtai–Komlós–Tusnády algorithm
and uses the Gale–Shapley–Hoffman–Holroyd–Peres stable marriage
scheme (as applied to allocation problems).

1. Introduction. Consider the random discrete point set ω in R
d given

by the Poisson point process of intensity 1. We would like to find functions
ψω :ω→ L1(Rd) that assign to each point of ω a set of measure 1, and such
that ψω is a measurable, equivariant function of ω. Then we call ω 7→ ψω an
allocation rule. See Definition 2 for more details.

We prove the existence of an allocation rule of the following (optimal)
tail.

Theorem 1.1. For d≥ 3 there exist c, b > 0 and an allocation rule ω 7→
ψω for the Poisson point process such that

P[diam({0} ∪ψω(0))>R|0 ∈ ω]≤ c exp(−bRd).
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2 R. MARKÓ AND A. TIMÁR

The proof of Theorem 1.1 is constructive. The allocation rule presented
here is built upon a generalization of the algorithm due to Ajtai, Komlós
and Tusnády [1] and employs a local variant of the stable marriage alloca-
tion introduced by Hoffman, Holroyd and Peres [4], based on the “stable
marriage” algorithm of Gale and Shapley.

Informally, in this allocation problem, we want to divide land between
a set of farmers randomly scattered in space, and in such a way that each
farmer knows the rule to determine his own land up to a small error, by
looking at the locations of other farmers in a big enough neighborhood.
This rule has to be the same for everybody. We want to find an allocation
rule where the maximal distance a farmer has to walk (fly) between any two
points of his land is minimal. That is, we want the tail

P[diam({0} ∪ ψω(0))>R|0 ∈ ω]
to decay as fast in R as possible, where ψω(0) denotes the cell of 0 (condi-
tioned on having a center in 0).

Now we give the precise definitions. In our previous, less formal definition,
we wanted to partition the space and assign pieces to the centers. Here it
will be more convenient to use the indicator functions of these pieces. Let Ω
be the set of discrete sets of points in R

d. The points of an ω ∈Ω are called
centers. Let us fix an ω ∈Ω.

Definition 1 (Allocation). An allocation is a function ψω :ω→ L1(Rd)
such that:

(1) for every ξ ∈ ω, ψω(ξ) is a function with values from {0,1};
(2) for Lebesgue almost every x ∈ R

d, there is at most one ξ ∈ ω such
that ψω(ξ)(x) = 1;

(3) for every ξ ∈ ω,
∫

Rd ψω(ξ)(x)dx= 1.

Without assumption (3) we call ψω a weak allocation. We say that ψω :ω→
L1(Rd) is a weak fractional allocation if (1′) and (2′), below, hold and a
fractional allocation if (1′), (2′) and (3) hold:

(1′) for every ξ ∈ ω, ψω(ξ) is a function with values from [0,1];
(2′) for Lebesgue almost every x ∈R

d,
∑

ξ∈ω ψω(ξ)(x)≤ 1.

Sometimes it will be natural to think about a (fractional) allocation
ψω :ω→ L1(Rd) as a family {ψω(ξ) : ξ ∈ ω} of functions.

Definition 2 (Allocation scheme, allocation rule). Let P be the law of
the Poisson point process of intensity 1 in R

d. An allocation scheme is a
mapping ω 7→ ψω that is defined for P-almost every ω ∈Ω, measurable (i.e.,
if (S,S, µ) is the underlying probability space of the Poisson point process,
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and L1(Rd) is equipped with the Borel sets induced by the L1-distance, the
mapping s 7→ (ω(s), ψω(s)) from S → {(ω,φ)|ω ∈ Ω, φ ∈ [L1(Rd)]ω} is mea-
surable with respect to S), and such that almost surely ψω is an allocation.
If, furthermore, the mapping ω 7→ ψω is translation-equivariant; that is, for

any ω ∈Ω, ξ ∈ ω and x, y ∈R
d we have

ψω+x(ξ + x)(y + x) = ψω(ξ)(y),

then we call the allocation scheme an allocation rule. Define weak, fractional
and weak fractional allocation rules (schemes) analogously.

Some use the term allocation factors of the point process for allocation
rules. We mention that allocation rules satisfy something stronger than (2)
from Definition 1; namely, for Lebesgue almost every x ∈R

d, there is exactly
one ξ ∈ ω such that ψω(ξ)(x) = 1; see, for example, [7] for a proof of this
simple statement.

Denote by 0 the origin in R
d and by λ the Lebesgue measure in R

d. The
letters b and c will stand for positive real constants, whose value may change
when employed in different statements. From now on, we always assume that
d≥ 3.

We want to define an allocation rule in such a way that the probability
P[diam(ψω∪{0}(0)∪{0}) ≥R|0 ∈ ω] decays as fast as possible. By translation

invariance we could have taken any other fixed ξ0 ∈R
d instead of 0, and the

tail would be the same.
Define Ω′ := {ω ∪ {0} :ω ∈ Ω} and P

′ = [·|0 ∈ ω] as the Palm version of
the probability measure P that defines the Poisson point process (and E

′

the corresponding expectation). To facilitate readability we will tend to use
the notation ω′ for elements of Ω′. It is well known that P

′[{ω ∪ {0} :ω ∈
E}] =P[E] for every measurable E in Ω; see, for example, [10] for the proof
of this statement and for other basic facts and definitions about the Palm
version of point processes. Rephrasing the previous paragraph, our goal is
to make P

′[diam(ψω′(0) ∪ {0})>R] have fast decay.
In several papers ([4] and follow-up works) a slightly different problem is

the focus of interest. Suppose we have the allocation rules ω 7→ ψω and ω 7→
φω . The rule ω 7→ ψω defines a unique center ξ0 = ξ0(ω,ψω) with 0 ∈ ψω(ξ0)
almost surely. Then

P[diam(φω−ξ0(0) ∪ {0})>R] =P
′[diam(φω′(0) ∪ {0})>R],(1.1)

where the equation follows from Theorem 13 in [7] (the claim that ξ0 is a
so-called nonrandomized extra head scheme).

The objective in the setup of the cited papers is again to obtain a rule
with optimal tail bound, this time for the random variable |ξ0|. Our setup
is stronger than this one, meaning that for any allocation rule ω 7→ ψω the
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tail probability P[diam({0} ∪ ψω(0)) >R|0 ∈ ω] is greater than or equal to
P[|ξ0(ω,ψω)| > R], hence any upper bound on the decay of the former (as
in Theorem 1.1) implies an upper bound on the decay of the latter (as in
[4]). To see this, set φ= ψ and apply (1.1), so that we have

P[|ξ0|>R]≤P

[

max
x∈ψω(ξ0)

|x− ξ0|>R
]

≤P[diam(ψω(ξ0)∪ {ξ0})>R]

=P[diam(ψω−ξ0(0) ∪ {0})>R](1.2)

=P
′[diam(ψω′(0) ∪ {0})>R].

In fact, the current setup is strictly stronger: imagine an allocation rule
when most cells consist of ball-like pieces of almost unit volume containing
the corresponding center, and a small extra piece far away from this one.
For such an allocation, the quantity on the left of (1.1) would decay quickly,
while on the right we could have slow decay.

