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Abstract

We establish the existence of minimizers in a rather general setting of
dynamic stochastic optimization in finite discrete time without assuming
either convexity or coercivity of the objective function. We apply this to
prove the existence of optimal investment strategies for non-concave utility
maximization problems in financial market models with frictions, a first
result of its kind. The proofs are based on the dynamic programming
principle whose validity is established under quite general assumptions.
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1 Introduction

In classical optimal investment problems rational agents maximize their ex-
pected utility, which is usually assumed the be a concave function of their ter-
minal wealth. Concavity is justified by the risk aversion of the given agent; see
e.g. [4], [25] or [19, Chapter 2]. However, recently there has been growing interest
in non-concave utilities as well. For instance, the alternative theory of [45, 23]
considered so-called “S-shaped” utilities which are convex (risk-seeking) up to
a certain wealth level and concave (risk-averse) above it. They also argued that
investors distort objective probabilities in their decision-making procedures.

In order to tackle this lack of concavity, there is a need for new mathe-
matical tools. The first contribution of the present paper is to prove a fairly
general dynamic programming principle for discrete time, multistep stochastic
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optimization problems with a not necessarily concave objective function (Theo-
rem 3 below). We adopt the general stochastic dynamic programming format of
[40] and [18], which extends more familiar stochastic control problems in discrete
time. We extend the existence results of [40] and [18] by relaxing their assump-
tions on compactness and convexity. We follow the arguments of [30] where it
was assumed that the objective is given in terms of a convex integrand that has
an integrable lower bound. In the context of utility maximization, the bound-
edness means that the utility functions are bounded from above but we pose no
restrictions on its domain. The unbounded case is left for future research. It
has been argued that being bounded above is a rather natural assumption on a
utility function; see e.g. [1, 42, 26].

Our main existence result, Theorem 3 below, is a direct extension of the
existence result contained in [30, Theorem 2]. It was shown in [30] how the
abstract results on stochastic dynamic programming quickly yield extensions of
some fundamental results in financial mathematics to nonlinear market models
with illiquidity effects and portfolio constraints. Similarly, the main result of
this paper gives existence results on optimal investment in nonlinear market
models for nonconcave utility functions. The financial applications are given in
Sections 4 and 5.

It is clear that a mere existence result is not of much practical significance
if nothing else is known of the solutions of an optimization problem. Existence
is, however, a basic first step in the analysis and in the general class of prob-
lems considered here, a highly nontrivial question already. The techniques used
in existence proofs often provide tools and estimates that later prove useful in
solving problems in more concrete problem classes. Furthermore, existence re-
sults together with counterexamples delineate what kind of assumptions (on the
utility and on the underlying market model) are necessary to have a well-posed
problem.

There exists wide literature on existence results on optimal investment be-
yond the classical setting of concave utilities and perfectly liquid financial mar-
kets. The rest of this section gives an overview of the relevant literature in order
to put our financial contributions in perspective.

Existence results for optimal strategies in general, semimartingale models of
frictionless markets were obtained in [24, 43] for concave utility functions, see
also the references therein for earlier developments. Subsequently, models with
transaction costs also received a treatment, still in the case of concave utilities,
see [6, 8]. Here we do not review the plethora of papers in more specific model
classes.

Studies on non-concave utilities are less abundant. One-step models of fric-
tionless markets were considered in [21, 5]. Multistep models posed various
challenges: in the presence of probability distortions weak convergence tech-
niques had to be applied, [10, 34] and, as shown in [31], in this case the domain
of optimization may fail to be closed. With no distortions, the optimization
problems could be treated by dynamic programming but the absence of con-
cavity requires more involved arguments, see [31, 11, 12]. The case of bounded
above utilities was treated in [31]. Possibly unbounded utilities appear in [11]
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and in [12]. The former paper treats utility functions defined on R while the
latter considers utilities on R+. Certain recursive utility specifications figure in
[2, 16] but they are very different in spirit from all the other works cited. Due
to the mathematical difficulties, continuous-time studies focused mainly on the
case of complete markets where every contingent claim can be replicated; see
[9, 3, 22, 7, 13, 36, 32, 33].

All the articles in the previous paragraph assumed frictionless trading in
the given financial market. A more realistic description of the trading mech-
anism must account for illiquidity effects and/or transaction costs as well. To
our knowledge, all previous existence results on optimal investment under such
market frictions assume a concave utility function; see e.g. [20, 29, 15] and the
references therein.

Theorem 4 below provides an existence result for optimal investment in
discrete-time illiquid markets and with bounded above, but not necessarily con-
cave utilities defined on R. This seems to be the first result involving non-
concave utilities and markets with frictions at the same time. Further extension
is given in Theorem 5 which extends the market model by allowing for general
convex trading costs and portfolio constraints. In particular, the model does
not assume the existence of a cash-account (a perfectly liquid numeraire asset)
a priori. Moreover, we allow for intertemporal random endowments/liabilities.

