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Abstract. We consider factorizations of a finite group G into conjugate sub-

groups, G = Ax1 · · ·Axk for A ≤ G and x1, . . . , xk ∈ G, where A is nilpotent or
solvable. We derive an upper bound on the minimal length of a solvable conju-

gate factorization of a general finite group which, for a large class of groups, is

linear in the non-solvable length of G. We also show that every solvable group
G is a product of at most 1 + c log |G : C| conjugates of a Carter subgroup C

of G, where c is a positive real constant. Finally, using these results we obtain

an upper bound on the minimal length of a nilpotent conjugate factorization
of a general finite group.

1. Introduction

During the last few years there appeared several papers which consider the pos-
sibilities to express a finite group G 1 as a product of conjugates of a proper sub-
group (e.g.,[3, 8, 16, 17, 23–26, 28, 29]). In particular, in [8] it is proved that every
non-solvable group can be written as a product of three conjugates of at least one
of its proper subgroups. A key step in the proof shows that almost simple groups
with socle of Lie type (which, in an appropriate sense, constitute the bulk of the
almost simple groups) can be written as a product of three conjugates of a proper
solvable subgroup. In [17] it is shown that every simple group of Lie type can be
written as a product of four nilpotent subgroups. These results naturally raise
the question which we address in the present paper: For a group G, what can be
said about the minimal number m such that G is the product of m conjugates of
A ≤ G where A is known to be solvable or to be nilpotent?

Let us formalize our main notions. For a group G and A ≤ G, a conjugate
product factorization (a cp-factorization) of length k of G by A is a factorization
G = A1 · · ·Ak where A1, . . . , Ak are all conjugate to A and the product is the setwise
product. Denoting the normal closure of A in G by AG, an elementary argument
shows that AG is equal to a product of conjugates of A. Thus, a necessary and
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sufficient condition for the existence of the factorizations we are interested in is
G = AG.

Definition 1.1. Let G be a group and A ≤ G. Then γAcp(G) is the smallest number
k such that G equals a product A1 · · ·Ak of conjugates of A or∞ if no such k exists.
We also set

γcp(G) := min{γAcp(G)|A < G},
where min {∞} :=∞.

It is easy to see that if A < G and G is nilpotent then γAcp(G) = ∞, and that

in general γAcp(G) ≥ 3. As mentioned above, if G is non-solvable then γcp(G) = 3
([8]). In contrast, for G solvable non-nilpotent, γcp(G) is not bounded above by a

universal constant, but we do have γcp(G) ≤ 4 log2 |G| [16, Theorems 4 and 5]2.
The aim of the present paper is to obtain upper bounds on the following two

quantities:
γscp(G) := min{γAcp(G)|A ≤ G is solvable},

and
γncp(G) := min{γAcp(G)|A ≤ G is nilpotent}.

Observe that γscp(G) = 1 (γncp(G) = 1) if and only if G is solvable (nilpotent). In
general, both of these quantities are natural numbers. For if G is nilpotent or if
G contains a proper subgroup which is both nilpotent and non-normal maximal,
the claim is clear. Otherwise G = A1 · · ·Ak is a cp-factorization where A1 is
some maximal non-normal subgroup of G, and by induction A1 has a nilpotent
cp-factorization.

Our upper bound on γscp(G) is expressed in terms of the non-solvable length of
the group G which is defined as follows (we denote by R (G) the solvable radical of
G and by soc (G) the socle of G).

Definition 1.2. Let G be a group. The non-abelian socle series of G is the unique
normal series R (G) = H1 ≤ . . . ≤ Ht = G of G which satisfies the following
conditions:

(i) for all 1 ≤ i ≤ (t− 1)/2 we have H2i+1/H2i = R (G/H2i),
(ii) for all 1 ≤ i ≤ t/2 we have H2i/H2i−1 = soc (G/H2i−1).

The number bt/2c is called the non-solvable length of G and will be denoted
λ (G).

Theorem 1.3. Let G be a group. Then γscp(G) ≤ 1 + c (G)λ (G), where c (G) =
max {36, 12 log2 n} and n is the largest integer such that G has a composition factor
Alt (n) (n = 2 if no such factor exists).

The non-abelian socle series has important applications in advanced computa-
tions in finite groups [19, Chapter 10]. Furthermore, the parameter λ (G) is the
subject of a recent interesting paper by Khukhro and Shumyatsky [14], whose main
result is the upper bound λ (G) ≤ 2L2 + 1, where L2 is the maximum 2-length of a
solvable subgroup of G. The 2-length of a solvable group H is the minimal number
of 2-factors that can occur in a normal series {1H} = H1 ≤ . . . ≤ Hl = H such
that for each 0 ≤ i ≤ l− 1 each factor Hi+1/Hi is either a 2-group or an odd order
group. Here we prove another upper bound on λ (G) which we later employ.

2In fact, this bound is somewhat improved by Theorem 1.6 below.
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Theorem 1.4. Let G be a non-solvable group, and let k be the number of non-
abelian composition factors appearing in a composition series of G (repetitions
counted). Then λ (G) ≤ log5 (4k + 1).

Remark 1.5. Observe that for any positive integer m, the m-fold iterated wreath
product Wm, where W1 := Alt (5) and for each 2 ≤ i ≤ m, Wi := Wi−1wrAlt (5),
attains the upper bound of Theorem 1.4. One checks, using the definition of Wm

(view k as a function of m), that λ (Wm) = m, and that k (m) = 5m−1
4 . Therefore

λ (Wm) = log5 (4k (m) + 1).

We also remark in passing, that Theorem 1.4 can be generalized to get an up-
per bound on the non-p-solvable length of a group, introduced by Khukhro and
Shumyatsky in [14].

Next we obtain an upper bound on γncp(G) for solvable groups G. Recall that a
Carter subgroup of a group G is a self-normalizing nilpotent subgroup (see [9]). If
G is solvable then it has a unique conjugacy class of Carter subgroups.

Theorem 1.6. Any solvable group G is a product of at most 1 + cca log2 |G : C|
conjugates of a Carter subgroup C, where 0 < cca ≤ 3/ log2(5) < 1.3 is a universal
constant.

Finally, combining the last theorem with the previous bounds on γscp(G) and on
λ (G) we will prove:

Theorem 1.7. For any non-nilpotent group G there exists a nilpotent A < G such
that

γncp(G) ≤ γAcp(G) ≤ 1 + cus (log2 |G : A|) (log2 log2 |G : A|)2

where cus is a universal constant.

