
ar
X

iv
:1

00
5.

05
13

v1
 [

cs
.D

S]
 4

 M
ay

 2
01

0

Maximum flow is approximable by deterministic

constant-time algorithm in sparse networks

Endre Csóka

Eötvös Loránd University, Budapest, Hungary

Abstract

We show a deterministic constant-time parallel algorithm for finding an

almost maximum flow in multisource-multitarget networks with bounded

degrees and bounded edge capacities. As a consequence, we show that

the value of the maximum flow over the number of nodes is a testable

parameter on these networks.

1 Introduction

In the last decade it became apparent that a large number of the most interesting
structures and phenomena of the world can be described by networks which are
so large that the data about them can be collected only by indirect means like
random local sampling. This yielded the motivation of property testing and
parameter testing, which became an intensively studied field recently (see [3],
[12] and all references). There are two special cases that have been treated in
most papers. One is the dense graphs, where a positive fraction of all pairs of
nodes are connected. The other is the sparse graphs, these are mostly graphs
with bounded degrees. In this paper, we deal only with parameter testing of
bounded-degree graphs. A parameter tester of bounded-degree graphs means
an algorithm which chooses a constant numb er of random nodes, and to these
constant radius neighbourhoods, assigns an estimation (a number) which is at
most ε far from the true parameter with at least 1 − ε probability. We call a
parameter testable if there exists a tester with arbitrary small errors.

There is a strongly connected concept called constant-time algorithm, intro-
duced by Nguyen and Onak[14]. For example, consider the maximum matching
problem. Here, a constant-time algorithm is a ”local function” that decides
about each edge that whether it chooses to the mathing or not, so that the
chosen edges form a matching, and its size is at most εn less than the size of
the maximum matching, with at least 1− ε probability. Locality means that it
depends only on the constant-size neighbourhood of the edge, including some
random numbers, as follows. Randomization is strictly required to break sym-
metry, for example in a regular large-girth graph. The idea of Nguyen and Onak
was to assign independent random numbers to the nodes uniformly from [0, 1],

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78475695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1005.0513v1

and the neighbourhood consists not only of the induced subgraph of nodes at
most constant far from the chosen node, but also of the random numbers of
these nodes. In that paper, they showed a constant-time algorithm for this and
some other problems.

About the connection of the two concepts, notice that if we have a constant-
time algorithm producing the maximum matching then the ratio of the size
of the maximum matching and the number of nodes is a testable parameter.
Because we can make a tester which simply calculates the probability that
the chosen random node would be covered by the matching produced by the
constant-time algorithm, and the average of these probabilities is a good ap-
proximation.

In this paper, we show a constant-time deterministic algorithm for a version
of the maximum flow problem. This determinism means that we will get the
analogous result using no random numbers.

If we delete all edges from all sources or targets then the value of the max-
imum flow decreases to 0 while the distribution of the local neighbourhoods
remains asymptotically the same. That is why the value of the maximum flow
in a graph with 1, or even with o(n) sources or targets cannot be tested in any
reasonable way. Similarly, one new edge with high capacity between a source
and a target would increase the value of the maximum flow by this arbitrary
large value. These are some reasons why we will deal only with multiple sources
and targets and bounded capacities.

2 Model and results

There is an input graph G with degrees bounded by d. Its vertices are separated
into the disjoint union of the colour sets R (regular), S (source) and T (target).
Each edge of the graph is considered as two directed edge in the two directions,
and we have a capacity function c : ~E(G) → [0,M] of the directed edges. The
word ”graph” will include these two structures and we handle d and M as global
constants throughout the paper. Let |V (G)| = n, denote by out(v) the set of

edges starting from a node v, and for an e ∈ ~E(G), let −e denote the edge e in

the opposite direction. We define the flow as a function f : ~E(G) → R for which

∀e ∈ ~E(G) satisfies f(−e) = −f(e) and f(e) ≤ c(e) and ∀v ∈ S :
∑

e∈out(v)

f(e) ≥

0 and ∀v ∈ T :
∑

e∈out(v)

f(e) ≤ 0 and ∀v ∈ R :
∑

e∈out(v)

f(e) = 0. The value of a

flow f is |f | =
∑

s∈S; e∈out(s)

f(e). Denote a maximum flow by f∗ = f∗(G).

The rooted neighbourhood of a vertex v or edge e of radius r, denoted by
hr(v) and hr(e), means the induced subgraph (with colours and edge weights)
of the vertices at a distance at most r from v or e, with a mark at v or e. The

set of all possible neighbourhoods are denoted by H
(1)
r and H

(2)
r . A local (flow)

assignment means a function L : H
(2)
r → R for which the function e → L(hr(e))

2

is a flow for each graph.

