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Abstract
Suppose that k is a non-negative integer and a bipartite multigraph G is the
union of s
+
=|—mn|—(k+1
Lc + 1”J (k+1)
matchings My, ..., My, each of size n. We show that G has a rainbow matching of

size n — k, i.e. a matching of size n — k with all edges coming from different M;’s.
Several choices of the parameter k relate to known results and conjectures.

Suppose that a multigraph G is given with a proper N-edge coloring, i.e. the edge
set of GG is the union of N matchings My, ..., My. A rainbow matching is a matching
whose edges are from different M;’s.

A well-known conjecture of Ryser [10] states that for odd n every 1-factorization of
K, , has a rainbow matching of size n. The companion conjecture, attributed to Brualdi
[4] and Stein [12] states that for every n, every l-factorization of K, , has a rainbow
matching of size at least n — 1. These conjectures are known to be true in an asymptotic
sense, i.e. every l-factorization of K, has a rainbow matching containing n — o(n)
edges. For the o(n) term, Woolbright [I3] and independently Brouwer et al. [5] proved
v/n. Shor [I1] improved this to 5.518(logn)?, an error was corrected in [8].
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There are several results for the case when K, , is replaced by an arbitrary bipartite
multigraph. The following conjecture of Aharoni et al. [3] strengthens the Brualdi-Stein
conjecture.

Conjecture 1. If a bipartite multigraph G is the union of n matchings of size n, then
G contains a rainbow matching of size n — 1.

As a relaxation, Kotlar and Ziv [9] noticed that the union of n matchings of size %n
contains a rainbow matching of size n — 1. Conjecture [Il would follow from another one

posed by Aharoni and Berger:

Conjecture 2. If a bipartite multigraph G is the union of n matchings of size n + 1,
then G contains a rainbow matching of size n.

Recently, there has been gradual progress on this question. Aharoni et al. proved
that matchings of size In suffice [3]. Kotlar and Ziv [9] improved it to 2n and Clemens
and Ehrenmiiller to (2 + ¢)n.

One needs a lot more matchings of size n to guarantee a rainbow matching of size n.

Aharoni and Berger [2] and (in a slightly weaker form) Drisko [7] proved the following.

Theorem 1. If a bipartite multigraph G is the union of 2n—1 matchings of size n, then
G contains a rainbow matching of size n.

The (unique) factorization of a cycle on 2n vertices with edges of multiplicity n — 1
shows that in the statement 2n — 1 cannot be replaced by 2n — 2 (see [7]). We merge
Conjecture [l and Theorem [[linto a unified context and ask the following. (We note that
this question was also raised independently in [6].)

Question 1. For integers 0 < k < n, what is the smallest N = N(n, k) such that any
bipartite multigraph G that is the union of N matchings of size n, contains a rainbow
matching of size n — k?

Conjecture [ claims that N(n,1) = n and Theorem [I states that N(n,0) = 2n — 1.
In this note we give the following upper bound on N (n, k).

Theorem 2. For 0 <k <n, N(n, k) < L:iﬁnj — (k+1).

In the range |n/2] < k < n Theorem 2 gives N(n, k) < n —k which is obviously best
possible, therefore N(n,k) = n — k. When k = 0 it gives N(n,0) < 2n — 1, the bound
of Theorem [II, so this is best possible as well. The case k = 1 gives a result towards
Conjecture [T} if a bipartite multigraph is the union of L%nj — 2 matchings of size n, then
there is a rainbow matching of size n — 1. As far as we know this is the best result in this
direction. If N = |(1 + €)n| for some € > 0, we get a partial rainbow matching of size
n — ¢ where ¢ is a constant depending on € (¢ = [1/¢€]), this goes beyond the best error
term known for Ryser’s conjecture ([8]), but the price is the increment in the number
of colors. Also, when k = |/n], Theorem [ extends (from factorizations of K, to
colorings of bipartite multigraphs) Woolbright’s result [13], namely that a factorization
of K, , contains a rainbow matching of size at least n — y/n.