2. Solvable cp-factorizations

In this section we prove Theorem 1.3. The proof is based on reducing the problem
of finding an upper bound on γscp(G) for a general group G to finding an upper
bound on the minimal length of a special kind of a solvable conjugate factorization
of a simple non-abelian group.

Definition 2.1. A cp-factorization G = A1 · · ·Ak of a group G by A ≤ G will be
called a special solvable cp-factorization if the following conditions hold:

(i) A is solvable.
(ii) A is self-normalizing in G.
(iii) For any α ∈ Aut (G) there exists g ∈ G such that Aα = Ag.

We prove that special solvable cp-factorizations exist for any group G.

Lemma 2.2. Let G be a group, p a prime, and let P be a Sylow p-subgroup of
G. Then A := NG (P ) satisfies properties (ii) and (iii) in Definition 2.1, and G
is a product of some conjugates of A in G. If, in addition, A is solvable then this
product is a special solvable conjugate factorization of G. Furthermore, if p = 2
then A is solvable so any non-nilpotent group G has at least one special solvable
conjugate factorization.

Proof. It is well-known that as a consequence of Sylow’s theorems, properties (ii)
and (iii) in Definition 2.3 are satisfied by any Sylow normalizer subgroup of G (see,
for instance, [27, 5.13, 5.14]). In order to show that G is a product of conjugates of
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A it suffices to prove that G = AG. Observe that P is a Sylow p-subgroup of AG

and clearly AG E G. Hence, by Frattini’s argument, G = A
(
AG
)

= AG. Finally, if
p = 2 then A is solvable by the Odd Order Theorem. �

Definition 2.3. For a group G we denote by γsscp(G) the minimal length of a special
solvable cp-factorization of G, if such a factorization exists, or γsscp(G) =∞ other-
wise. For a prime p we let γpcp(G) denote the minimal length of a cp-factorization of
G whose factors are conjugates of a solvable normalizer in G of a Sylow p-subgroup
of G, if such a factorization exists, or γpcp(G) =∞ otherwise.

By Lemma 2.2, γsscp(G) ≤ γpcp(G) holds for every prime p.

2.1. Special solvable factorizations of simple groups. Here we obtain an up-
per bound on γsscp(S), where S is a simple non-abelian group. We discuss separately
simple groups of Lie type, alternating groups and simple sporadic groups together
with the Tits group.

Lemma 2.4. If S is a simple group of Lie type of characteristic p then γsscp(S) =
γpcp(S) = 3.

Proof. S is a group with a split BN -pair, where B, the Borel subgroup of S, is
solvable and is the normalizer of a Sylow p-subgroup of S. Hence γpcp(S) = 3 by
[8, Theorem 3]. �

Lemma 2.5. If S ∼= Alt (n) for n ≥ 5 then γsscp(S) < 12 log2(n).

Proof. We first show that for all n ≥ 2 the symmetric group Sn is a product of less
than 4 log2(n) Sylow 2-subgroups, adjusting the ideas of the proof of [1, Theorem
2] to our needs. For any positive integer n set Ωn := {1, 2, ..., n}. Denote by f(n)
the minimal length of a cp-factorization of G whose factors are Sylow 2-subgroups.
First we show that f(n + 1) ≤ f(n) + 2. Let A ∼= Sn be the point stabilizer of
1, with respect to the natural action of Sn+1 on Ωn+1. Then A is a product of
f(n) Sylow 2-subgroups of A each of which is a subgroup of a Sylow 2-subgroup
of Sn+1. Next we prove that there exist two Sylow 2-subgroups P and Q of Sn+1,
such that PQ contains elements g1 = 1Sn+1

, g2, ..., gn+1 satisfying (1) gi = i for
each 1 ≤ i ≤ n + 1 ((1) gi stands for the image of 1 ∈ Ωn+1 under the action of
gi ∈ Sn+1). Note that a subset {g1, ..., gn+1} of Sn+1 whose elements satisfy the
last condition is a right transversal of A in Sn+1, for if i 6= j then (1) gig

−1
j 6= 1,

implying gig
−1
j /∈ A. Clearly, if PQ contains a right transversal of A in Sn+1, we

have APQ = Sn+1, and f(n+ 1) ≤ f(n) + 2 follows.
Let k be the unique integer satisfying 2k ≤ n + 1 < 2k+1. We can choose

P to be a Sylow 2-subgroup of Sn+1 containing
〈(

1, ..., 2k
)〉

, and Q a Sylow 2-

subgroup of Sn+1 containing
〈(
n− 2k + 2, ..., n+ 1

)〉
. These two cyclic subgroups

act transitively on their supports, and their supports have at least one point in
common. Hence PQ contains a subset {g1, ..., gn+1} having the desired property.

Next we show that if n is even then f(n) ≤ 2f(2) + f(n/2). In this case, Ωn
is in bijection with the set Ω̃n := {1, 2} × Ωn/2. The natural action of Sn on Ωn

induces an action of Sn on Ω̃n. Let A be the subgroup consisting of all g ∈ Sn
such that for any (a, b) ∈ Ω̃n we have (a, b) g = (a, x) for some x ∈ Ωn/2 and

similarly, B is the subgroup of Sn preserving the second coordinate of the Ω̃n
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element. Then, A ∼= (Sn/2)
2

and B ∼= (S2)
n/2

. By [1, Lemma 4], Sn = BAB. This
gives f(n) ≤ 2f(2) + f(n/2).

Using these two inequalities we prove f (n) < 4 log2(n) by induction. The base
case is n = 2 and for it we have f (2) = 1 < 4. Suppose n > 2. If n is even then

f(n) ≤ 2 + f(n/2) < 2 + 4 log2(n/2) < 4 log2(n).

If n is odd, then

f(n) ≤ 2 + f(n− 1) ≤ 4 + f((n− 1)/2) < 4 + 4 log2((n− 1)/2) < 4 log2(n).