2 Dynamic programming

Let (Ω,F , (Ft)Tt=0, P ) be a complete filtered probability space and let h be a
proper normal F-integrand on Rn, i.e. an extended real-valued B(Rn) ⊗ F-
measurable function such that h(·, ω) is lower semicontinuous (lsc) for P -almost
every ω ∈ Ω. A normal integrand may be interpreted as a “random lsc func-
tion”. Accordingly, properties of normal integrands are interpreted in the P -
almost sure sense. For example, a normal integrand h is convex, positively
homogeneous, positive on a set C ⊆ Rn, . . . if there is an A ∈ F with P (A) = 1
such that h(·, ω) is convex, positively homogeneous, positive on C, . . . for all
ω ∈ A. This is consistent with the convention of interpreting inequalities etc.
for random variables in the P -almost sure sense. Indeed, random variables may
be viewed as normal integrands which do not depend on x.

We will make extensive use of the theory of normal integrands and mea-
surable set-valued mappings found in [41, Chapter 14]. In [41], a normal in-
tegrand is defined as a function f whose epigraphical mapping ω 7→ epi f :=
{(x, α) | f(x, ω) ≤ α} is F-measurable and closed-valued. Recall that a set-
valued mapping S : Ω ⇒ Rn is F-measurable if {ω ∈ Ω |S(ω) ∩ U 6= ∅} ∈ F
for all open U ⊆ Rn. Given that F is complete, our definition of a normal
integrand is consistent with that of [41]. Indeed, by [41, Corollary 14.34], the
epi-graphical mapping of an extended real-valued function f is F-measurable
and closed-valued if and only if f is B(Rn) ⊗ F-measurable and f(·, ω) is lsc
for all ω ∈ Ω. Moreover, if the latter property holds P -almost surely, one can
redefine f(·, ω) on a P -null set so that it is lsc for all ω ∈ Ω.
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Given a σ-algebra G ⊆ F , we will denote the set of G-measurable Rd-valued
random variables by L0(Ω,G, P ;Rd), or simply by L0(G) when d is clear from
the context. The set of integrable R-valued random variables will be denoted
by L1.

We will study the dynamic stochastic optimization problem

minimize Eh(x) :=

∫
h(x(ω), ω)dP (ω) over x ∈ N , (P )

where N := {(xt)Tt=0 |xt ∈ L0(Ω,Ft, P ;Rnt)} for given integers nt such that
n0 + · · ·nT = n. Here and in what follows, we define the expectation of an
extended real-valued random variable as +∞ unless its positive part is in-
tegrable. For simplicity, we assume throughout the article that there is an
m ∈ L1 such that h ≥ m. We also assume that (P ) is feasible in the sense
that infx∈N Eh(x) < ∞. In particular, h is then proper in the sense that the
functions h(·, ω) are not identically +∞ and they do not take on the value −∞.

Given a sub-σ-algebra G ⊆ F , the integrable lower bound m implies, by
Theorem 2.1 and Corollary 2.2 of [14], the existence of a normal G-integrand
EGh such that EGh ≥ EGm and

(EGh)(x(·), ·) = EGh(x(·), ·) P -a.s.

for all x ∈ L0(Ω,G, P ;Rn). The normal integrand EGh is called the conditional
expectation of h. It is a proper normal integrand as soon as h(x(·), ·) is integrable
for some x ∈ L0(Ω,G, P ;Rn).

We will use the notation Et = EFt and xt = (x0, . . . , xt) and define extended
real-valued functions ht, h̃t : Rn0+···+nt × Ω→ R recursively for t = T, . . . , 0 by
the general dynamic programming recursion

h̃T = h,

ht = Eth̃t,

h̃t−1(xt−1, ω) = inf
xt∈Rnt

ht(x
t−1, xt, ω).

(1)

This generalization of the classical dynamic programming recursion appeared
first in Rockafellar and Wets [40] and Evstigneev [18]. In order to guarantee
that the above recursion is well-defined and that optimal solutions exist, we will
need to impose appropriate growth conditions on the functions ht.

Following [41], we say that a function f : Rn × Rm → R is level-bounded
in x locally uniformly in u if for each ū ∈ Rm and α ∈ R the set {(x, u) |u ∈
U, f(x, u) ≤ α} is bounded for some neighborhood U of ū.

Theorem 1. Assume that, for t = 0, . . . , T , the function (xt−1, xt) 7→ ht(x
t−1, xt, ω)

is level-bounded in xt locally uniformly in xt−1 for P -almost every ω whenever
ht is well-defined and proper. Then ht is a well-defined proper normal integrand
for all t = 0, . . . , T and

Eht(x
t) ≥ inf

x′∈N
Eh(x′) t = 0, . . . , T ∀x ∈ N . (2)
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Optimal solutions x ∈ N exist and they are characterized by the condition

xt(ω) ∈ argmin
xt

ht(x
t−1(ω), xt, ω) P -a.s. t = 0, . . . , T,

which is equivalent to having equalities in (2).