Proof of Theorem 2l We use Woolbright’s argument [I3]. Set N = |#£2n| — (k + 1).

k41
Let the edge set of a bipartite multigraph G = [A, B] be the union of matchings
My, ..., My each of size n and let R; be a maximum rainbow matching of G with ¢

edges. Suppose to the contrary that t <n —k — 1.
We assume the edges of My, ..., My_; are not used in R;. For any subset S C B,
define
f(S)={veA: (v,w) e Ry for some w € S}.
Set By = B\ V(Ry),A0 = A\ V(Ry). For every j € {1,...,N —t} a matching
F; C M; of size j(n —t) will be defined with the following property.

e Property 1: V(F;) N By = 0.

Let Fy C M, be a matching of size n—t such that V(Fy)NA C Ay, since |My|—|R;| =
n —t, such Fy exists. Set By = V(F;) N B. Since R; is a maximum rainbow matching,
V(F1) N By =0, so Property 1 holds and |Fy| =1 x (n—t). Set Ay = f(By).

Suppose that for some ¢ > 1 the matchings F;, R; and the pairwise disjoint (n — t)-
element sets Ay,...,A;, By,..., B; have already been defined, where |F;| = i(n — ).
Define the rainbow matching R;,; by removing from R; the edges that go from B; to A;.

To define Fj11 C M;y1, take (i + 1)(n — t) edges of M, incident to A\ V(R;11).
There exist sufficiently many edges in M;,, since

| Misa| = |Rina] = n — (¢ = D |Bjl) = (i + 1)(n —t).

J=1

We show that Property 1 is maintained. Suppose to the contrary that we find
(a0, bo) € Fiy1, ag € A; for some 1 < j < i, by € By (clearly j # 0). Then by = f~!(ag) €
B;, and there exists an a; such that (ay,b;) € F; and this generates an alternating path

Q = <b07 a’O)v (CLOv f71<a0>>7 (f71<a0)7 al)v (alv fﬁl(al))v (fil(a’l% a’2>7 s

ending in A, allowing us to replace all edges of Ry N E(Q) by edges in different Fjs
(7 <i+1) contradicting the choice of t. Note that @ is a simple path, since with some
J>71 > > gk > 0, its edges go between the disjoint sets

<307Aj)7(AJ"B]')v(Bj’Ajl)v(A' BJ'l)v(B' AjQ)?"'7<A' Bjk>7<B'

J J1 Ik kaAO)'
Now Fj,, is defined and by Property 1
V(Fia) V(BN (UimgBi))| = — ¢,
therefore we can define B;,; as an (n — t)-element subset of V(F;, ;) N (B \ (Ui_yBr)).
Finally, set Ai+1 = f(BZJrl)
Since V(Fn_¢) N B C B\ By, we get
(N —t)(n—1t) <t

Dividing by n — ¢ (using t <n — k — 1 < n) this can be rewritten as

N_t< t :n—n+t: n 1

n—t n—t n—t
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or n
N —+t—1.
n—t

Using this, the definition of N and t <n — k — 1, we get

k—+2 n n
—_— -1 < — —k—-—1-1
{ PR

k1

n —

J—%+D:N§

and this leads to

n n
< —1,
{k+LJ_k+1

a contradiction, finishing the proof. O

Remark. A natural variant of Question [ is to allow arbitrary multigraphs (instead of
bipartite ones). Denote the corresponding function by N'(n, k). For k = 0 we have an
example showing N’(n,0) > 2n—1 and recently Aharoni informed us [I] that they proved
N'(n,0) < 3n — 2. Indeed, our example is the following. Let the vertices be denoted as
1,2,...,4k, where 2n = 4k. Let My = --- = M,y = {12,34, ..., (2n—1)2n}, M,, = --- =
Moo = {23,45,...,(2n)1} and My, = {13,24,57,68,...,(2n—3)(2n—1), (2n—2)2n}.
As it was remarked before, there is no full rainbow matching without using an edge of
My, 1. We may assume that we use the edge 24. Now any edge of M; that covers the
vertex 3, where 1 < ¢ < 2n — 2, uses either vertex 2 or 4. Therefore, there is no full
rainbow matching.
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