The relation between the two discussed tail events allows us to phrase a
lower bound on P

′[diam(ψω′(0) ∪ {0})>R] which every allocation rule has
to satisfy. Clearly,

P[|ξ0|>R]≥P[B(0,R)∩ ω =∅] = exp(−λ(B(0,R))) = exp(−cRd),(1.3)

where B(0,R) is the Euclidean ball around 0 with radius R, and c > 0 is a
constant only depending on the dimension d. Therefore it follows through
(1.2) for any allocation rule ω 7→ ψω that

exp(−cRd)≤P
′[diam(ψω′(0) ∪ {0})>R],

which explains the claim regarding the optimality of our construction.
The allocation problem was first studied in a finite setup, where finitely

many points are distributed uniformly and independently in a box. Here, of
course, the requirement of equivariance is meaningless. We will present later
a variant of the algorithm by Ajtai, Komlós and Tusnády [1], which was a
crucial component of several later methods for the finite problem. For n uni-
formly independently distributed points in a cube of volume n, it was proved
[1] that the average diameter of an allocation cell is log1/2 n for d= 2 and
finite for d ≥ 3, and precise rates of decay were determined subsequently;
see [11] for details and the sharpest results. Interest in the infinite setup
originated from the fact that an allocation rule gives rise to a shift-coupling
between a point process and its Palm version; see, for example, [5, 7]. In [7],
Holroyd and Peres studied the problem of how to find the optimal tail of an
allocation rule. In the same paper, they presented a randomized invariant al-
location rule of optimal tail decay. (Randomized allocation rules are defined
similarly to allocation rules in Definition 2, but the use of extra random-
ness is allowed; i.e., the allocation scheme is not necessarily a deterministic
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function of the point configuration.) Let us mention that several related op-
timization problems are much easier to handle for the randomized variant,
such as in the case of matching schemes of point processes or coin flips. Deter-
ministic constructions have been an area of active research ever since, and al-
location rules that satisfy additional conditions have been subjects of recent
analysis (e.g., stability [4], connectedness [9]). The best previously known al-
location rule for d≥ 3 was the gravitational allocation, investigated in [2, 3],
where the tail is P[|ξ0(ω)|>R] = exp(−R1+o(1)). In [7], the assumption d≥ 3
is necessary for an exponential tail, where E[|ξ0(ω)|d/2] =∞ is proved for
d = 1,2. The best currently known upper bounds for the tails in the case
of d = 1 and d = 2 were presented in [6], showing P[|ξ0(ω)| > R] ≤ cR−1/2

and P[|ξ0(ω)|>R]≤ cR−0.496..., respectively, and they were achieved by the
stable allocation of Hoffman, Holroyd and Peres [4]. Briefly, the reason for
the drastic change of behavior from dimension 3 is that here the isoperi-
metric function of Rd becomes larger in magnitude than the deviation of
the number of points in a ball. For the existence of optimal allocations with
respect to other quantities (e.g., the average distance of a center from the
points of the cell) and connections to optimal transport, see [8].

1.1. Construction. Let us present the (surprisingly simple) construction
for Theorem 1.1 briefly, before going into the details. First, for any v ∈ R

d

we will define a sequence of weak allocation schemes associated to it. These
will not be equivariant yet. The construction will be based on a straightfor-
ward generalization of the algorithm of Ajtai, Komlós and Tusnády (AKT
algorithm) [1], which assigns a piece of unit volume to each of n points in
a box B, in such a way that the pieces partition B. Furthermore, if the
points are scattered uniformly and independently (which is the same as the
restriction of the Poisson point process to B, conditioned on there being n
points in B), then the average diameter of the cells has asymptotically the
same tail behavior as in Theorem 1.1 (if the volume of B and the number
of random points in it are asymptotically the same). We extend the method
to the Poisson point process in R

d by subdividing R
d to the cubes of size

2n in v + 2nZd + [0,2n)d, and applying the AKT algorithm to each of the
cubes. The result is a weak allocation scheme for each n and v, which we

call AKTω,v,n, and denote the cell of ξ ∈ ω under this scheme by fω,ξv,n . The
algorithm for given n will be called the AKT(v) algorithm run up to stage
n. The details of the AKT algorithm are discussed in Section 2. See also
Figure 1.

Having defined for every v ∈ R
d a sequence of weak allocation schemes

dependent on v, we next want to remove this dependence and construct
a sequence of weak allocations whose elements are equivariant (i.e., weak
allocation rules). We will see that for every ξ ∈ ω

fω,ξv,n = fω,ξu,n whenever u− v ∈ 2nZd.(1.4)
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(a) The initial stage with centers

(b) The two steps of the first stage

(c) The two steps of the second stage

(d) The position of centers and final auxiliary points, the resulting local allocation

Fig. 1. AKT local allocation between v+[0,22)d and the centers in d= 2 (v is the bottom
left corner). Transformations take place inside the highlighted cuboids; the bisector walls
touched by the arrows are moved in the indicated direction. (The length of an arrow may
not be proportional to the length of the shift, for better perspicuity.)
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Now, define

fω,ξn :=
1

2nd

∫

[0,2n)d
fω,ξv,n dv,(1.5)

a function from R
d to [0,1]. This is well defined (the integral exists) by

Lemma 3.2 below. It is equivariant by (1.4), so it is a fractional weak allo-
cation rule for each n ∈ N. Now we want to get rid of “weakness.” We will

prove that with probability 1 all the fω,ξn have an L1 limit (ξ ∈ ω),

fω,ξ := lim
n→∞

fω,ξn ,(1.6)

and that it is a function of integral 1. From the properties of the AKT con-
struction (Lemma 2.2 below) we will show that the diameter of the support
of this limit function has the tail that we want. We will conclude that the
map η :ω 7→ fω with fω : ξ 7→ fω,ξ (ξ ∈ ω ∈Ω) defines a fractional allocation
rule with the desired tail.

Finally, we will define an allocation ω 7→ ψω with ψω : ξ 7→ ψω(ξ) (ξ ∈ ω)
from the above fractional allocation. It will be such that the support of ψω(ξ)
is contained in the support of fω,ξ. This step (Lemma 3.8) will be based on
the fact that almost every point of Rd is contained in the support of fω,ξ

for only finitely many ξ.
In the next section we give a summary of the AKT construction, present-

ing the generalized version that we are using. Section 3 continues with the
sequence of invariant weak allocations, the limiting fractional allocation and
finally, the allocation rule that satisfies Theorem 1.1. This section ends with
some concluding remarks. In Section 4 we give the necessary bounds for the
concentration of the cell diameter, which come by technical modifications of
the similar, usual bounds for the AKT method.

2. The generalized AKT algorithm, bounds. The AKT method was de-
veloped by Ajtai, Komlós and Tusnády in [1], and it outputs a local allo-
cation (see definition below) between a finite cube and the i.i.d. uniform
random points lying in it. We require the following notion.