Next we show that for n ≥ 6 the group Alt (n) is a product of at most 12 log2(n)
Sylow 2-subgroups. The group Alt (n) acts transitively on P2 (Ωn) the set of all
n(n− 1)/2 subsets of Ωn of size 2. One can check that the stabilizer of a subset of
size 2 of Ωn is isomorphic to Sn−2. Let H1 and H2 be the stabilizers of {1, 2} and
{n − 1, n} respectively. We claim that Alt (n) = H1H2H1. Notice that this claim
together with our previous claim that Sn is a product of less than 4 log2(n) Sylow
2-subgroups, finish the proof. We have H2 = Hg

1 with g = (1, n− 1) (2, n). By [8,
Theorem 1 part 2 (ii)] it is sufficient to show that {1, 2}H2 intersects every H1 orbit
O on P2 (Ωn). Let {i, j} ∈ O be arbitrary. If {i, j}∩{n−1, n} = ∅, then there exists
an h ∈ H2 such that {1, 2}h = {i, j}. On the other hand, if {i, j} ∩ {n− 1, n} 6= ∅
then, since n ≥ 6, there exists h1 ∈ H1 so that {i, j}h1 ∩ {n − 1, n} = ∅, and so,
since {i, j}h1 ∈ O we reduce to the previous case.

Finally, γsscp(Alt (5)) = 3 by Lemma 2.4 since Alt (5) ∼= PSL (2, 4) is of Lie type
in characteristic 2. For n ≥ 6 we have shown that Alt (n) is a product of at most
12 log2(n) Sylow 2-subgroups, hence γ2cp(Alt (n)) exists and satisfies γ2cp(Alt (n)) <
12 log2(n). The claim of the lemma follows. �

Finally we consider the simple sporadic groups together with the Tits group.
The next lemma contains some useful tools.

Lemma 2.6. Let G be a group, and p a prime divisor of |G|. Let P be a Sylow
p-subgroup of G.

(a) Suppose that A ≤ G contains P , and that γAcp(G), γpcp(G) and γpcp(A) all

exist. Then γpcp(G) ≤ γAcp(G)γpcp(A).
(b) If G is an almost simple group with socle S, |G : S| is not divisible by p and

γpcp(S) exists, then γpcp(G) ≤ γpcp(S).
(c) Let N E G. If N ≤ NG (P ) is solvable then γpcp(G) = γpcp(G/N).
(d) If P is non-normal (e.g., G is simple) then NG (P ) is solvable if and only if

for each maximal subgroup M of G such that |P | divides |M |, the normalizer
of a Sylow p-subgroup of M is solvable.

(e) If G is a product of n arbitrary p-subgroups, and NG (P ) is solvable then
γpcp(G) ≤ n.

(f) If G has a normal subgroup N such that N is a product of n arbitrary
p-subgroups, G/N is a p-group, and NG (P ) is solvable, then γpcp(G) ≤ n.

Proof. (a) By assumption, A is a product of γpcp(A) A-conjugates of NA (P ), and

G is a product of γAcp(G) G-conjugates of A. Hence G is a product of γAcp(G)γpcp(A)
G-conjugates of NA (P ). The claim now follows from NA (P ) ≤ NG (P ).

(b) Since S E G, we have that S ∩ P is a Sylow p-subgroup of S, and since
|G : S| is not divisible by p we get P = S ∩ P . In [16, Lemma 14], take m = 1,
X = G and U = NG (P ). Then US = NG (P )S = G by Frattini’s argument, and
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U ∩ S = NS (P ). Since 1 < NS (P ) < S we can deduce from [16, Lemma 14], that
G is a product of h = γpcp(S) conjugates of NG (NS (P )). Now, because S E G,
U = NG (P ) normalizes U ∩S = NS (P ), and hence NG (P ) ≤ NG (NS (P )). Using
NG (P )S = G and Dedekind’s argument we get:

NG (NS (P )) = NG (NS (P )) ∩ (NG (P )S) = NG (P ) (NG (NS (P )) ∩ S) =

NG (P )NS (NS (P )) = NG (P )NS (P ) = NG (P ) .

Therefore G is a product of γpcp(S) conjugates of NG (P ). Finally note that the
existence of γpcp(S) implies the solvability of NS (P ) which implies, using Schreier’s
Conjecture, the solvability of NG (P ). The claim follows.

(c) For each A ≤ G set A := AN/N . Then, in general (without assuming

N ≤ NG (P )) we have NG (P ) = NG
(
P
)

([22, 3.2.8]). If N ≤ NG (P ) is solvable

then NG (P ) = NG (P ) /N = NG
(
P
)
, and NG (P ) is solvable if and only if NG

(
P
)

is solvable. Moreover, in this case G is a product of k conjugates of NG (P ) if and
only if G is a product of k conjugates of NG

(
P
)
. The claim follows.

(d) This follows from the fact that NM (P ) ≤ NG (P ) for any M ≤ G, and
from the fact that if P is non-normal, then NG (P ) is contained in some maximal
subgroup of G, so NM (P ) = NG (P ) for some maximal subgroup M of G, which
contains P .

(e) Each p-subgroup of G is contained in a Sylow p-subgroup of G which is, in
turn, contained in its normalizer.

(f) By assumption N = Q1 · · ·Qn where each Qi is a p-subgroup. Assume,
without loss of generality, Qn ≤ P . We have G = NP because G/N is a p-group.
Now G = NP = Q1 · · ·Qn−1P and the claim follows from (e). �

Lemma 2.7. If S is a sporadic simple group or the Tits group then upper bounds on
γsscp(S) are given in the Appendix, in Table 1, under the column heading γpcp(S) ≤.
It follows, by inspection of the table, that γsscp(S) ≤ 36.

Proof. The deduction of the upper bounds in Table 1 uses several ingredients. The
first one is the detailed information about the maximal subgroups of the sporadic
simple groups which is available in [2]. A second ingredient is a basic inequality
which relates γpcp(G) to γpcp(A) for A ≤ G. It is stated together with other useful
relations in Lemma 2.6 above. A third and crucial ingredient is the possibility to
calculate γAcp(G) for many pairs (G,A) of interest, using the permutation character

1GA. If the irreducible decomposition of this character in terms of the complex
irreducible characters of G is multiplicity free, one can employ a method, developed
and implemented in GAP as a tool called ”mfer” by T. Breuer, I. Höhler and J.
Müller ([7], [6], [15] and [5]), in order to obtain the structure constants of the Hecke
algebra of the double cosets of A. From these structure constants one can compute
γAcp(G) as explained in [8, Sections 2.1 and 5]. Note that the ”mfer” tool can be
applied to groups G where G is a simple sporadic group, as well as to some of
the groups stored in the TomLib library of [15]. The fourth ingredient are the two
results, [8, Theorem 3] (see Lemma 2.4) and the fact that a simple group of Lie
type is a product of four Sylow p-subgroups, where p is a defining characteristic
[17]. Further details on how these four ingredients are used for deducing Table 1
are given in the Appendix. �
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2.2. Reduction to special solvable cp-factorizations. In this section we reduce
the analysis of γscp to that of γsscp for simple groups.