Theorem 1. For each ε > 0 there exists a constant-time algorithm producing
a flow with value ≥ |f∗| − εn.

We emphasize that Theorem 1 is about not a stochastic but a deterministic
assignment. So from this aspect, Theorem 1 is stronger than necessary to prove
Theorem 2. We get this determinism only by averaging on all random labellings,
since the space of flows is a convex set and the values of flows is a linear function.

Theorem 2. |f∗(G)| is testable, namely, for all ε > 0 there exist k, r ∈ N and

a function g : (H
(1)
r)k → R satisfying that if the vertices v1, v2, ... vk are chosen

independently with uniform distribution
then E(||f∗(G)|/n− g(hr(v1), hr(v2), ... hr(vn))|) < ε.

We note that for all ε > 0, having an approximation with expectedly < εn
error is stronger but ofter equivalent to having this with < εn error with at least
1− ε probability.

3 Proofs

First we prove Theorem 1 using the following lemmas, and Theorem 2 will be
an easy consequence of it.

An augmenting path of a flow f is a directed path u = (e1, e2, ... ek) from
S to T with f(ei) < c(ei) for each edge ei. The capacity of u means cap(u) =
cap(u, f) = min

i
(c(ei)− f(ei)), and we identify an augmenting path u with the

flow u : ~E(G) → R, u(e) = {1 if ∃i : e = ei; −1 if ∃i : e = −ei; 0 otherwise},
which we also call path-flow. Augmenting on such a path u means the incre-
mentation of f by cap(u) · u.

Lemma 3. If for a flow f , there is no augmenting path with length at most l,
then |f | ≥ |f∗| − dM

l
n.

Proof. With the identically 2M capacity function, f∗ − f is a flow, so we can
split it into the sum of path-flows u1, u2, ... uq and a circulation u0 that follow

the directions of the flow f∗− f , namely, ∀i ∈ {0, ... q}, e ∈ ~E(G) : sgn(ui(e)) ∈
{0, sgn((f∗ − f)(e))}. Thus,

|f∗| − |f | = |f∗ − f | =

q∑

i=1

|ui| =
1

2l

q∑

i=1

2l|ui|

≤
1

2l

q∑

i=1

∑

e∈ ~E(G)

|ui(e)| =
1

2l

∑

e∈ ~E(G)

|

q∑

i=1

ui(e)| ≤
1

2l

∑

e∈ ~E(G)

2M ≤
dnM

l
.

Lemma 4. If for a flow f , there is no augmenting path shorter than k, then
augmenting on a path with length k does not create a new augmenting path with
length at most k.

3

Proof. Let the residual graph mean the graph without edge capacities Gf =

(S(G), R(G), T (G), {e ∈ ~E(G)|f(e) < c(e)}). Then the augmenting paths of
G can be identified with the paths in Gf from S to T . So if the length of the
shortest augmenting path of a flow is k then it means that the length of the
shortest path in Gf from S to T is k. Let the movement of an edge in G mean
the difference of the distances of its endpoint and starting point from S in Gf .
Augmenting on a shortest path adds only such edges to the residual graph on
which f decreases, which are the reverse edges of the path. All these edges
have movement −1 (calculated before augmenting). So if a path becomes an
augmenting path at this augmenting step then all its edges have movements at
most 1 and contain an edge with movement −1, so its length is at least k+2.

Let us label all paths u with length at most l with independent random
variables x(u) chosen uniformly from [0, 1), forbidding any two labels to be
equal. We define chain as a sequence u1, u2, ... us of such paths for which
|u1| + x(u1) > |u2| + x(u2) > ... |us| + x(us) and ∀i ∈ {1, 2, ... s − 1} there
exists a common undirected edge of ui and ui+1 (henceforth: these intersect
each other).

Lemma 5. For each l ∈ N and ε > 0 there exists a q = q(l, ε) ∈ N for which
for every graph G (with degrees bounded by d) and its undirected edge e, with
random labelling, the probability that there exists a chain u1, u2, ... uq for which
u1 contains e is at most ε.

Proof. There exists an upper bound z = z(l) for the number of paths with length
at most l intersecting a given path of length at most l. Hence, there are at most
zq sequences of paths u1, u2, ... uq for which e is in u1 and ∀i ∈ {1, 2, ... q−1}, ui

intersects ui+1. All such sequences contain ⌈q/l⌉ paths of the same length. The
ordering of their labels the ⌈q/l⌉! permutations with the same probability, so
the probablilty that the labels are decreasing is 1/⌈q/l⌉!. This event is necessary
for the sequence to be a chain. Denote the number of chains in the lemma by
the random variable X (with respect to the random labelling). We have

P (X ≥ 1) ≤ E(X) ≤
zq

⌈ q
l
⌉!