Definition 3. Let C be a measurable bounded subset of Rd and ωC a
finite, nonempty subset of C. Call ψ :ωC → L1(C) a local allocation between
C and ωC if:

(1) for every ξ ∈ ωC , ψ(ξ) takes values from {0,1};
(2) for Lebesgue almost every x ∈C there is exactly one ξ ∈ ωC such that

ψ(ξ)(x) = 1;
(3) for every ξ ∈ ωC ,

∫

C ψ(ξ)(x)dx= 1
|ωC |λ(C).
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Fix ω ∈ Ω, and assume for simplicity that for any two points of ω, their
respective coordinates are pairwise different (which has probability 1 if they
are distributed according to the Poisson point process).

We now present the local allocation given by the AKT scheme between
the cube C = v + [0,2N )d and ωC := ω ∩ C, where v ∈ R

d and N ≥ 1. See
Figure 1 for an illustration. We define the method recursively with respect
to N .

For N = 0 and |ωC |= k > 0, let us fix some arbitrary way of dividing a
unit cube containing k points into k connected parts with equal measure
and assigning them to the points ξ. (For k = 0, we do not do anything.)
For example, separate the centers by k − 1 hyperplanes orthogonal to the
first axis such that the ith hyperplane separates i points of ωC from the
other k − i, and so that the hyperplane is at equal distance to the closest
points, thus cutting C into k cuboids. Transform the cuboids by pushing the
separating walls (defined by the hyperplanes) in the direction of the first axis
until the volumes of the new cuboids are all equal. Each of the transformed
cuboids contains the image of exactly one ξ ∈ ωC by the transformation; call

this image aux(ξ, v,0) and the transformed cuboid Cω,ξv,0 . We call this stage

of the construction the initial stage, and Cω,ξv,0 the initial cell of ξ.
Suppose that for every nonnegative integer n <N , a local allocation be-

tween C = v + [0,2n)d and ω ∩ C, if nonempty, has been defined for any

v ∈R
d. For a ξ ∈ ω ∩ (v + [0,2n)d) let Cω,ξv,n be the cell assigned to ξ by this

local allocation, and suppose that an “auxiliary point” aux(ξ, v,n) ∈ Cω,ξv,n

is also given for ξ. Let Auxv,n(C) := {aux(ξ, v,n) : ξ ∈C ∩ ω}. Define now a
local allocation between C = v+ [0,2N )d and ω ∩C in d steps as follows.

For every ξ ∈ C ∩ ω, let v′ ∈ v + 2N−1{0,1}d be such that ξ ∈ ω ∩ (v +
[0,2N−1)d), and consider the local allocation between v′ + [0,2N−1)d and

ω ∩ (v′ + [0,2N−1)d). Then aux(ξ, v′,N − 1) and Cω,ξv′,N−1 are the auxiliary

point and the cell, respectively, for ξ by this local allocation. We will de-

fine aux(ξ, v,N) and Cω,ξv,N in d steps. Let Ĉξ,0 := Cω,ξv′,N−1 and ˆauxξ,0 :=

aux(ξ, v′,N − 1).

Let Di be the following collection of cuboids. Each element of Di will be a
translation of the cuboid [0,2N−1)d−i × [0,2N )i, and the elements of Di are
such that their disjoint union is C. Formally, Di = {([0,2N−1)d−i× [0,2N )i)+
v + (k1, . . . , kd−i,0, . . . ,0)2

N−1 : (k1, . . . , kd−i,0, . . . ,0) ∈ {0,1}d}. For
i = 1, . . . , d, do the following. For each K ∈ Di, consider the hyperplane
orthogonal to the (d− i+ 1)th axis that splits K into two congruent parts.
Let K1 and K2 be these two congruent parts. Consider cuboids K ′

1 and K ′
2

that have the following properties:

(i) they also partition K;
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(ii) K ′
1 ∩K ′

2 is parallel to K1 ∩K2 (where X denotes the closure of a set

X ⊂R
d);

(iii)
λ(K ′

1)
λ(K ′

2)
= |K1∩ω|

|K2∩ω|
. If |K1 ∩ ω| = 0 (|K2 ∩ ω| = 0), then K ′

1 (K2) is a

degenerate cuboid.

One can obtain K ′
1 from K1 by an affine transformation. For each ξ ∈K1

(which is equivalent to ˆauxξ,i−1 ∈ K1), let the image of Ĉξ,i−1 under this

translation be called Ĉξ,i, and let the image of ˆauxξ,i−1 be ˆauxξ,i. Proceed

similarly for K ′
2: it is the image of K2 by an affine transformation, and

for ξ ∈ K2 we define ˆauxξ,i and Ĉξ,i as the images of ˆauxξ,i−1 and Ĉξ,i−1

under this transformation, respectively. At the end of the cycle, i= d. Define

Cω,ξv,N := Ĉξ,d and aux(ξ, v,N) := ˆauxξ,d.

Let us fix an arbitrary v ∈ R
d. Up to this point we only defined the

auxiliary points and cells (aux(ξ, v,N), Cω,ξv,N ) for any ξ ∈ ω ∩ (v+ [0,2N )d).

Now we will extend the definition to all configuration points ξ ∈ ω. Define

aux(ξ, v,N) as the point aux(ξ, v′,N), where v′ is the unique element of

v+2NZ
d so that ξ ∈ v′+[0,2N )d. Similarly, for any v ∈R

d define Cω,ξv,N as the

cell Cω,ξv′,N , where v
′ is the unique element of v+2NZd so that ξ ∈ v′+[0,2N )d.

We remark that auxiliary points and corresponding cells can also be defined

for noncenters, as their images by the respective affine transformations of

the cells as above. This is the point in the construction where the statement

of (1.4) becomes evident, as fω,ξv,n will be defined as the indicator function of

Cω,ξv,n .

For each fixed N , we have defined the algorithm recursively, but we will

prefer to think about it as an algorithm running through N stages, where

in the ith stage Cω,ξv,i and aux(ξ, v, i) are constructed for each ξ ∈ ω. Each
stage consists of d steps, one for each axis.

Next we present the AKT weak allocation scheme in an infinite setup.

(This will not yet be a weak allocation rule because equivariance fails.) Let

ω now be distributed according to the Poisson point process. For each v ∈R
d

and n≥ 1 we define AKTω,v,n to be the weak allocation, whose restriction to

C (C ∈ v+2nZd+[0,2n)d with C ∩ω 6=∅) is the local allocation between C

and C∩ω given by the previous method. We call the algorithm that produces

AKTω,v,n AKT(v) run up to stage n, or simply AKT(v). Note that for any

n < n′ and i ≤ n the transformations taking place in the ith step of the

algorithm are the same for AKT(v) run up to stage n and for AKT(v) run

up to stage n′. Hence the latter can be thought of as a continuation of the

former.

For a simpler discussion, condition now on 0 ∈ ω, and take ξ = 0.
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Lemma 2.1. For P
′-almost all ω′ ∈Ω′, the sequence of cells {Cω′,0

v,n }n≥1

of 0 resulting from AKTω′,v,n satisfies

lim
n→∞

λ(Cω
′,0

v,n ) = lim
n→∞

∫

Rd

fω
′,0

v,n (x)dx= 1,

where convergence is uniform in v.