Lemma 2.8. Let G = T r11 × · · · × T rmm where the Ti’s are pairwise non-isomorphic
non-abelian simple groups, and r1, ..., rm are positive integers. Then

γsscp(G) ≤ max
{
γsscp(T1), ..., γsscp(Tm)

}
.

Proof. For each 1 ≤ i ≤ m set ki := γsscp(Ti). By assumption, for each 1 ≤ i ≤ m
there exists Bi1 < Ti satisfying Definition 2.1, and Ti = Bi1 · · ·Biki where Bij is
conjugate in Ti to Bi1 for all 1 ≤ j ≤ ki. Set k := max {k1, ..., km}. We can assume
that the special solvable conjugate factorizations of the Ti are all of equal length
k, since for each 1 ≤ i ≤ m we can add subgroups Bij with ki + 1 ≤ j ≤ k, chosen
arbitrarily from the conjugates of Bi1 in Ti. Clearly Ti = Bi1 · · ·Bik. We claim that
T rii = Brii1 · · ·B

ri
ik is a special solvable conjugate factorization of T rii . It is easy to see

that each Briij is solvable, being a direct product of solvable groups, and that each

Briij is conjugate in T rii to Brii1 because each Bij is conjugate in Ti to Bi1. Similarly,

Brii1 is self-normalizing in T rii , because Bi1 is self-normalizing in Ti. In order to
verify condition (iii) of Definition 2.3, recall that Aut (T rii ) ∼= Aut (Ti)

ri oSri where
the symmetric group Sri permutes the ri direct factors of Aut (Ti)

ri according to
its natural action on {1, ..., ri} ([27, 9.24]). Thus Sri normalizes Brii1 . Let α ∈
Aut (T rii ). We have α = g (α1, ..., αri) where αj ∈ Aut (Ti), 1 ≤ j ≤ ri and g ∈ Sri .
Since g normalizes Brii1 we get (Brii1)

α
= Bα1

i1 × · · · ×B
αri
i1 . Now we can use the fact

that Bi1 satisfies condition (iii) of Definition 2.3, as a subgroup of Ti.

Next define for each 1 ≤ j ≤ k, Bj :=
m∏
i=1

Briij (a direct product). We have G =

B1 · · ·Bk, and again we claim that this is a special solvable conjugate factorization.
The proof relies on the previous claim, namely, that T rii = Brii1 · · ·B

ri
ik is a special

solvable conjugate factorization, and proceeds in the same way where for showing
that B1 satisfies condition (iii) of Definition 2.3, we use the fact that Aut (G) =
Aut (T r11 )× · · · ×Aut (T rmm ), which follows from the fact that the Ti’s are pairwise
non-isomorphic non-abelian simple groups ([27, 9.25]). Finally, since G = B1 · · ·Bk
is a special solvable conjugate factorization, we get γsscp(G) ≤ k which is what we
wanted to prove. �

Lemma 2.9. Let G be a group and let N E G. Then γscp(G) ≤ γsscp(N)+γscp(G/N).

Proof. We can assume γsscp(N) < ∞. Set t := γscp(G/N). Then, by defini-
tion of γscp(G/N), there exists H ≤ G and N ≤ H such that H/N is solv-
able, and there exist t subgroups H1, . . . ,Ht of G, all containing N , such that
G/N = (H1/N) · · · (Ht/N), and Hi/N is conjugate to H/N in G/N for each
1 ≤ i ≤ t. It follows that Hi is conjugate to H in G for all 1 ≤ i ≤ t, and
G = H1 · · ·Ht.

Set k := γsscp(N). By definition of γsscp(N), there exists B ≤ N satisfying (i)-(iii)
in Definition 2.1 and N = B1 · · ·Bk, where each Bi is conjugate to B in N . We
claim that H = NH (B)N . First note that both NH (B) and N are subgroups of H
so NH (B)N ≤ H. For the reverse inclusion let h ∈ H be arbitrary. Since N E H,
h acts on N as an automorphism, and therefore, by property (iii) in Definition 2.1,
there exists n ∈ N such that Bh = Bn from which it follows that hn−1 ∈ NH (B).
Hence h =

(
hn−1

)
n ∈ NH (B)N .
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Now H = NH (B)N implies that H/N = NH (B)N/N ∼= NH (B) /B (by Def-
inition 2.1.(ii)). But since both H/N and B are solvable, we get that NH (B) is
solvable.

For each 1 ≤ i ≤ t let gi ∈ G be such that Hi = Hgi , and for each 1 ≤ j ≤ k let
νj ∈ N be such that Bj = Bνj . Using the above we get:

G = H1 · · ·Ht = Hg1 · · ·Hgt = (NH (B)N)
g1 · · · (NH (B)N)

gt =

= (NH (B))
g1 · · · (NH (B))

gt N = (NH (B))
g1 · · · (NH (B))

gt B1 · · ·Bk =

= (NH (B))
g1 · · · (NH (B))

gt Bν1 · · ·Bνk =

= (NH (B))
g1 · · · (NH (B))

gt (NH (B))
ν1 · · · (NH (B))

νk .

Since NH (B) is solvable this implies that γscp(G) ≤ k + t as claimed. �

Next we apply Lemma 2.9 to the non-abelian socle series (Definition 1.2), whose
factors we will denoted Ni := H2i/H2i−1 = soc (G/H2i−1), and ni will stand for
the number of simple non-abelian direct factors of Ni for all 1 ≤ i ≤ t/2. Observe
that the uniqueness of the non-abelian socle series of G is a consequence of the
uniqueness of the solvable radical and the socle of any given group. Moreover,
for all 1 ≤ i ≤ t/2 we have R (G/H2i−1) = 1. This is clear for i = 1, and
for i ≥ 2 we have G/H2i−1 ∼= (G/H2i−2) / (H2i−1/H2i−2) and now we can use
H2i−1/H2i−2 = R (G/H2i−2). Since R (G/H2i−1) = 1 we get that Ni is a non-
trivial direct product of non-abelian simple groups. As a result, the inclusion
H2i−1 ≤ H2i is always strict, while the inclusion H2i ≤ H2i+1 need not be strict.
Finally note that the non-solvable length of G is zero if and only if G is solvable.