Proof. Clearly, h̃T is a well-defined proper normal integrand. As noted above,
the lower bound h̃T ≥ m implies that hT is a well-defined proper normal in-
tegrand with hT ≥ ETm. Assume now that ht is well-defined proper normal
integrand with an integrable lower bound mt. By [41, Proposition 14.47], the
level boundedness condition implies that h̃t−1 is a normal integrand. It is also
clear that h̃t−1 ≥ mt so that ht−1 is well-defined proper normal integrand with
the lower bound Et−1mt. The first claim now follows by induction.

Given x ∈ N , we have

Eht(x
t) ≥ Eh̃t−1(xt−1) = Eht−1(xt−1) t = 1, . . . , T,

by definition of h̃t−1 and ht−1, so

Eh(x) = EhT (xT ) ≥ · · · ≥ Eht(xt) ≥ · · · ≥ Eh0(x0) ≥ E inf
x0∈Rn0

h0(x0).

On the other hand, by [41, Theorem 1.17], the infimum in h̃t−1(xt−1(ω)) =
infx ht(x

t−1(ω), x, ω) is attained P -almost surely. By [41, Proposition 14.45(c)],
the function f(x, ω) := ht(x

t−1(ω), x, ω) is an Ft-measurable normal integrand
so, by [41, Theorem 14.37], ht(x

t−1(ω), ·, ω) admits an Ft-measurable ω-wise
minimizer. By induction, there exists an x ∈ N such that the above inequalities
hold as equalities.

The above result extends Theorems 1 and 2 of [18] where it was assumed
that the sets {x ∈ Rn |h(x, ω) ≤ α} are compact for every ω ∈ Ω and α ∈ R.
Indeed, by [18, Theorem 5], this compactness condition is inherited by h̃t and ht,
which clearly implies the uniform level-boundedness assumption in Theorem 1.
On the other hand, the compactness condition often fails in models of financial
mathematics where mere no-arbitrage conditions have been found sufficient.

3 Asymptotic analysis of the existence condi-
tion

We now come to the main result of the paper which is a nonconvex extension
of [30, Theorem 2], which in turn extends well-known results in financial math-
ematics on the existence of optimal trading strategies under the no-arbitrage
condition. Applications to optimal investment with nonconvex utilities will be
given in Sections 4 and 5 below.

We start by recalling some more terminology from variational analysis; see
[41]. The indicator function of a set C is the extended real-valued function δC
defined by δC(x) = 0 if x ∈ C and δC(x) = +∞ otherwise. Given a function g
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on Rn, the set dom g := {x ∈ Rn | g(x) <∞} is called the effective domain of g.
The horizon function of a proper function g is the lsc positively homogeneous
function g∞ given by

g∞(x) := lim
α↗∞

inf
γ>α

x′∈B(x,1/α)

g(γx′)

γ
,

where B(x, 1/α) denotes the closed ball of radius 1/α around x; see [41, Theo-
rem 3.21].

As noted on page 89 of [41], the horizon function is not affected if we replace
g by x 7→ g(x+ x̄) + c, where x̄ ∈ Rn and c ∈ R. Thus, for any x̄ ∈ dom g

g∞(x) = lim
α↗∞

inf
γ>α

x′∈B(x,1/α)

g(γx′ + x̄)− g(x̄)

γ
.

It follows that

g∞(x) ≤ lim inf
α↗∞

g(αx+ x̄)− g(x̄)

α
. (3)

for all x̄ ∈ dom g. We will say that a function g is asymptotically regular if (3)
holds as an equality for all x̄ ∈ dom g. This definition is motivated by the fact
that horizon functions of asymptotically regular functions obey some convenient
calculus rules similar to those of the recession function in the convex case; see
the appendix. Recall that the recession function 0+g of a proper convex lsc
function is given by

(0+g)(x) = lim
α↗∞

g(αx+ x̄)− g(x̄)

α

for every x̄ ∈ dom g; see [38, Theorem 8.5].
The regularity property is also preserved under such operations. Primary

examples of asymptotically regular functions are convex lsc functions as well as
lsc functions on the real line.

Example 1. By [41, Theorem 3.21], lsc proper convex functions are asymp-
totically regular and their horizon functions coincide with recession functions
as defined in [38]. All proper lsc functions on the real line are regular as well.
Indeed, for w > 0 (analogously for w < 0), we see from the definition that
g∞(w) = (g + δR+

)∞(w), so the positive homogeneity of g∞ and an expression
similar to [41, Theorem 3.26] give

g∞(x) = xg∞(1) = x lim inf
α↗∞

g(α)

α
= lim inf

α↗∞

g(αx)

α
.

Applying this to the translated function gx̄(x) := g(x+ x̄) and using the fact that
g∞x̄ = g∞ proves the claim.

We now return to problem (P ) and note that, given a proper normal inte-
grand h, the function h∞ defined by h∞(·, ω) := h(·, ω)∞ is a proper normal
integrand, by [41, Exercise 14.54].

The following gives a sufficient condition for Theorem 1.
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Lemma 2. If {x ∈ N | h∞(x) ≤ 0} = {0}, then the assumption of Theorem 1
is satisfied.