Lemma 2.2. There exist c, b > 0 and an increasing family of events
(ER)R>0 such that:

(i) 1−P
′[ER]< c exp(−bRd);

(ii) for every ω′ ∈ER and v ∈R
d, the diameter of the cell Cω

′,0
v,n ∪ {0} of

0 in the AKT(v) run up to stage n is at most cR;
(iii) there are constants cn(R) such that the series

∑∞
n=1 cn(R) is summable,

and for every ω′ ∈ER and v ∈R
d the bound

‖fω′,0
v,n − fω

′,0
v,n+1‖1 = λ(Cω

′,0
v,n ∆Cω

′,0
v,n+1)< cn(R)

holds for every n.

The proof follows from the usual analysis of the AKT algorithm, with a
slight modification needed because of uniformity in v; for details, see Sec-
tion 4.

3. The allocation rule. In this section we will provide the necessary de-
tails for the construction that was sketched in Section 1.1 and prove that
it is indeed well defined. Simultaneously we will execute the analysis on the
tail behavior of the diameter of certain cells in order to verify Theorem 1.1.

Recall that fω,ξv,n was defined as the indicator function of the cell of ξ resulting
from AKT(v) run up to stage n, where ξ ∈ ω ∈Ω.

The next lemma is straightforward from the definitions.

Lemma 3.1. For P-almost every ω ∈ Ω, for almost every v ∈ R
d and

every n≥ 0, the map fωv,n :ω→ L1(Rd), fωv,n(ξ) = fω,ξv,n is a weak allocation.

Of course, the map ω 7→ fωv,n in the lemma is far from being equivariant;
hence it does not define a weak allocation rule.

Lemma 3.2. For P
′-almost every ω′ ∈Ω′ and fixed n≥ 1, the map v 7→

fω
′,0

v,n is L1-continuous in v ∈ [0,2n)d, except for possibly v in the union of
countably many hyperplanes.
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Proof. The function fω
′,0

v,n changes continuously in v, except for the case
when a hyperplaneH of the formH = v+{(x1, . . . , xj−1, k, xj+1, . . . , xd) :xi ∈
R}, j ∈ {1, . . . , d}, k ∈ {1, . . . ,2n} contains some point of ω′. To see this, let
v and v′ be two points such that each point of ω′ is on the same side of
the respective pairs of hyperplanes above. Recall from Section 2 that the
constructed cells do not vary from the viewpoint of the reference points in

this case. More precisely, the indicator function fω
′,0

v,n is the translate of fω
′,0

v′,n

by v− v′.
The above containment property is equivalent to the condition that v

is in
⋃

ξ∈ω′∩[−2n,2n)d
⋃d
j=1

⋃2n

k=1−ξ+{(x1, . . . , xj−1, k, xj+1, . . . , xd) :xi ∈R
d}.

This is a countable union of sets of measure 0 with probability 1; hence the
points of discontinuity form a set of measure 0. �

Define [as in (1.5)] the averaging function fω,ξn = 1
2nd

∫

[0,2n)d f
ω,ξ
v,n dv for

ω ∈Ω, ξ ∈ ω. By the previous lemma, the integral in the definition exists.

Proposition 3.3. For P-almost every ω ∈ Ω, for every ξ ∈ ω, the L1

limit fω,ξ of fω,ξn exists as n→∞, it is a function with values in [0,1], it has
integral 1, and satisfies P[diam({ξ} ∪ supp(fω,ξ))>R|ξ ∈ ω]≤ c exp(−bRd)
with some c, b > 0.

Proof. Since the measure P is equivariant, it is enough to prove the
claim for the Palm version: for P′-almost every ω′ ∈Ω′ and with ξ = 0. Recall
that ER is a monotone increasing family of events that exhausts a subset of
P

′-measure 1 in Ω′, and that the function fω
′,0, if exists, does not depend

on R. Fix R, let ER be as in Lemma 2.2 and assume that ω′ ∈ER.
For an arbitrary m,n ∈ Z

+, m≤ n, u ∈ 2m{0,1, . . . ,2n−m − 1}d, let

gm,u,ω
′

n = gm,un :=
1

2md

∫

u+[0,2m)d
fω

′,0
v,n dv.

In particular, fω
′,0

n = gn,un . Then

fω
′,0

n =
1

2(n−m)d

∑

u∈2m{0,1,...,2n−m−1}d

gm,un .(3.1)

If u,u′ ∈ 2m · {0,1, . . . ,2n−m − 1}d, then gm,um = gm,u
′

m because the sequence
of dyadic partitions used in the construction for such a u and u′ is the same
up to stage m, also showing (1.4). We have

‖gm,un − gm,um ‖1 =
∥

∥

∥

∥

2−md
∫

u+[0,2m)d
fω

′,0
v,n dv − 2−md

∫

u+[0,2m)d
fω

′,0
v,m dv

∥

∥

∥

∥

1

≤ 2−md
∫

u+[0,2m)d
‖fω′,0
v,n − fω

′,0
v,m ‖1 dv,
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and similarly for u′.
By Lemma 2.2(iii), the right-hand side of this inequality is bounded from

above by
∑∞

i=m ci(R).
Hence by the triangle inequality we obtain

‖gm,un − gm,u
′

n ‖1 ≤ ‖gm,un − gm,um ‖1 + ‖gm,um − gm,u
′

m ‖1 + ‖gm,u′n − gm,u
′

m ‖1
(3.2)

≤ 2

∞
∑

i=m

ci(R).

Using (3.1) this implies

‖fω′,0
n − gm,0n ‖1 ≤

∑

u∈2m{0,1,...,2n−m−1}d

1

2(n−m)d
‖gm,un − gm,0n ‖1

(3.3)

≤ 2

∞
∑

i=m

ci(R).

On the other hand, for any m,n ∈ Z
+, m≤ n,

‖fω′,0
n − fω

′,0
m ‖1 ≤ ‖fω′,0

n − gm,0n ‖1 + ‖gm,0n − fω
′,0

m ‖1
= ‖fω′,0

n − gm,0n ‖1 + ‖gm,0n − gm,0m ‖1.

The first term on the right is ≤ 2
∑∞

i=m ci(R) by (3.3), and the second term

is ≤∑n
i=m ci(R) by Lemma 2.2(iii). We conclude that (fω

′,0
n ) is a Cauchy

sequence, and so there is a limit fω
′,0 in L1. The fact that fω

′,0 takes values

in [0,1] follows directly from the same fact about fω
′,0

n . By Lemma 2.1 it is

easy to see that
∫

fω
′,0

n → 1, and by Lemma 2.2 the support of each fω
′,0

n

is within radius cR around 0; hence the dominated convergence theorem
implies that

∫

fω
′,0 = 1. The bound on the tail probability of the support is

the consequence of Lemma 2.2(i). The above hold for every R and P
′[∪ER] =

1; hence the proposition follows. �

The next proposition implies the variant of Theorem 1.1 for fractional
allocation rules instead of allocation rules; see Definition 1.