Proposition 2.10. Let G be a non-trivial group whose non-solvable length is m :=
λ (G) ≥ 0. For each 1 ≤ i ≤ m pick a simple non-abelian direct factor Ti of Ni
such that γsscp(Ti) is maximal compared to any other factor of Ni. Then

(2.1) γscp(G) ≤ 1 +

m∑
i=1

γsscp(Ti).

Proof. By induction on m ≥ 0. If m = 0 then G is solvable and so γscp(G) = 1.
Suppose m > 0. Then γscp(G) ≤ γscp(G/R (G)). In fact equality holds since if
G = A1 . . . Ak is a solvable cp-factorization then so is G = (A1R (G)) . . . (AkR (G)).
Moreover, if R (G) = H1 ≤ . . . ≤ Ht = G is the non-abelian socle series of G, then
1 = H1/R (G) ≤ . . . ≤ Ht/R (G) = G/R (G) is the non-abelian socle series of
G/R (G). We have R (G/R (G)) = 1 and N1 = H2/R (G). Hence, by Lemma 2.9
we have γscp(G) = γscp(G/R (G)) ≤ γsscp(N1) + γscp((G/R (G)) / (H2/R (G))). Using
(G/R (G)) / (H2/R (G)) ∼= G/H2, we obtain γscp(G) ≤ γsscp(N1) + γscp (G/H2). By
Lemma 2.8, γsscp(N1) ≤ γsscp(T1), and since the non-abelian socle length of G/H2 is

m− 1, we have by induction γscp(G/H2) ≤ 1 +
m∑
i=2

γsscp(Ti). The claim follows. �

2.3. Proof of Theorem 1.3. By Proposition 2.10 we have

γscp(G) ≤ 1 +

λ(G)∑
i=1

γsscp(Ti) ≤ 1 + λ (G) max
{
γsscp(Ti)

}
1≤i≤λ(G)

.

Combining the results of Lemma 2.4, Lemma 2.5 and Lemma 2.7 we get:

max
{
γsscp(Ti)

}
1≤i≤λ(G)

= max {36, 12 log2 n} ,
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where n is the largest integer for which there exists 1 ≤ i ≤ λ (G) such that
Ti ∼= Alt (n), and n = 2 if no such i exists. �

3. An upper bound on the non-solvable length

In this section we derive an upper bound on the non-solvable length of a non-
solvable group (we keep the notation introduced in Subsection 2.2 immediately
before Proposition 2.10). This result can then be applied to Theorem 1.3. Recall
that for any group H there exists the least integer n, customarily denoted µ(H),
such that H embeds in the symmetric group Sn. In other words, µ (H) is the
minimal degree of a faithful permutation representation of H. We will make use
of the following properties of this quantity. If H1 ≤ H then µ (H1) ≤ µ (H)
(immediate from the definition). If N = T1 × · · · × Tk where Ti simple non-abelian

for each 1 ≤ i ≤ k then µ (N) =
k∑
i=1

µ (Ti) ([13, Theorem 3.1]). If N E H and

R (H/N) = 1 then µ (H/N) ≤ µ (H) ([21, Theorem 1]). If T is simple non-abelian
then µ (T ) ≥ 5 (since all subgroups of Sn are solvable if n < 5).

Lemma 3.1. Let G be a non-solvable group and let R (G) = H1 ≤ . . . ≤ Ht = G be
the non-abelian socle series of G. Then, for each 1 < i ≤ t/2, µ (G/H2i−1) ≤ ni−1.

Proof. It is clearly sufficient to prove the statement for the case i = 2. So we will
prove µ (G/H3) ≤ n1. Since G/H1 has a trivial solvable radical it acts faithfully
by conjugation on N1 = soc (G/H1) = H2/H1 and so embeds in Aut (N1). Now
N1 = T r11 ×· · ·×T rmm where the Ti’s are pairwise non-isomorphic non-abelian simple
groups, and r1, ..., rm are positive integers (

∑m
i=1 ri = n1). We have Aut (N1) =

Aut (T r11 )× · · · ×Aut (T rmm ) and Aut (T rii ) ∼= Aut (Ti)
ri o Sri (see proof of Lemma

2.8). Now, the image of G/H1 in Aut (N1) contains Inn (T r11 )× · · · × Inn (T rmm ) =
(Inn (T1))

r1 × · · · × (Inn (Tm))
rm which is, in fact, the image of N1 so

(G/H1) /N1 = (G/H1) / (H2/H1) ∼= G/H2 - Aut (N1) /

m∏
i=1

(Inn (Ti))
ri

∼=
m∏
i=1

Out (Ti)
ri o Sri ,

where
∏m
i=1 is direct, Out (Ti) := Aut (Ti) /Inn (Ti), and - denotes embedding.

Set A :=
∏m
i=1Out (Ti)

ri o Sri , B :=
∏m
i=1Out (Ti)

ri and S :=
∏m
i=1 Sri ≤ Sn1

.
We have A = BS, and B E A. Furthermore, B is solvable by Schreier’s conjecture.
Hence B ≤ R (A). Therefore A/R (A) = SR (A) /R (A) ∼= S/ (S ∩R (A)). Since
R (A/R (A)) = 1 we have R (S/ (S ∩R (A))) = 1. Thus, by [21, Theorem 1],

µ (A/R (A)) = µ (S/ (S ∩R (A))) ≤ µ (S) ≤ µ (Sn1
) = n1.

Now, identifying G/H2 with its embedding in A, we have that (G/H2)R (A) /R (A)
is a subgroup of A/R (A) and so µ ((G/H2)R (A) /R (A)) ≤ µ (A/R (A)). On the
other hand,

(G/H2)R (A) /R (A) ∼= (G/H2) / ((G/H2) ∩R (A)) .

Set D := (G/H2) ∩ R (A) ≤ R (G/H2). By an isomorphism theorem we have
((G/H2) /D) / (R (G/H2) /D) ∼= (G/H2) /R (G/H2). Hence, by [21, Theorem 1],
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we have

µ ((G/H2) /R (G/H2)) ≤ µ ((G/H2) /D) = µ ((G/H2)R (A) /R (A))

≤ µ (A/R (A)) ≤ n1.