Proof. We proceed by induction. Assume first that ht is a well-defined proper
normal integrand such that {xt ∈ Nt |h∞t (xt) ≤ 0} = {0}, where Nt :=
{xt |xs ∈ L0(Fs) s = 0, . . . , t}. This implies h∞t (0, xt) > 0 for all xt 6= 0
since otherwise there would exist a nonzero xt ∈ L0(Ft) with h∞t (0, xt) ≤ 0. By
[41, Theorem 3.31], both ht and h∞t (since the horizon function of h∞t is h∞t
itself) are level-bounded in xt locally uniformly in xt−1 and

h̃∞t−1(xt−1, ω) = inf
xt∈Rnt

h∞t (xt−1, xt, ω).

Just like in the proof of Theorem 1, h̃t−1, ht−1, h̃∞t−1 and h∞t−1 are then well-
defined proper normal integrands and for every x ∈ N there is an Ft-measurable
xt such that

h̃∞t−1(xt−1(ω), ω) = h∞t (xt−1(ω), xt(ω), ω)

for P -almost every ω. Thus,

{xt−1 ∈ Nt−1 |h∞t−1(xt−1(ω), ω) ≤ 0 a.s.}
⊆ {xt−1 ∈ Nt−1 | h̃∞t−1(xt−1(ω), ω) ≤ 0 a.s.}
= {xt−1 ∈ Nt−1 | ∃xt ∈ L0(Ft) : h∞t (xt−1(ω), xt(ω), ω) ≤ 0 a.s.}

where the inclusion follows from Lemma 6 in appendix. The last expression
equals {0} by the induction hypothesis. It now suffices to note that

{x ∈ N |h∞T (x) ≤ 0} ⊆ {x ∈ N |h∞(x) ≤ 0},

by Lemma 6 in the appendix.

Recall that a set-valued mapping S : Ω ⇒ Rn is measurable if S−1(O) ∈ F
for every open O ⊂ Rn. Here S−1(O) := {ω ∈ Ω |S(ω) ∩ O 6= ∅} is the inverse
image of O.

We are now ready to prove the main result of this paper. It extends the
existence result from [30, Theorem 9] to nonconvex dynamic programming.

Theorem 3. Assume that there is a measurable set-valued mapping N : Ω ⇒ Rn
such that N(ω) is linear for each ω,

{x ∈ N | h∞(x) ≤ 0} = {x ∈ N |x ∈ N},

and that Eh(x+x′) = Eh(x) for all x, x′ ∈ N with x′ ∈ N almost surely. Then
optimal solutions to (P ) exist.

Proof. By [27, Lemma 5.3], there exist Ft-measurable set-valued mappings Nt
such that Nt(ω) are linear and xt ∈ L0(Ft;Nt) if and only if x̃t = xt for some
x̃ ∈ N with x̃ ∈ N and x̃t−1 = 0. Let

h̄(x, ω) = h(x, ω) + δΓ(ω)(x),
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where Γ = N⊥0 × · · · × N⊥T and N⊥t (ω) denotes the orthogonal complement of
Nt(ω). By [41, Exercise 14.12 and Proposition 14.11], Γ is measurable so, by
[41, Example 14.32 and Proposition 14.44], h̄ is a normal integrand.

Let us show that for every x ∈ N , there exists x̄ ∈ N such that

Eh(x) = Eh̄(x̄). (4)

Let x̄0 be the projection of x0 to N⊥0 . Since x0 and N0 are F0-measurable, x̄0

is F0-measurable [41, Exercise 14.17]. By definition of N0, there exists x̃ ∈ N
with x̃ ∈ N and x̃0 = −(x0 − x̄0) ∈ N0. By assumption, Eh(x) = Eh(x + x̃).
Moreover, x0 + x̃0 = x̄0 ∈ N⊥0 . We may repeat the argument for t = 1, . . . , T
to construct x̄ ∈ N with the claimed properties. Since h̄ ≥ h and (4) holds,
we have that minimizers of Eh̄ minimize Eh. By Theorem 1, it thus suffices to
show that h̄ satisfies the condition in Lemma 2.

Clearly, δ∞Γ = δΓ. By Lemma 7 below, h̄∞ ≥ h∞ + δΓ, so

{x ∈ N | h̄∞(x) ≤ 0} ⊆ {x ∈ N | h∞(x) ≤ 0, x ∈ Γ}.

An element x of the set on the right has both x0 ∈ N0 and x0 ∈ N⊥0 and thus,
x0 = 0. We then have x1 ∈ N1 and, similarly, x1 = 0. Repeating the argument
for t = 2, . . . , T , we get x = 0.

If h is a convex normal integrand such that {x ∈ N | h∞(x) ≤ 0} is a linear
space, the condition of Theorem 3 is satisfied with

N(ω) = {x ∈ Rn |h∞(x, ω) ≤ 0, h∞(−x, ω) ≤ 0}.

Indeed, this set is linear and, by [38, Corollary 8.6.1], h(x + x′, ω) = h(x, ω)
for all x′ ∈ N(ω). We thus recover the existence result in [30, Theorem 2]
(recall that the horizon function of a proper lsc convex function coincides with
its recession function). Applications to nonconvex problems will be given in
Sections 4 and 5 below.