Proposition 3.4. The map η :ω 7→ fω with fω :ω→ L1(Rd), ξ 7→ fω,ξ

is a fractional allocation rule. It satisfies

P[diam({0} ∪ suppfω,0)>R|0 ∈ ω]≤ c exp(−bRd)

for some c and b > 0.
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Proof. By Proposition 3.3 we have that η :ω 7→ fω with fω :ω→L1(Rd),
ξ 7→ fω

′,ξ satisfies (1′) and (3) in the definition of a fractional allocation rule
and similarly for the claim about the support of fω,0. Measurability and
equivariance are clear from the construction. So it only remains to prove
(2′).

By Lemma 3.1, ξ 7→ fω,ξv,n defined on ω is a weak allocation; in particular,
(2) from Definition 1 holds. Hence for almost every x ∈R

d,

∑

ξ∈ω

fω,ξn (x) =
∑

ξ∈ω

2−nd
(
∫

[0,2n)d
fω,ξv,n dv

)

(x)

= 2−nd
∫

[0,2n)d

∑

ξ∈ω

fω,ξv,n (x)dv ≤ 2−nd
∫

[0,2n)d
1dv = 1,

showing that {fω,ξn : ξ ∈ ω} satisfies (2′).

Finally, this implies
∑

ξ∈ω limn f
ω,ξ
n (x) = limn

∑

ξ∈ω f
ω,ξ
n (x)≤ 1 (applying

the dominated convergence theorem for every compact subset of Rd). �

The following theorem is a special case of the Campbell–Mecke formula.
We will use it in the proof of Lemma 3.6.

Theorem 3.5 [10]. For any integrable f :Rd ×Ω→R
+,

E

[

∑

x∈ω

f(x,ω)

]

=

∫

Rd

E[f(x,ω)|x ∈ ω]dx,

where E is expectation with respect to the Poisson point process of unit
intensity.

Lemma 3.6. P-almost surely for almost every x ∈R
d, x is contained in

supp(fω,ξ) for only finitely many ξ’s.

Proof. Let z ∈ Z
d, and denote by Yz the random variable that is the

number of centers ξ of ω such that the intersection of supp(fω,ξ) and z +
[0,1)d is nonempty. Then

EYz ≤E

[

∑

ξ∈ω

A(ξ,ω)

]

,

where A(x,ω) = 1 if x ∈ ω and diam({x} ∪ suppfω,x) > |x − z| −
√
d, and

A(x,ω) = 0 otherwise. Using Proposition 3.4 and Theorem 3.5 we have

EYz ≤
∫

Rd

P[diam({x} ∪ suppfω,x)> |x− z| −
√
d|x ∈ ω]dx

≤
∫

Rd

c exp(−b(|x| −
√
d)d)dx <∞.
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Hence P[Yz = ∞] = 0, and also P[
⋃

z∈Zd{Yz =∞}] = 0, which implies the
statement. �

A direct consequence is the following:

Lemma 3.7. For P-almost every ω one can partition R
d to countably

many measurable sets of the form S =
⋂k
i=1 supp(f

ω,ξi) (with some ξ1, . . . , ξk ∈
ω and k ∈N).

The previous lemma will enable us to define an allocation rule from our
fractional allocation rule, in such a way that the cell allocated to a center
ξ ∈ ω is contained in supp(fω,ξ). Namely, for each set S as in Lemma 3.7,
we will partition S into measurable pieces S1, . . . , Sk such that λ(Si) =
∫

S f
ω,ξi(x)dx. We will do it in a way such that S and the fω,ξi (i= 1, . . . , k)

determine the pieces Si in some previously fixed (deterministic) way, and
such that the pieces change continuously with S (in terms of Hausdorff dis-
tance between sets, say). The central issue is to obtain a partition and an
association to the centers that is translation equivariant. A method to do
so was suggested to us by Yuval Peres, replacing the original, less elegant
proof for the following lemma:

Lemma 3.8. Let η :ω 7→ fω be a fractional allocation rule that satisfies
Lemma 3.7. Then there is an allocation rule ψ :ω 7→ ψω such that for every
ξ ∈ ω we have supp(ψω(ξ))⊂ supp(fω,ξ).

Proof. For each set of the form S =
⋂k
i=1 supp(f

ω,ξi) as in Lemma 3.7,

let α= {ξ1, . . . , ξk} and ci :=
∫

S(f
ω,ξi)(x)dx, i= 1, . . . , k. So

∑k
i=1 ci is the

Lebesgue measure of S. Apply a version of the site-optimal Gale and Shap-
ley algorithm (see [4] for a more detailed description) within S to parti-
tion it into S = (S1, . . . , Sk) (up to a remainder set of measure zero) as
follows with Si corresponding to ξi. First we put all the points of S that
are equidistant to any pair of centers from α into the set W . We note
that W has measure zero. Now we will stage-wise define a series of dis-
joint subsets of S \W and auxiliary sets corresponding to the centers in
α. Let A1(ξ1), . . . ,A1(ξk) be the intersections of the Voronoi cells of α with
S \W , and set R0(ξi) = ∅ for all i ∈ [k]. Suppose that we have already
constructed the sets in {Al(ξi),Rl−1(ξi) : i ∈ [k], l ≤ n}. The disjoint sets
An+1(ξ1), . . . ,An+1(ξk) will be obtained as follows. We define for all n and
ξi ∈ α the rejection radius rn(ξi) = inf{r ≥ 0 :λ(An(ξi)∩B(ξi, r))≥ ci}, and
the rejection sets Rn(ξi) =An(ξi) \B(ξi, rn(ξi)). Using this notation we de-
fine An+1(ξi) = (An(ξi)∩B(ξi, rn(ξi)))∪N(ξi), where x ∈N(ξi), if and only
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if x /∈⋃nj=1Rj(ξi), x ∈
⋃k
j=1Rn(ξj), and if for any other l ∈ [k], it holds that

x /∈⋃n
j=1Rj(ξl), then |x− ξi|< |x− ξl|.

With the aid of these sets we are able to define S , let Si =
⋃

n≥1

⋂

k≥n(Ak(ξi)∩
B(ξi, rk(ξi))). It is clear that the map ξi 7→ Si is equivariant under transla-
tions, that is, for any y ∈ R

d we have ξi + y 7→ Si + y when we run the
algorithm for S + y and α + y. It is also true that the Si’s are pairwise
disjoint, because the sets An(ξ1), . . . ,An(ξk) were also pairwise disjoint by
definition for all n≥ 1. It remains to show that they provide a partition of
S \W up to a set of measure zero. First note that for each i we have λ(Si) =
lim infn→∞ λ(An(ξi)∩B(ξi, rn(ξi))) = limsupn→∞ λ(An(ξi)∩B(ξi, rn(ξi)))≤
ci. If there exists an x /∈

⋃

i∈[k]Si, then x ∈
⋂

i∈[k]

⋃

n≥1Rn(ξi), which implies

that
⋃

n≥1Rn(ξi) is nonempty for each i ∈ [k], so therefore λ(Si) = ci. It
follows that λ(S \ (⋃i∈[k]Si)) = 0.