On the other hand

(G/H2) /R (G/H2) = (G/H2) / (H3/H2) ∼= G/H3,

and the claim µ (G/H3) ≤ n1 follows. �

Lemma 3.2. Let G be a non-solvable group, and let m be the non-solvable length
of G. Then 5ni ≤ ni−1 for all 2 ≤ i ≤ m.

Proof. Let R (G) = H1 ≤ . . . ≤ Ht = G be the non-abelian socle series of G. By
the preceding remarks, Ni = soc (G/H2i−1) = Ti1 × · · · × Tini for all 1 ≤ i ≤ m,
where each Tij is a non-abelian simple group. We have:

µ (Ni) =

ni∑
j=1

µ (Tij) ≥ 5ni.

On the other hand, by Lemma 3.1, µ (Ni) ≤ µ (G/H2i−1) ≤ ni−1. Thus 5ni ≤ ni−1
for all 2 ≤ i ≤ m. �

Proof of Theorem 1.4. By the previous lemma and using the notation above,
5ni ≤ ni−1 for all 2 ≤ i ≤ m. Since nm ≥ 1 we get by induction, ni ≥ 5m−i for all
1 ≤ i ≤ m, and hence the total number k of non-abelian composition factors of G
satisfies

k =

m∑
i=1

ni ≥
m∑
i=1

5m−i =

m−1∑
i=0

5i =
5m − 1

4
.

This is equivalent to 5m ≤ 4k + 1 and the claim of the theorem follows. �

4. Nilpotent cp-factorizations

4.1. Nilpotent cp-factorizations of solvable groups. In this subsection we
prove Theorem 1.6. Using the special properties of Carter subgroups we are able
to reduce to the case where G is an affine primitive group. For this case we rely on
the following theorem.

Theorem 4.1 ([18]). Let G be an affine primitive permutation group with a non-
trivial point stabilizer H. Then G is a product of at most 1 + cca log2 |G : H| con-
jugates of H, where 0 < cca ≤ 3/ log2 5 < 1.3 is a universal constant.

Recall that C ≤ G is a Carter subgroup ofG if C is nilpotent and self normalizing.
The following lemmas collect various properties of Carter subgroups which are
required for the proof of Theorem 1.6.

Lemma 4.2. Let G be a solvable group. Then

(a) There exists a Carter subgroup of G.
(b) There is a unique conjugacy class of Carter subgroups in G.
(c) If C is a Carter subgroup of G then C is a maximal nilpotent subgroup of

G, that is, if C < H ≤ G, then H is not nilpotent.
(d) If C is a Carter subgroup of G and N E G then CN/N is a Carter subgroup

of G/N .
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(e) If C is a Carter subgroup of G then C is Carter subgroup of H for any
C ≤ H ≤ G.

Proof. For (a)-(d) see [9] and [20, Theorem 12.2(b) and Lemma 12.3]. For (e) note
that since C is self-normalizing in G it is self-normalizing in any subgroup of G
containing C. �

Lemma 4.3. Let G be a solvable group and let C be a Carter subgroup of G. Then
G is a product of conjugates of C.

Proof. It is enough to show that CG = G. Set N := CG. Note that C is a Carter
subgroup of N . For any g ∈ G we have Cg ≤ N is a self normalizing nilpotent
subgroup of N . Hence Cg is a Carter subgroup of N and hence there exists n ∈ N
such that Cg = Cn. It follows that gn−1 normalizes C and therefore gn−1 ∈ C ≤ N .
Hence g ∈ N implying G = N . �

Definition 4.4. Let G be a solvable group. We denote by γccp (G) the minimal
length of a cp-factorization of G by a Carter subgroup.

Note that a nilpotent group G is equal to its own Carter subgroup and hence,
for G nilpotent, γccp (G) = 1. Clearly γncp (G) ≤ γccp (G).

Lemma 4.5. Let G be a solvable group and let C be a Carter subgroup of G. Let
N E G be such that N is contained in C. Then γccp (G) = γccp (G/N).

Proof. It is clear that if N is contained in C then it is contained in every conjugate
of C. Suppose that G = C1 · · ·Ck where Ci is a conjugate of C for all 1 ≤ i ≤ k.
Then G = C1 · · ·Ck, where, for any A ≤ G we denote A := AN/N , and each Ci
is a Carter subgroup of G. Conversely, if G = C1 · · ·Ck, where the Ci are Carter
subgroups of G, then, by assumption, the full preimage of Ci in G is a Carter
subgroup Ci of G and we can conclude that G = C1 · · ·Ck. The claim follows. �

Proof of Theorem 1.6. The proof is by induction on |G|. Let C be a Carter
subgroup of G. If G is nilpotent then G = C, γccp (G) = 1, and the claim clearly
holds. Hence we can assume that G is non-nilpotent. Let N be a minimal normal
subgroup of G. For any A ≤ G denote A := AN/N . Then G = C1 · · ·Ck, where
each Ci is a Carter subgroup of G, and k = γccp

(
G
)
. By Lemma 4.2(d), the

full preimage of Ci in G is CiN where Ci is a Carter subgroup of G, and we
get G = C1 · · ·CkN . If k > 1, CkN is proper in G. By Lemma 4.2(e) Ck is a
Carter subgroup of CkN and hence we get by induction that CkN is a product of
γccp (CkN) ≤ cca log2 (|CkN : Ck|) + 1 conjugates of Ck. Since Ck is conjugate to C
and N is normal we have |CkN : Ck| = |CN : C|. Therefore

γccp (G) ≤ k − 1 + cca log2 (|CkN : Ck|) + 1 = γccp
(
G
)