4 Optimal investment under market frictions

This section applies Theorem 3 to the problem of optimal investment in illiquid
financial markets. We consider the discrete-time version of the model in [20];
see also [17].

Let Zt, t = 0, . . . , T be an adapted sequence of (d− 1)-dimensional random
variables representing the marginal price of d − 1 risky assets in an economy.
We imagine that if “very small” amounts of asset i were traded then this would
take place at the price Zit at time t. We assume that the riskless asset in this
economy has a price identically 1 at all times.

As in Carassus and Rásonyi [11], we model trading strategies by predictable
processes φ = (φt)

T
t=1, where φt denotes the portfolio of risky assets held over

(t− 1, t]. Thus ∆φt = φt − φt−1 is the portfolio of risky assets bought at time

8



t − 1 and φt = φ0 +
∑t
i=1 ∆φi. In perfectly liquid markets, the corresponding

“value process” starting at initial capital x is given by

V xt = x+

t∑
i=1

φi ·∆Zi.

In order to model illiquidity effects, we first rewrite the above as

V xt = x−
t∑
i=1

∆φi · Zi−1 + φt · Zt,

with the convention φ0 = 0. As usual, the last term is interpreted as the liq-
uidation value one would obtain by liquidating the portfolio at time t. Under
illiquidity, it is more meaningful to track the position on the cash account with-
out assuming liquidation at every t. We denote the cash position held over
(t− 1, t] by X0

t .
If illiquidity costs at time t are given by an Ft-normal integrand Gt : Rd−1×

Ω→ R+, we have that the change in the cash position at time t− 1 is

∆X0
t (φ) = −∆φt · Zt−1 −Gt−1(∆φt)

(recall that ∆φt is the portfolio of risky assets bought at time t− 1). Summing
up, we get

X0
t (φ) := X0

0 −
t∑
i=1

∆φi · Zi−1 −
t∑
i=1

Gi−1(∆φi).

The “liquidation value” of the portfolio at time T is given by

X0
T+1(φ) := X0

0 −
T+1∑
i=1

∆φi · Zi−1 −
T+1∑
i=1

Gi−1(∆φi),

where φT+1 := 0. Note that the ∆φi are control variables here while X0
t is the

controlled process.
We assume that the functions Gt are convex in the first argument and

lim
α→∞

Gt(αx, ω)

α
≥ −Zt(ω) · x, ∀x ∈ Rd−1, (5)

lim
α→∞

Gt(αx, ω)

α
> −Zt(ω) · x, ∀x /∈ Rd−1

− . (6)

These conditions hold in particular if liquidity costs are superlinear in the vol-
ume; see Guasoni and Rásonyi [20]. The above condition allows also for free
disposal of all securities in the sense that the total cost St(x, ω) := Gt(x, ω) +
Zt(ω) · x is nondecreasing with respect to the partial order induced by Rd−1

− .
This is quite a natural assumption e.g. in most securities markets where unit
prices are always nonnegative.
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We will consider an optimal investment problem of an agent whose risk
preferences are described by a possibly nonconcave utility function u : R → R
with u(0) = 0. More precisely, we will assume that u is nondecreasing, upper
semicontinuous, bounded from above and that

lim sup
α→∞

u(αw, ω)

α
< 0 ∀w < 0. (7)

If u is nondecreasing and it is concave on both (−∞, v) and [v,∞) for some
v ∈ R then (7) clearly holds; see [9] for such a setting.

An application of Theorem 3 yields the following existence result; see Ex-
ample 4 below for the proof.

Theorem 4. Let Gt be convex normal integrands, satisfying (5), (6) and Gt(0, ω) =
0 almost surely. Let u be nondecreasing, upper semicontinuous and bounded from
above, satisfying (7) and u(0) = 0. For an investor with initial capital X0

0 = w
and zero initial stock position φj0 = 0, j = 1, . . . , d − 1, there exists an optimal
strategy φ∗ with

sup
φ
Eu(X0

T+1(φ)) = Eu(X0
T+1(φ∗)).

Remark 1. A similar result has been obtained in Theorem 5.1 of [20], in a
continuous-time setting. However, in the discrete-time case, Theorem 4 above
goes much further. In [20], u was assumed concave while we do not need this
assumption here. Also, in [20], |Gt(x)| was assumed to dominate a positive
multiple of a power function |x|α with α > 1 while here we only need (5) and
(6). One can also allow a random endowment in the problem without any
additional work. This and other extensions will be considered in the following
section.

5 Extension to markets with portfolio constraints

This section extends the analysis of the previous section to market models with
general convex trading costs and convex portfolio constraints. In particular, we
do not assume the existence of a cash account a priori. As in [29], we assume
that trading costs are given by an adapted sequence S = (St)

T
t=0 of convex

Ft-normal integrands on Rd such that St(0, ω) = 0. We also allow for portfolio
constraints given by an adapted sequence D = (Dt)

T
t=0 of closed convex sets in

Rd, each containing the origin. We assume that DT = {0}, i.e. that the agent
liquidates her portfolio at the terminal date.