We also provide the intuitive picture for better understanding. Let each
ξi start growing a ball around itself at linear speed, simultaneously. At time
t let each ξi capture all points of S that its growing ball meets, as long as
no other ball has captured the point at some earlier time. However, when
the total measure of points in S that ξi has captured by time t is equal to
ci, stop growing its ball; that is, let Pi(t

′) be equal to Pi(t) as long as t′ > t
[where Pi(t) is the set of points in S that have been captured by ξi by time
t]. It is clear that by some time t the Lebesgue measure of Pi(t) is equal to
ci for each i. Define this Pi(t) to be the part of the cell of ξ within S. One
can also show that the correspondence between α and S is stable; see [4] for
more details.

Doing this subdivision for each of the countably many S, we get the cell
of ξi assigned to it by our allocation. Measurability and invariance follow
from our method and the assumptions. �

We finish by noting that Proposition 3.4 and Lemma 3.8 imply Theo-
rem 1.1.

If we wanted the cells assigned by our allocation rule to be connected and
to contain the corresponding center, this could be done by growing “tendrils”
that connect the pieces of each cell C of the original allocation, and the center
for C. By taking care to preserve measurability and equivariance, we believe
that this can be done, but we omit the details here.

Remark 3.9. We have only worked out the allocation rule for the
translation-equivariant case. However, one can make it isometry-equivariant.
Besides parameter v that determined a translate of 2nZd in the definition of

the function fω,ξv,n , we need to introduce a parameter θ ∈ {x ∈R
d, |x|= 1} to

determine a rotation of Zd. When we integrate through v in the definition

of fω,ξn , we then have to integrate with respect to θ as well; otherwise every
part of the proof extends to this modified setup automatically.
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Remark 3.10. An intuitive interpretation of the AKT algorithm comes
from thinking of the centers as gas particles. Then the procedure systemati-
cally equates pressures between neighboring cubes in the dyadic subdivision.
For the sake of analysis it was easier to allow cells around particles to ex-
pand in the directions of the axes, but a more “canonical” version would be
obtained without this artifact. That is, put one particle of gas in each center
of the point process, and start growing cells around them (small balls at the
beginning), whose pressures would be proportional to the volume of the cell
and at normal direction to the surface. When two cells meet, the pressure
differences between them would tend to equate, and in the limit all the cells
would have the same volumes. The tail behavior of their diameters should
be as good as that of our fractional allocation rule (and perhaps better if
we take constant factors into account). On an even more speculative note,
we mention that the above procedure looks like a modification of the stable
allocation rule: do not fix centers, and let the growing cells “push” each
other while occupying yet unoccupied territories.

Question 3.11. Can one make the above heuristics precise in order to
obtain a canonical allocation rule of optimal tail?

4. Proofs of Lemmas 2.1 and 2.2. The cuboid AKTω,v,n(0) is a result of
nd affine transformations (in n stages), not taking into account in how many
steps the initial cell of 0 is constructed. Hence we can bound the diameter of
Cω,0v,n ∪{0} by first bounding |aux(0, v, n)| and then bounding the sum of the

lengths of the edges of Cω,0v,n (which bounds the diameter of Cω,0v,n ). In each
stage there is at most 1 step along each of the d axes. Also, the sizes of the
steps along different axes are independent as random variables. Therefore,
if we wish to obtain an upper bound on the total movement of a point x
during the shifts, steps along different axes can be treated separately.

The next lemma is standard, and we prove it only for completeness.

Lemma 4.1. Let X be a random variable with Poisson distribution of
mean λ. If 0≤ ρ≤ 2, then

P[|X − λ|>λρ]< 2exp

(

−λρ
2

4

)

.

Proof. Note that the moment generating function of X is

M(t) =E[exp(tX)] = exp(λ(et − 1)), t ∈R.

For one side

P[X − λ > λρ] =P[exp(tX)> exp(λt(ρ+1))]

<
E[exp(tX)]

exp(λt(ρ+1))
=

exp(λ(et − 1))

exp(λt(ρ+1))
,
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where t > 0, and we use Markov’s inequality. Now, for 0 < t < 1 we have
et < 1 + t+ t2, so

P[X − λ > λρ]<
E[exp(tX)]

exp(λt(ρ+ 1))
= exp(λ(t2 + t)− λt(ρ+ 1)).

The last expression is minimized by t= ρ/2, so

P[X − λ > λρ]< exp

(

−ρ
2λ

4

)

.

For the other bound,

P[λ−X > λρ] =P[exp(−tX)> exp(−λt(1− ρ))]

<
E[exp(−Xt)]

exp(−λt(1− ρ))
=

exp(λ(e−t − 1))

exp(−λt(1− ρ))
,

where t > 0, and we use again Markov’s inequality. Now, for 0< t we have
e−t < 1− t+ t2/2, so

P[λ−X >λρ]<
exp(λ(e−t − 1))

exp(−λt(1− ρ))
= exp(λ(t2/2− t) + λt(1− ρ)).

The last expression is minimized by t= ρ, so

P[λ−X >λρ]< exp

(

−ρ
2λ

2

)

.
�

For a measurable subset B ⊂R
d, let N(B) denote the number of centers

of the Poisson point process in B. Let l(Cω,ξv,n ) ∈R
d denote the vector, whose

ith coordinate is the length of an edge parallel to the ith axis of the cuboid

Cω,ξv,n .
The next lemma summarizes all the needed consequences of the concen-

tration of the number of centers in a fixed set. Namely, the discrepancy
of this number determines the distribution of how much a center is moved
(through its auxiliary points) and a cuboid deformed during the AKT(v)
procedure, and these two give bounds on the distance of the center from the
resulting cell and the diameter of the cell, respectively.

Lemma 4.2. There exist c, b > 0 and an increasing family of events
(ER)R>0 such that:

(i) 1−P
′[ER]< c exp(−bRd);

(ii) there exist c′i = c′i(R) (i ∈ {0,1, . . .}) such that for every ω′ ∈ER and
every v ∈R

d, one has |aux(0, v, i)− aux(0, v, i− 1)| ≤ c′i and
∑∞

i=0 c
′
i < cR;
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(iii) there exist ei = ei(R) (i ∈ {0,1, . . .}) such that for every ω′ ∈ER and

every v ∈ R
d, one has |l(Cω′,0

v,i )− l(Cω
′,0

v,i−1)|∞ < ei and such that
∑∞

i=0 ei <
cR.

Proof. Our analysis will loosely follow the argument of Talagrand and
Yukich [11], although we are able to use less sophisticated methods because
the sizes of the induced displacements occurring in further stages of the
AKT algorithm decay much more rapidly in d ≥ 3 than in d = 2. On the
other hand, we have to achieve uniform bounds with respect to v ∈R

d.
It is enough to prove the lemma only for R>R0 for some suitably chosen

R0 > 0. Then the lemma will follow for every R> 0, perhaps with different
constants.