+ cca log2 (|CN : C|)
≤ 1 + cca log2 (|G/N : CN/N |) + cca log2 (|CN : C|) = 1 + cca log2 (|G : C|) ,

and the claim is proved. Hence we can assume k = 1.
In this case we have G = CN , where C is a Carter subgroup of G and N is a

minimal normal subgroup of G. Since G is solvable, N is elementary abelian and in
particular, |N | = pn for some prime p and some positive integer n. Suppose that C
contains a non-trivial normal subgroup L of G. By Lemma 4.5, γccp (G) = γccp (G/L)
and G/L = (C/L)N and N is minimal normal in G/L. Thus we can assume that
C is core-free. Under this assumption CG (N) = N . Indeed, N ≤ CG (N) because
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N is abelian so by Dedekind’s law, CG (N) = CG (N) ∩ (NC) = N (CG (N) ∩ C).
Since CG (N) E G we get that C normalizes CG (N) ∩ C. Moreover, N centralizes
CG (N) hence it normalizes CG (N) ∩ C. Thus we proved that CG (N) ∩ C E G.
Since C is core-free, we get CG (N) ∩ C = 1 and CG (N) = N . Finally, since G
is solvable, G is primitive iff it has a self-centralizing minimal normal subgroup
([12, Proposition A.15.8(b)]). Thus we can conclude that G is primitive and C is
maximal and non-normal. Now apply Theorem 4.1, with H = C. �

4.2. Nilpotent cp-factorizations of non-solvable groups. This subsection is
devoted to the proof of Theorem 1.7. This requires a readjustment of some of the
results in Subsections 2.1 and 2.2.

Lemma 4.6. Let S be a simple non-abelian group. Then there exist a subgroup A <
S and two universal real positive constants c and u such that S has a special solvable
cp-factorization by at most c log2 log2 |S| conjugates of A, and |S| ≤ |S : A|u.

Proof. It is sufficient to prove the claim separately for S a simple group of Lie type,
S a simple alternating group, and S a sporadic simple group or the Tits group.

1. S is a simple group of Lie type. Take A to be a Borel subgroup of S. Since (see
Lemma 2.4) S is a product of three conjugates of A, and since |S| ≥ 60, choosing
c to satisfy c ≥ 3/ log2 log2 60 gives that S is a product of at most c log2 log2 |S|
conjugates of A. Moreover, let p be a defining characteristic of S and let U be a
Sylow p-subgroup of S. Then, by [17], S is a product of 4 conjugates of U , and so

|S| ≤ |U |4. On the other hand |S : A| ≥ |U |. To see this, use the fact that S is
a group with a split BN -pair and that by [10, Proposition 2.5.13] Aẇ0A = Uẇ0A
with uniqueness of expression on the r.h.s (see [10] Chapter 2 for notation). Then
we have |S| ≥ |Aẇ0A| = |U | |A|, implying |S : A| ≥ |U |. Combining the two claims

gives |S| ≤ |S : A|4.
2. S ∼= Alt (n) where n ≥ 5. Since |S| = n!/2 there exists c > 0 such that for

all n ≥ 5 we have c log2 log2 |S| ≤ 12 log2(n). Taking A to be a Sylow 2-subgroup
of S we get, by Lemma 2.5, that S has a special solvable cp-factorization by at
most c log2 log2 |S| conjugates of A. Furthermore we prove that |S| ≤ |S : A|2.

This is equivalent to 2 |A|2 ≤ n!, where |A| is equal to the maximal power of 2

dividing n!/2. First one verifies directly that 2 |A|2 ≤ n! for n = 5, 6, 7. Then, by
[11, Exercise 2.6.8], |A| < 2n−1. Since 22n−1 ≤ n! holds, by easy induction, for all
n ≥ 8, the proof is finished.

3. S is a sporadic simple group or the Tits group. This is a collection of 27
groups and the claim follows from the fact that it is a finite collection. �

Lemma 4.7. Let G = T r11 × · · · × T rmm where the Ti’s are pairwise non-isomorphic
non-abelian simple groups, and r1, ..., rm are positive integers. Then there exists a
solvable subgroup A of G such that

γAcp(G) ≤ max
{
γsscp(T1), ..., γsscp(Tm)

}
,

and |G| ≤ |G : A|u, where the constant u is the same as in Lemma 4.6.
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Proof. Taking A = B1 where B1 is defined in the proof of Lemma 2.8, we get
γAcp(G) ≤ max

{
γsscp(T1), ..., γsscp(Tm)

}
. Moreover

|G| =
m∏
i=1

|Ti|ri ≤
m∏
i=1

(|Ti : Bi1|u)
ri =

(
m∏
i=1

(|Ti : Bi1|ri)

)u

=

(
m∏
i=1

∣∣∣T ri

i : B
ri

i1

∣∣∣)u =

∣∣∣∣∣
m∏
i=1

T
ri

i :

m∏
i=1

B
ri

i1

∣∣∣∣∣
u

= |G : B1|u = |G : A|u .

�

Notation 1. Let G be a group. If G is non-solvable then |G|nab will denote the
product of the orders of all non-abelian composition factors of G appearing in a
composition series of G. If G is solvable then |G|nab := 1.

Lemma 4.8. Let G be a group and let N E G be such that γsscp(N) <∞. Let B < N
be such that N has a special solvable cp-factorization by γsscp(N) conjugates of B, and
let H ≤ G be such that G/N has a solvable cp-factorization by γscp(G/N) conjugates

of H/N . Assume further that |N |nab ≤ |N : B|u and |G/N |nab ≤ |G/N : H/N |u

for some real positive u. Set A := NH (B). Then A is solvable, γAcp(G) ≤ γsscp(N) +

γscp(G/N), and |G|nab ≤ |G : A|u.

Proof. In view of Lemma 2.9 and its proof, A is solvable and γAcp(G) ≤ γsscp(N) +

γscp(G/N). It remains to prove |G|nab ≤ |G : A|u. By the proof of Lemma 2.9,
H = AN . Moreover, using (ii) of Definition 2.1, we have A ∩ N = NN (B) = B.
Using this and the isomorphism theorems gives

|G : A| = |G : H| |H : A| = |G : H| |AN : A|
= |G : H| |N : B| = |G/N : H/N | |N : B| .

By our assumptions, |G|nab = |G/N |nab |N |nab ≤ |G/N : H/N |u |N : B|u and there-
fore, by the above |G|nab ≤ |G : A|u. �

The next result is a restatement of Proposition 2.10 with an additional conclu-
sion. We use the notation of Subsection 2.2.

Proposition 4.9. Let G be a non-trivial group whose non-solvable length is m :=
λ (G) ≥ 0. For each 1 ≤ i ≤ m pick a simple non-abelian direct factor Ti of Ni such
that γsscp(Ti) is maximal compared to any other factor of Ni. Then there exists a

solvable subgroup A of G such that γAcp(G) ≤ 1 +
m∑
i=1

γsscp(Ti) and |G|nab ≤ |G : A|u,

where the constant u is the same as the one in Lemma 4.6.