In a market without perfectly liquid assets it is important to distinguish
between payments at different points in time. We will describe the agent’s
preferences over sequences of payments by a normal integrand V on RT+1.
More precisely, the agent prefers to make an adapted sequence c1 = (c1t )

T
t=0 of

payments over another c2 if

EV (c1) < EV (c2)
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while she is indifferent between the two if the expectations are equal. A possi-
ble choice would be V (c, ω) = −

∑T
t=0 u(−ct) for (possibly nonconcave) utility

functions ut. We allow V (·, ω) to be nonconvex but will require the following.

Assumption 1. There is an m ∈ L1 such that V (·, ω) ≥ m(ω), the func-
tions V (·, ω) are asymptotically regular, nonincreasing in directions of RT+1

− ,
V (0, ω) = 0 and

V∞(y, ω) ≤ 0 ⇐⇒ y ∈ RT+1
−

for P -almost every ω.

Remark 2 (Inada condition). In Assumption 1, the asymptotic regularity con-
dition holds in particular when

V∞(·, ω) = δRT+1
−

∀ω ∈ Ω. (8)

Indeed, by (3),

V∞(y, ω) ≤ lim inf
α↗∞

V (αy + ȳ, ω)− V (ȳ, ω)

α
,

for all ȳ ∈ domV (·, ω), while V ≥ m implies V∞ ≥ 0. It thus suffices to
note that the last expression cannot be positive for y ∈ RT+1

− when V (·, ω) is

nonincreasing in the directions of RT+1
− .

Condition (8) can be seen as an extension of the classical Inada condition.
Indeed, a differentiable concave function u on R satisfies the Inada condition if
its derivative approaches 0/+∞ when its argument approaches +∞/−∞. This
implies that the recession function of V (y) := −u(−y) equals δR− . Indeed, the
recession function of V can be expressed as

V∞(y) :=

{
v+y if y ≥ 0,

v−y if y ≤ 0,

where v+ = supy V
′(y) and v− = infy V

′(y). This follows by elementary argu-
ments from the definition of the recession function.

Given an adapted sequence c, consider the problem

minimize EV (S(∆z) + c) over z ∈ ND, (9)

where ND := {z ∈ N | zt ∈ Dt ∀t} denotes the set of feasible trading strategies,
z−1 := 0 and S(∆z) denotes the adapted process (St(∆zt(ω), ω))Tt=0 of trading
costs. Here zt denotes the portfolio of assets held over (t, t+ 1] (In the notation
of the previous section zt = (X0

t+1, φt+1)). Recall that DT = {0} so the agent
is required to liquidate his positions at time T . The sequence c = (ct)

T
t=0 is

interpreted as a financial liability that may involve payments possibly at every
t. We allow ct to take arbitrary real-values so it may describe endowments as
well as liabilities. Problem (9) can be interpreted as an asset-liability manage-
ment problem where one looks for trading strategies z whose proceeds cover the
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liability c as well as possible as measured by EV . In the convex case, problem
(9) was studied in [29], where existence of solutions was derived from the results
of [30].

Example 2. Problems where the portfolios are required to be self-financing (as
in Section 4) fit (9) with

V (y, ω) =

{
VT (yT , ω) if yt ≤ 0 for t < T ,

+∞ otherwise,
(10)

where VT is a normal integrand on R. Problem (9) can then be written with
explicit budget constraints as

minimize EVT (ST (∆zT ) + cT ) over z ∈ ND
subject to St(∆zt) + ct ≤ 0, t = 0, . . . , T − 1.

Function (10) satisfies Assumption 1 as soon as VT ≥ m, VT (·, ω) is nonde-
creasing, VT (0, ω) = 0 and

lim inf
α↗∞

VT (αyT , ω)

α
> 0 ∀yT > 0 (11)

almost surely. Indeed, V (·, ω) is now the sum of the indicator function δRT−×R
and g2(y, ω) := VT (yT , ω). Being an lsc proper function on the real line, VT (·, ω)
is asymptotically regular (see Example 1), so Lemmas 8 and 7 imply that V is
asymptotically regular as well and V∞ = δRT−×R + g∞2 . Condition (11) implies

V∞T (yT , ω) > 0 for yT > 0. On the other hand, since VT is nondecreasing,
V∞T (yT , ω) ≤ 0 for yT ≤ 0 and thus, V∞(y, ω) ≤ 0 ⇐⇒ y ∈ RT+1

− .

The existence result below involves an auxiliary market model given by

S∞t (x, ω) = sup
α>0

St(αx, ω)

α
,

D∞t (ω) =
⋂
α>0

αDt(ω).

By [41, Theorem 3.21], S∞t (·, ω) is the horizon function of St(·, ω) while by
[41, Theorem 3.6], D∞t (ω) coincides with the horizon cone of Dt(ω) defined in
[41, Section 3.B]. Note that in models with proportional transaction costs, S is
sublinear so that S∞ = S. Similarly, when the constraints are conical we simply
have D∞ = D. By [41, Exercise 14.21], D∞t is Ft-measurable closed convex cone
and, by [41, Exercise 14.54], S∞t is Ft-measurable normal integrand sublinear
in x.