→ 0 where q → ∞,

which proves the lemma for some large enough number q.

Proof of Theorem 1. Consider the variant of the Edmonds–Karp algorithm
where we augment on the one of the shortest augmenting paths with the lowest
label, and we stop the algorithm when no augmenting path with length at most
l remains. In other words, we start from the empty flow, we take the paths u
with length at most l in the increasing order of |u|+ x(u), and with each path,
we increase the actual flow f by cap(f, u) · u. We denote this algorithm by A1

and the resulting flow by f1 = f1(G, x).
Consider now the variant of the previous algorithm where we skip augment-

ing on each path which can be obtained as the first element of any chain

4

with length s. We denote this algorithm by A2 and the resulting flow by
f2 = f2(G, x). The next lemma shows that f2(e) is a constant-time algorithm.

Lemma 6. For each edge e and labelling x, f2(G, x)(e) = f2(hsl(e),
(x|V (hsl(e))))(e).

Proof. Let us consider the run of the two algorithms in parallel so that when
the first one takes a path u in G then if u is in hsl(e) then the second algorithm
takes u as well, otherwise it does nothing. If at a point, the two flows differ at an
edge e′ ∈ ~E(hsl(e)) then there must have been a path u through e′ on which the
two algorithms augmented by different values. There are three possible reasons
of it:

1. u is not in hsl(e);

2. u can be obtained as the first term of some chain in G with length s, but
not in hsl(e);

3. u has an edge e′′ in hsl(e) at which the values of the two flows were different
before taking u.

Assume that at the end, the two flows are different on e. Using the previous
observation initially with e′ = e, let us take a path u through e′ on which
the two augmentations were different, and consider which of the three reasons
occurred. As long as the third one, repeat the step with choosing e′ as the e′′

of the previous step. Since by each step we jump to an earlier point of the
runs, we must get another reason sooner or later. Denote the paths considered
during the process by u1, u2, ... ut. (Note that these are in reverse order on the
augmenting timeline.)

Consider the case when the reason for ut was the first reason. The set of
all edges of all of these t paths is connected, it contains at most tl edges, it
contains e and an edge at least sl away from e, so tl > sl, whence t > s. Thus
u1, u2, ... us is a chain with a connected edge set with size at most sl, so this
chain is in hsl(e), that is why neither runs should have been augmented on u1,
contradicting with the definition of u1.

On the other hand, if the reason for ut was the second reason then by ap-
pending u1, u2, ... ut with the chain from ut with length s, as its subchain, we
get a chain starting with u1 with length s, and it provides the same contradic-
tion.

We prove that if f2 is the output of A2 with l = 2dM/ε and using the
function q of Lemma 5, with s = q(l, ε/(4dM)) satisfies the following inequality.

E(|f2|) ≥ E(|f1|)−
ε

2
n ≥ |f∗| − εn (1)

f1 contains no augmenting path with length at most l, so using Lemma 3,

|f1| ≥ |f∗| −
dM

l
n = |f∗| −

dM
2dM
ε

n = |f∗| −
ε

2
n.

Consider now the first inequality.

5

Lemma 7. If f1(x)(e) 6= f2(x)(e) then there exists a path through e which is
the first term of a chain with length s.

Proof. Let us consider the run of A1 and A2 in parallel so that at the same
time these take the same edge. If at a point of the runs, the two flows differ
in an edge e′ then there must have been a path u through e′ on which the two
algorithms augmented by different values. There are two possible reasons of it:

1. u is the first term of a chain with length s;

2. u has an edge e′′ on which the values of the two flows were different before
taking u.

Assume that at the end, the two flows are different at e. Using the previous
observation, let us take a path u through e′ on which the two augmentation
were different, and consider which of the two reasons occurred. As long as the
latter one, repeat the step with choosing e′ as the e′′ of the previous step. Since
by each step we jump to an earlier point of the runs, we must get the first
reason in finite many steps. Denote the paths considered during the process by
u1, u2, ... ut. Then appending u1, u2, ... ut with the chain from ut with length
s, as its subchain, we get a chain starting with u1 with length s.