Proof. If m = 0 then G is solvable, A = G, |G|nab = 1 and the claim holds. Suppose
that m > 0. Let N := N1 E G/R (G). In order to simplify notation, assume
without loss of generality that R (G) = 1, so N E G. Note that |N | = |N |nab.
Hence, by Lemma 4.7, there exists B < N (B1 in Lemma 4.7) such that N has a
special solvable cp-factorization by γsscp(N) conjugates of B, and |N |nab ≤ |N : B|u.
Since the non-solvable length of G/N is m−1 we get, by induction assumption, that

G/N is a product of at most 1 +
m∑
i=2

γsscp(Ti) conjugates of a solvable H/N ≤ G/N

and |G/N |nab ≤ |G/N : H/N |u. Now the claim follows from Lemma 4.8. �
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Proof of Theorem 1.7. By Theorem 1.6 we can assume that G is non-solvable,
and therefore m := λ (G) ≥ 1. By Proposition 4.9 there exists a solvable subgroup

A1 of G such that γA1
cp (G) ≤ 1 +

m∑
i=1

γsscp(Ti), and |G|nab ≤ |G : A1|u, for some real

universal positive u. By Lemma 4.6, there exists a universal real positive constant
c such that γsscp(Ti) ≤ c log2 log2 |Ti| for all 1 ≤ i ≤ m. Hence

γA1
cp (G) ≤ 1 +

m∑
i=1

c log2 log2 |Ti| ≤ 1 + c

m∑
i=1

log2 log2 |G|nab

= cm log2 log2 |G|nab .

By Theorem 1.4, m ≤ log5 (4k + 1) where k is the number of non-abelian composi-
tion factors of G. Since each non-abelian composition factor is of order at least 60,
we get that |G|nab ≥ 60k > 25k, which implies k < 1

5 log2 |G|nab. Thus

m ≤ log5 (4k + 1) < log5

(
4

5
log2 |G|nab + 1

)
< log2 log2 |G|nab .

Inserting in the previous inequality we obtain

γA1
cp (G) ≤ c (log2 log2 |G|nab)

2 ≤ c (log2 u+ log2 log2 |G : A1|)2 .

Now, by Theorem 1.6, γAcp(A1) ≤ 1 + cca log2 |A1 : A| where A is a Carter subgroup

of A1 and cca is a universal real positive constant. Since γAcp(G) ≤ γAcp(A1)γA1
cp (G),

|A1 : A| < |G : A| and |G : A1| ≤ |G : A|, the claim of the theorem follows easily
for a suitable choice of the constant cus. �

Remark 4.10. Using results from Subsections 2.1 and 4.2, and from Table 1, it is
possible to give an explicit upper bound on cus.

Appendix
Table 1 lists, for each sporadic simple group S including the Tits group 2F4 (2)

′
,

an upper bound on γpcp(S) (column heading γpcp(S) ≤) for a specified prime p.
Under column heading pα the maximal power of p dividing |S| is given. Under
the column heading A we specify a subgroup A < S on which the bound is based,
using ATLAS notation ([2]). We have verified, using Lemma 2.6 (d) and sometimes
a MAGMA computation ([4]), that NS (P ), the normalizer in S of some Sylow
p-subgroup P of S is solvable. For each A in the table we have γAcp(S) = 3 - this
was verified using the ”mfer” tool [6] (see Subsection 2.1). In all cases, with a
few exceptions detailed below (all associated with p = 2), A contains a Sylow
p-subgroup of S. For S = M11, J1, we have P ≤ A ≤ NS (P ) so the bound is exact
and γpcp(S) = 3. For the other cases the bound is derived using Lemma 2.6 (a) and
a bound on γpcp(A) (when γpcp(S) ≤ 9, we have γpcp(A) = 3). The determination of
the bound on γpcp(A) uses a variety of means: Lemma 2.4, information on subgroups
of A from [2], an application of the ”mfer” tool to A, and previous results from the
table. For the S = B, where the bound is 12, we have deduced γ2cp(A) ≤ 4 from
[17]. In this as well as in the case of S = M , the argument relies on Lemma 2.6 (e),
(f), and hence A need not contain a Sylow 2-subgroup of S.

Remarks for Table 1:
(1) A Sylow 2-subgroup of A is self-normalizing of index 3, hence γ2cp(A) = 3.
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(2) A Tomlib mfer calculation shows that L2 (16) is a product of three Sylow
5-subgroup normalizers (structure D30). Hence L2 (16) : 2 is a product of three
Sylow 5-subgroup normalizers (structure D10 × S3).

(3),(4),(6) A is a group of Lie type hence it is a product of three Sylow 2-subgroup
normalizers. A MAGMA computation shows that the Sylow 2-subgroup of A is self-
normalizing. Therefore S is a product of nine conjugates of a 2-subgroup and hence
it is a product of nine Sylow 2-subgroup normalizers.

(5) 2.HS.2 is a central extension of HS.2 hence the order 2 center is contained
in the Sylow 11-subgroup normalizer of 2.HS.2.

S A pα γpcp(S) ≤ Remarks

M11 11 : 5 11 3
M12 M11 11 9
J1 23 : 7 : 3 23 3
M22 L2(11) 11 9
J2 U3(3) 33 9
M23 M11 11 9

2F4 (2)
′

22.
[
28
]

: S3 211 9 (1)

HS M11 11 9

J3 L2(16) : 2 5 9 (2)

M24 26 : (L3 (2)× S3) 210 9
M cL U4 (3) 36 9

He S4(4) : 2 210 9 (3)

Ru 2F4 (2) 214 9 (4)

Suz 21+6
− .U4 (2) 213 9

O′N L3 (7) : 2 73 9
Co3 2.S6(2) 210 9

Co2 21+8
+ : S6(2) 218 9

Fi22 O7 (3) 39 9

HN 2.HS.2 11 27 (5)

Ly G2 (5) 56 9
Th 25.L5 (2) 215 9

Fi23 S8 (2) 218 9 (6)

Co1 21+8
+ .O+

8 (2) 221 9
J4 211 : M24 221 27
Fi′24 37.O7 (3) 316 9
B 2.2E6(2).2 241 12
M 2.B 246 36

Table 1. Upper bounds on the minimal length of special solvable
conjugate factorzations of simple sporadic groups and the Tits
group
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