Theorem 5. Assume that {z ∈ ND∞ |S∞(∆z) ≤ 0} is a linear space and that
V satisfies Assumption 1. Then the infimum in (9) is attained.
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Proof. In order to apply Theorem 3, we write (9) as

minimize EV (y) over z ∈ ND, y ∈ N
subject to S(∆z) + c ≤ y,

where yt can be interpreted as the total expenditure at time t. This fits (P )
with x = (z, y) and h(x, ω) = V (y, ω) + δC(ω)(x), where

C(ω) = {x |St(∆zt, ω) + ct(ω) ≤ yt, zt ∈ Dt(ω) ∀t}.

The convexity of S and D imply the convexity of C(ω) so, by Lemma 7,
asymptotic regularity of V implies h∞(x, ω) = V∞(y, ω) + δ∞C(ω)(x). Since

δ∞C(ω) = δC∞(ω), [41, Proposition 3.9] and [41, Exercise 3.24] give

h∞(x, ω) =

{
V∞(y, ω) if S∞t (∆zt, ω) ≤ yt, zt ∈ D∞t (ω) ∀t,
+∞ otherwise.

Having assumed that V∞(y, ω) ≤ 0 if and only if y ∈ RT+1
− , we get

{x ∈ N|h∞(x) ≤ 0} = {x ∈ N|V∞(y) ≤ 0, z ∈ D∞, S∞(∆z) ≤ y}
= {x ∈ N| y ≤ 0, z ∈ D∞, S∞(∆z) ≤ y}
= {x ∈ N| y = 0, z ∈ D∞, S∞(∆z) ≤ 0},

(the inequalities and the inclusions are required to hold almost surely for every
t = 0, . . . , T ) where the last equality follows from the fact that −S∞(−∆z) ≤
S∞(∆z) (because S∞t (·, ω) is sublinear) and the assumption that {z ∈ ND∞ |S∞(∆z) ≤
0} is linear. Defining

L(ω) = {x ∈ Rn | y = 0, zt ∈ D∞t (ω), S∞t (∆zt, ω) ≤ 0 ∀t}

we thus have that the conditions of Theorem 3 are satisfied with N(ω) = L(ω)∩
[−L(ω)].

The following example specializes Theorem 5 to optimization of terminal
utility and market models with a cash account.

Example 3. Consider again the setting of Example 2 and assume that there is
a perfectly liquid asset, say asset 0, so that, denoting z = (z0, z̃),

St(z, ω) = z0 + S̃t(z̃, ω) t = 0, . . . , T,

Dt(ω) = R× D̃t(ω) t = 0, . . . , T − 1,

while still DT = {0}. Here S̃t and D̃t are Ft-measurable normal integrands and
set-valued mappings, respectively, on Rd−1 such that D̃T = {0}. We can then
substitute out the “cash variable” z0 from the problem of Example 2. Indeed,
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given an adapted z̃ it is optimal (since VT is nondecreasing) to choose z0 so that
the budget constraints are satisfied as equalities. It follows that

z0
T−1 = −

T−1∑
t=0

S̃t(∆z̃t)−
T−1∑
t=0

ct,

so the problem can be written as (recall again that DT = {0})

minimize EVT

(
T∑
t=0

S̃t(∆z̃t) +

T∑
t=0

ct

)
over z ∈ ND. (12)

Since S∞t (z, ω) = z0 + S̃∞t (z̃, ω) for t = 0, . . . , T and D∞t (ω) = R× D̃∞t (ω) for
t = 0, . . . , T − 1, the linearity condition of Theorem 5 means that

{z ∈ N |∆z0 + S̃∞(∆z̃) ≤ 0, z̃ ∈ D̃∞, z0
T = 0} (13)

(the inequality and the inclusion are required to hold almost surely for every
t = 0, . . . , T ) is a linear space. This holds, in particular, if

S̃∞t ≥ 0 and S̃t(z̃)
∞ > 0, ∀z̃ /∈ Rd−1

− , (14)

for t = 0, . . . , T . Indeed, the first inequality implies ∆z0 ≤ 0 and then z0 = 0
since z0

−1 = 0, by assumption. Then, the second inequality implies ∆z̃t ≤ 0.
Since z−1 = 0 and DT = {0}, by assumption, this can only hold if z = 0.

The proof of Theorem 4 is now a simple application of the above example.

Example 4 (Proof of Theorem 4). Consider Example 3 with VT (c, ω) = −u(−c, ω),
S̃t(z̃, ω) = Zt(ω)·z̃+Gt(z̃, ω), D̃t := Rd−1, c0 = −w and ct = 0 for t = 1, . . . , T .
We can then write problem (12) as

maximize Eu

(
w −

T∑
t=0

[Zt ·∆z̃t +Gt(∆z̃t)]

)
over z ∈ ND.

This is exactly the problem formulated in Section 4 where the notation φt = z̃t−1

was used. Conditions (11) and (14) now become the conditions on G and u given
in Section 4. Indeed, since S̃t(·, ω) are convex, (14) becomes (5) and (6); see
Example 1.