Fix R>R0; R0 will be determined later.
In any given stage the shift of the auxiliary point of 0 in the direction of

the ith axis only depends on the number of auxiliary points in the currently
considered cuboids. Moreover, the length of the shift only depends on the ith
coordinates of the auxiliary points in the cube. Hence the shifts in different
directions are independent. Therefore it will be enough to bound the shifts
along the first axis.

We set r0(R) = ⌈log2R⌉− d− 1 for each R> 0. That is, R
2d+1 ≤ 2r0 < R

2d
.

We will define the event AR =AR,1 in terms of bounds on the number of
centers in certain cuboids. For each n≥ r0 consider cuboids that satisfy the
following three conditions: the cuboid is the translate of [0,2n−1 − 2−n−1)×
[0,2n−2−n)×· · ·× [0,2n−2−n), has a corner in 2−nZd, and either contains 0,
or one of its translates by ±(2n−1 − 2−n−1,0, . . . ,0) does. Let Gn1 denote
the set of these objects. Similarly, for each n ≥ r0 consider cuboids that
satisfy the following three conditions: the cuboid is the translate of [0,2n−1+
2−n−1)× [0,2n+2−n)× · · ·× [0,2n+2−n), has a corner in 2−nZd and either
it contains 0 or one of its translates by ±(2n−1 + 2−n−1,0, . . . ,0) does. Let
Gn2 denote their set. Let us set ρn = ρn(R) = 2−(5n/4)−2dR5/4. For each n≥
r0 = r0(R) and Q ∈ Gn1 ∪Gn2 , define the event BQ, that |N(Q\{0})−λ(Q)| <
λ(Q)ρn. Let AR =

⋂∞
n=r0

⋂

Q∈Gn
1 ∪G

n
2
BQ. Note that r0(R) and ρn(R) for any

fixed n are increasing in R, and therefore (AR)R>0 is an increasing family
of events.

It is straightforward from the defining formula, that ρr0 ≥ ρn for any
n≥ r0. Also,

ρr0 = 2−r0(5/4)−2dR5/4 ≤
(

2d+1

R

)5/4

2−2dR5/4 = 2(5/4)−(3d/4) ≤ 1

2
.(4.1)

Furthermore,
∞
∑

n=r0

ρn = ρr0

∞
∑

n=r0

ρn
ρr0

≤ 1

2

∞
∑

i=0

(2−5/4)i =
1

2− 2−1/4
< 1.(4.2)
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First, we establish an upper bound on (1 − P
′[AR]). The distribution of

N(Q \ {0}) according to the Palm version of the Poisson point process is
Poisson with mean λ(Q). Thus we can use Lemma 4.1 [noting that ρn ≤ 1

2

for all n≥ r0 and that λ(Q)< 2(n−1)d for Q ∈ Gn1 ∪ Gn2 ] and a simple union
bound to get

1−P
′[AR]≤

∞
∑

n=r0

∑

Q∈Gn
1 ∪G

n
2

(1−P
′[BQ])

<

∞
∑

n=r0

(|Gn1 |+ |Gn2 |)2 exp
(

−ρ
2
n2

(n−1)d

4

)

.

Using |Gn1 |= 3(22n − 1)d and |Gn1 |= 3(22n +1)d, we conclude that

1−P
′[AR]<

∞
∑

n=r0

2(2n+1)d+4 exp(−2(n−1)d2−((5n)/2)−4d−2R5/2)

(4.3)

=
∞
∑

n=r0

22nd+d+4 exp(−2n(d−5/2)−5d−2R5/2).

Denote the ith term in the sum by ai. Observe that

ar0 <R2d2−2d2+d+4 exp(−Rd2−d2−(7/2)d+1/2),(4.4)

(by R/2d+1 ≤ 2r0 ≤R/2d), and that

an+1

an
= 22d exp(2n(d−5/2)−5d−2R5/2(1− 2(d−5/2)))

≤ 22d exp(−2(n−r0)(d−5/2)−d2−(7/2)d+1/2Rd(2(d−5/2) − 1))

≤ 22d exp(−Rd2−d2−(7/2)d+1/2(2(d−5/2) − 1)).

Hence there exists a constant c′ > 0 such that for R0 chosen large enough,
for every R>R0,

1−P
′[AR]< exp(−c′Rd).

Now let us assume that n≥ r0 throughout the following computation. Let
W be an arbitrary translate of [0,2n)d containing 0, with U its left half and
V its right. Then, when conditioned on AR (and on 0 being a center), the
following is true:

∣

∣

∣

∣

N(U)−N(V )

N(U) +N(V )

∣

∣

∣

∣

< 4ρn.(4.5)
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We can show this by making an easy observation: there are U ′, V ′ ∈ Gn1
and U ′′, V ′′ ∈ Gn2 , so that U ′ ⊂U ⊂ U ′′ and V ′ ⊂ V ⊂ V ′′. Note that

N(U)−N(V )

N(U) +N(V )
(4.6)

≤ N(U \ {0})−N(V \ {0})
N(U \ {0}) +N(V \ {0}) +

1

N(U \ {0}) +N(V \ {0}) .

On AR we have

N(U \ {0})−N(V \ {0})
N(U \ {0}) +N(V \ {0})

≤ N(U ′′ \ {0})−N(V ′ \ {0})
N(U ′ \ {0}) +N(V ′ \ {0})

(4.7)

<
1/2(2n +2−n)d(1 + ρn)− 1/2(2n − 2−n)d(1− ρn)

(2n − 2−n)d(1− ρn)

=
1

2

[

1 + ρn
1− ρn

(

2n +2−n

2n − 2−n

)d

− 1

]

,

where the first inequality holds by monotonicity of N(·) and the second by
the definition of AR. To further estimate (4.7), use that

1 + ρn
1− ρn

= 1+
2ρn

1− ρn
≤ 1 + 4ρn,

(recalling ρn ≤ 1
2 for n≥ r0) and that

(

2n + 2−n

2n − 2−n

)d

=

(

1 +
2

22n − 1

)d

<

(

1 +
1

22n−2

)d

< 1 + 2d
1

22n−2
.

We obtain from the two previous expressions and (4.7) that

N(U \ {0})−N(V \ {0})
N(U \ {0}) +N(V \ {0}) <

1

2

(

4ρn +
1

22n−2−d
+

1

22n−2−d
4ρn

)

,(4.8)

which is an upper bound for the first term on the right-hand side of (4.6).
The second term on the right-hand side of (4.6) is (rather roughly) bounded
by

1

N(U \ {0}) +N(V \ {0}) <
1

(2n − 2−n)d
1

1− ρn
<

1

22n
.(4.9)

If R>R0(d) for an R0 chosen suitably large, it follows that ρn = 2−(5n)/4−2dR5/4

is greater than 2−2n+2 for n≥ r0. Therefore by adding up bounds (4.8) and
(4.9), we show that for R>R0,

N(U)−N(V )

N(U) +N(V )
< 4ρn.
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Symmetry of AR in U and V implies
∣

∣

∣

∣

N(U)−N(V )

N(U) +N(V )

∣

∣

∣

∣

< 4ρn.