If f1(x)(e) 6= f2(x)(e) then by Lemma 7, there exists a chain with length
q(l, ε

4dM), and Lemma 5 says that this has probability at most ε
4dM . But even

if this occurs, f1(x) − f2(x) ≤ M − (−M) = 2M . That is why,

E(|f1|)− E(|f2|) = E(|f1(x)| − |f2(x)|) = E(|(f1(x) − f2(x)|)

= E(
∑

s∈S; e∈out(s)

f1(x)(e) − f2(x)(e)) ≤
∑

s∈S; e∈out(s)

ε

4dM
· 2M ≤

≤ dn ·
ε

4dM
· 2M ≤

ε

2
n.

We are finished proving (1).
Now, let f̄2(e) = E(f2(x)(e)). It is a flow because it is easy to check that

it satisfies all requirements, and |f̄2| = E(|f2|) ≥ |f∗| − εn. Furthermore, f̄2(e)
depends only on hsl(e), so it can be calculated by a constant-time algorithm.
Consequently, this assignment satisfies the requirements of the theorem.

Proof of Theorem 2. Let f̄2 be the flow constructed by the constant-time al-
gorithm of the previous proof with error bound ε/2, which therefore satisfies
|f̄2| ∈ [|f∗|− ε

2 , |f
∗|], and let r be the radius used there plus 1. Using the notion

I(b) = {1 if b is true, 0 if false} for an event b, let

g(hr(v1), hr(v2), ... hr(vk)) =
1

k

k∑

i=1

(I(vi ∈ S)
∑

e∈out(vi)

f̄2(e)). (2)

6

As I(vi)
∑

e∈out(v) f̄2(e) ∈ [0, dM], the Law of Large Numbers says that (2)

stochastically uniformly (with respect to G) converges to the following.

1

n

∑

v∈V (G)

(I(v ∈ S)
∑

e∈out(v)

f̄2(e)) =
1

n

∑

s∈S

∑

e∈out(v)

f̄2(e)) = |f̄2| ∈ [|f∗| −
ε

2
, |f∗|].

This implies that, for a large enough k, these k, r and g satisfy the requirements.

4 Acknowledgement

Thank you for László Lovász for the question and his help in making this paper.

References

[1] Alon, Shapira: A characterization of the (natural) graph properties testable
with one-sided error ; SIAM Journal on Computing, vol. 37, no. 6, pp. 1703-
1727, 2008

[2] R Andersen, Y. Peres: Finding sparse cuts locally using evolving sets
CoRR, vol. abs/0811.3779, 2008

[3] I Benjamini, O Schramm: Recurrence of distributional limits of finite planar
graphs
Electron. J. Probab. 6 no. 23, (2001) 13 pp. (electronic).

[4] Benjamini, Schramm, Shapira: Every minorclosed property of sparse graphs
is testable
Symposium on Theory of Computing (STOC), 2008, pp. 393-402

[5] Bogdanov, Obata, Trevisan: A lower bound for testing 3-colorability in
bounded-degree graphs ; Foundations of Computer Science (FOCS) 2002, pp.
93-102

[6] Czumaj, Shapira, Sohler: Testing hereditary properties of nonexpanding
bounded-degree graphs ; SIAM Journal on Computing, vol. 38, no. 6, pp.
2499-2510, 2009

[7] G Elek: Parameter testing with bounded degree graphs of subexponential
growth
Random Structures and Algorithms (to appear)

[8] G Elek, G Lippner: Borel Oracles. An analytical approach to constant-time
algorithms
Proceedings of the American Mathematical Society (to appear)

[9] E Fischer: On the strength of comparisons in property testing
Electronic Colloquium on Computational Complexity (ECCC) 8 (2001)

7

[10] O Goldreich, D Ron: Property testing in bounded degree graphs
Algorithmica, vol. 32, no. 2, pp. 302-343, 2002

[11] Lenzen, Oswald, Wattenhofer: What can be approximated locally? Case
study: Dominating sets in planar graphs ; SPAA, 2008, pp. 46-54.

[12] L Lovász: Very large graphs
Current Developments in Mathematics, 2008 (2009), pp. 67-128

[13] Marko, Ron: Approximating the distance to properties in bounded-degree
and general sparse graphs ; ACM Transactions on Algorithms, vol. 5, no. 2,
2009

[14] Nguyen, Onak: Constant-Time Approximation Algorithms via Local Im-
provements
49th Annual IEEE Symposium on Foundations of Computer Science, 2008,
327-336

[15] Parnas, Ron, Rubinfeld: Tolerant property testing and distance approxima-
tion
Journal of Computer and System Sciences, vol. 72, no. 6, pp. 1012-1042,
2006

[16] Yoshida, Yamamoto, Ito: An improved constant-time approximation al-
gorithm for maximum matchings ; Symposium on Theory of Computing
(STOC), 2009

8

	1 Introduction
	2 Model and results
	3 Proofs
	4 Acknowledgement