The linearity condition in Theorem 5 is a generalization of the no-arbitrage
condition in classical perfectly liquid markets. Indeed, when St(x) = st · x and
Dt ≡ Rd, the linearity condition means that any x ∈ ND with st · ∆xt ≤ 0
satisfies st ·∆xt = 0, that is, there is no arbitrage. In nonlinear unconstrained
models, it becomes the robust no-arbitrage condition introduced by Schacher-
mayer [44]; see [28, Section 4] for details. The linearity condition in Theo-
rem 5 may very well hold even if the model allows for arbitrage. One has
{z ∈ ND∞ |S∞(∆z) ≤ 0} = {0}, for example, when S is such that S∞t (z, ω) > 0
for all z /∈ Rd−. Indeed, S∞(∆z) ≤ 0 then implies ∆zt ≤ 0 componentwise, which
must hold as an equality since, by assumption, x−1 = 0 and DT = {0}. Such a
condition holds e.g. in limit order markets where the limit order books always
have finite depth. Further conditions are given in [28, 29].
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Appendix

The following lemma was used in the proof of Lemma 2.

Lemma 6. We have EGh∞ ≤ (EGh)∞ and

{x ∈ L0(G) | (EGh)∞(x) ≤ 0} ⊆ {x ∈ L0(G) |h∞(x) ≤ 0}.

Proof. Let x ∈ L0(G) and A ∈ G. We have that

E[1Ah
∞(x)] = E[1A lim

α↗∞
inf
γ>α

x′∈B(x,1/α)

h(γx′)

γ
]

= lim
α↗∞

E[1A inf
γ>α

x′∈B(x,1/α)

h(γx′)

γ
]

≤ lim
α↗∞

inf
γ∈L0(G;[α,∞))

x′∈L0(G;B(x,1/α))

E[1A
h(γx′)

γ
]

= lim
α↗∞

inf
γ∈L0(G;[α,∞))

x′∈L0(G;B(x,1/α))

E[1A
(EGh)(γx′)

γ
]

= lim
α↗∞

E[1A inf
γ>α

x′∈B(x,1/α)

(EGh)(γx′)

γ
]

= E[1A(EGh)∞(x)],

which gives EGh∞ ≤ (EGh)∞ since x ∈ L0(G) and A ∈ G were arbitrary. Here
the second and the last equality follow from monotone convergence, and the
fourth follows from the interchange rule [39, Theorem 3A].

To prove the second claim, let x ∈ L0(G) such that (EGh)∞(x) ≤ 0. By the
first claim, EGh∞(x) ≤ 0 almost surely so, by the definition of a conditional
integrand,

(EGh∞)(x) = EGh∞(x).

Since h∞ ≥ 0, we have h∞(x) ≤ 0 almost surely if and only if EGh∞(x) ≤ 0
almost surely.

For lsc proper convex functions, one has (g1 + g2)∞ = g∞1 + g∞2 whenever
dom g1 ∩ dom g2 6= ∅. More generally, we have the following.

Lemma 7. Let g1 and g2 be proper lsc functions with proper horizon functions
such that dom g1 ∩ dom g2 6= ∅. Then (g1 + g2)∞ ≥ g∞1 + g∞2 . If g1 is convex
and g2 is asymptotically regular, then g1 + g2 is asymptotically regular and

(g1 + g2)∞ = g∞1 + g∞2 .
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Proof. We always have

(g1 + g2)∞(x) = lim
α↗∞

inf
γ>α

x′∈B(x,1/α)

[g1(γx′)/γ + g2(γx′)/γ]

≥ lim
α↗∞

 inf
γ>α

x′∈B(x,1/α)

g1(γx′)/γ + inf
γ>α

x′∈B(x,1/α)

g2(γx′)/γ


= g∞1 (x) + g∞2 (x).

Given x̄ ∈ dom g1 ∩ dom g2, (3) yields

(g1 + g2)∞(x) ≤ lim inf
α↗∞

g1(αx+ x̄) + g2(αx+ x̄)− g1(x̄)− g2(x̄)

α

≤ sup
α>0

g1(αx+ x̄)− g1(x̄)

α
+ lim inf

α↗∞

g2(αx+ x̄)− g2(x̄)

α

= g∞1 (x) + g∞2 (x),

where the last equation follows from convexity of g1 (see Example 1) and asymp-
totic regularity of g2. The above inequalities also imply that g1 + g2 is asymp-
totically regular.

We also have the following result on product spaces. The proof is almost
identical to that of Lemma 7 and is omitted.

Lemma 8. Let g1 and g2 be proper lsc functions with proper horizon func-
tions on Rn1 and Rn2 , respectively. Let g(x1, x2) = g1(x1) + g2(x2). Then
g∞(x1, x2) ≥ g∞1 (x1)+g∞2 (x2). If g1 is convex and g2 is asymptotically regular,
then g is asymptotically regular and

g∞(x1, x2) = g∞1 (x1) + g∞2 (x2).
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