Having estimated the discrepancy of points in the two halves of cubes,
we are now ready to give upper bounds on the total shift during the AKT
procedure. Let v′ be an arbitrary point in R

d, and let Dn = (aux(0, v′, n))1−
(aux(0, v′, n− 1))1, the signed amount by which the auxiliary point of 0 is
translated along the first axis in the nth stage of AKT(v′). By the observa-
tion that until the nth stage, every displacement takes place inside a cube
of sidelength 2n, we trivially have

∣

∣

∣

∣

∣

r0−1
∑

n=1

Dn

∣

∣

∣

∣

∣

≤ 2r0−1 <
R

2d+1
<
R

2d
.

For n≥ r0, Dn = (2n−1 − hn)
N(Un)−N(Vn)
N(Un)+N(Vn)

, where Qn is the element of v′ +

2nZ+ [0,2n)d containing 0, with Un its left half and Vn its right, and 0≤
hn ≤ 2n−1 is the distance of aux(0, v′, n− 1) to the hyperplane separating
Un and Vn. Conditioned on AR (and 0 being a center) we then have

∣

∣

∣

∣

∣

∞
∑

n=r0

Dn

∣

∣

∣

∣

∣

≤
∞
∑

n=r0

∣

∣

∣

∣

(2n−1 − hn)
N(Un)−N(Vn)

N(Un) +N(Vn)

∣

∣

∣

∣

<
∞
∑

n=r0

2n+1ρn =
∞
∑

n=r0

2−n/4−2d+1R5/4

(4.10)

=R5/42−r0/4−2d+1
∞
∑

n=0

2−n/4

≤R2−(7/4)d+5/4 1

1− 2−1/4
<
R

2d
,(4.11)

since R
2d+1 ≤ 2r0 by the choice of r0. Thus we have that, conditioned on

the event AR and 0 being a center, for every v′ ∈ R
d the total shift of 0

along the first axis, |(aux(0, v′, n))1|, is at most R
d for every n≥ 1 when the

AKT(v′) is run up to stage n. Furthermore, we have seen in (4.10) that
on AR the length |(aux(0, v′, n))1 − (aux(0, v′, n− 1))1| is at most b′n(R) :=
2−n/4−2d+1R5/4 whenever n≥ r0(R).

For 1< i≤ d one can define the events AR,i similarly to AR,1, to establish
tail bounds of the lengths of the shifts along the ith axis. We define the
subevents of AR,i analogously to the subevents of AR,1, conditioning on
the relative deviation (with respect to the expectation) of the number of
configuration points being between factors (1− ρn) and (1 + ρn) in certain
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cuboids, with n depending on the side length of the cuboid. Thus we arrive
at the same failure probability bound as in (4.11).

Now define

ER :=

d
⋂

i=1

AR,i.(4.12)

This event satisfies conditions (i) and (ii) of the lemma: (i) holds by a union
bound on the complement events. On the other hand, (ii) is true by (4.11)
summed up for each of the d directions (using the triangle inequality), with
c′n(R) = db′n(R). Furthermore, (ER)R>0 is an increasing family of events,
since for each i, the families (AR,i)R>0 are as well.

Now we turn to the proof of (iii).

It is clear that |l(Cω′,0
v,n )|∞ ≤ 2r0−1 < R

2d+1 for n < r0 because transforma-

tions of the cell only happen inside a cube of sidelength 2r0−1.
For n≥ r0,

|l(Cω′,0
v,n )|∞ < |l(Cω′,0

v,n−1)|∞(1 + 4ρn)

because, conditioned on ER, in each step of the nth stage, at most one
sidelength can be stretched to at most (1+4ρn) times its current size, using
(4.5). This implies by (4.2) that

|l(Cω′,0
v,n )|∞ < |l(Cω′,0

v,r0−1)|∞
∞
∏

i=r0

(1 + 4ρi)≤
R

2d+1
exp

(

∞
∑

i=r0

4ρi

)

<
R

2d+1
exp(4).

On ER, each component of l(Cω
′,0

v,n+1) is between multiplicative factor (1−
4ρn+1) and (1+4ρn+1) of the respective component of l(Cω

′,0
v,n ). This implies

with the previous computation that

|l(Cω′,0
v,n+1)− l(Cω

′,0
v,n )|∞ < 4ρn+1|l(Cω

′,0
v,n+1)|∞ < 4ρn+1

R

2d+1
exp(4).

The {ρn} series is summable [see (4.2)] and
∑∞

i=r0
ρi

exp(4)
2d−1 R< exp(4)

2d−1 R, which
proves the claim. �

Proof of Lemma 2.1. What we need to prove is that the measure of
the cell assigned to 0 by AKT(v) run up to stage n tends to 1 with n. This
is again a simple consequence of the fact that the number of Poisson points
in a large cube is concentrated around the volume of the cube and that
for any v and n the weak allocation AKTω′,v,n is the composition of local
allocations between the classes of the dyadic partition and the centers lying
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in them. The only extra technicality comes from the fact that we want to
prove convergence of the cell volumes uniformly in v, but this can be checked
in the same way as in the proof of Lemma 4.2, so we only sketch it here. For
R> 0, let the events ER be the same as in that lemma. In particular, for any
ω′ ∈ ER and v ∈ R

d we have that (2n − 2−n)d(1− ρn(R))<N(Qn \ {0}) <
(2n+2−n)d(1+ρn(R)), where Qn is the element of v+2nZd+[0,2n)d which

contains 0. Since Cω
′,0

v,n is a cell of a local allocation between Qn and ω′∩Qn,
λ(Cω

′,0
v,n ) = 2nd

N(Qn)
→ 1 as n→∞, uniformly in v. The events ER exhaust a

set of measure 1 in Ω′, so the claim of the lemma follows. �

Proof of Lemma 2.2. We take the same events ER as in Lemma 4.2,
and therefore (i) is satisfied. Furthermore, (ER)R>0 is an increasing family.

To show (ii), use the following upper bound together with (ii) and (iii) of
Lemma 4.2:

diam(Cω
′,0

v,n ∪ {0})≤ |aux(0, v, n)|1 + d|l(Cω′,0
v,n )|∞.

To verify that (iii) holds, let us fix n≥ r0(R). Consider the transformations
of the cell of 0 that occur during the steps of the nth stage. There are d steps,
and they all can be treated similarly. Therefore we only consider the step
along the first axis. Let A denote the cell before this step, and B thereafter.
We introduce an auxiliary cell C: if w ∈R

d is the shift vector of the auxiliary
point of 0 in this step, then let C =A+w. First, on ER we obtain an upper
bound on λ(A∆C).

λ(A∆C)≤ 2|w||l(A)|d−1
∞ ≤ 2c′n(R)R

d−1,

where we use (ii) and (iii) from Lemma 4.2. Now we bound λ(C∆B) using
(iii) from Lemma 4.2:

λ(C∆B)≤ |l(A)|d−1
∞ |l(A)− l(B)|∞ ≤Rd−1en(R).

If we consider the two series whose summands are the respective right-hand
sides of the two previous highlighted formulas, then both of them are ab-
solutely summable by Lemma 4.2. We obtain cn(R) := d(Rd−1(2c′n(R) +
en(R))). �
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