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Abstract

We determine the 2-color Ramsey number of a connected triangle matching
c(nK3) which is any connected graph containing n vertex disjoint triangles. We
obtain that R(c(nK3), c(nK3)) = 7n− 2, somewhat larger than in the classical
result of Burr, Erdős and Spencer for a triangle matching, R(nK3, nK3) = 5n.
The motivation is to determine the Ramsey number R(C2

n, C
2
n) of the square of

a cycle C2
n. We apply our Ramsey result for connected triangle matchings to

show that the Ramsey number of an “almost” square of a cycle C2,c
n (a cycle of

length n in which all but at most a constant number c of short diagonals are
present) is asymptotic to 7n/3.

1 Introduction

Denote by δ(G) the minimum degree in a graph G. Kn is the complete graph on
n vertices and Kn,n is the complete bipartite graph between two sets of n vertices
each. If G1, G2, . . . , Gr are graphs, then the Ramsey number R(G1, G2, . . . , Gr) is the
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smallest positive integer n such that in any edge-coloring with colors 1, 2, . . . , r, for
some i the edges of color i contain a subgraph isomorphic to Gi. In this paper we will
deal with 2- and 3-color Ramsey numbers (so r = 2 or 3) and we will think of color
1 as red, color 2 as blue and color 3 (if it exists) as white.

Among well-known early results in generalized Ramsey theory is the exact value of
R(nK2, nK2) = 3n−1 determined by Cockayne and Lorimer [8], and R(nK3, nK3) =
5n determined by Burr, Erdős and Spencer [3]. Here nG denotes n vertex disjoint
copies of the graph G. It turned out in many applications that it is important
to study the case when nK2, the matching, is replaced by a connected matching,
c(nK2), defined as any connected graph containing nK2 (see for example applications
[2, 9, 11, 12, 13, 14, 15, 16, 22]). The 2-color Ramsey number of connected matchings
is the same as the Ramsey number of matchings (in fact, [10] proves more) and
one of the key arguments of [13] was that this remains true for 3 colors as well.
However, for more than 3 colors the Ramsey numbers of matchings and connected
matchings are different. For example, R(nK2, nK2, nK2, nK2) = 5n − 3 [8], but
R(c(nK2), c(nK2), c(nK2), c(nK2)) > 6n− 3 when 2n− 1 is divisible by three. This
can be seen by the 4-coloring obtained from the parallel classes of an affine plane of
order 3 by replacing each point with a point set of size 2n−1

3
.

In this paper we look at the connected version of the “matching of triangles”. Let
c(nK3) denote any connected graph containing n vertex disjoint triangles. We shall
prove that here already the 2-color Ramsey number of c(nK3) is different from its
counterpart nK3.

Theorem 1. For n ≥ 2, R(c(nK3), c(nK3)) = 7n− 2.

(While we have R(nK3, nK3) = 5n.) To see that R(c(nK3), c(nK3)) > 7n−3, consider
pairwise disjoint sets A,B,C such that V (K7n−3) = A ∪ B ∪ C, |A| = |B| = 3n − 1
and |C| = n − 1. Edges inside A and inside B are red, all other edges are blue. In
this coloring there is no monochromatic c(nK3) (in fact there is not even an nK3 in
blue).

To prove that R(c(nK3), c(nK3)) ≤ 7n− 2, we need the Ramsey number of con-
nected triangle matchings versus ordinary matchings that might be interesting on its
own.

Lemma 2. For 1 ≤ m ≤ n, R(c(nK3), mK2) = 3n + m− 1.

Notice that R(c(nK3), mK2) > 3n+m−2 is shown by the disjoint sets A,X such
that V (K3n+m−2) = A∪X , |A| = 3n− 1, |X| = m− 1 and edges inside A are colored
red, other edges are colored with blue. In this coloring there is no red nK3 or blue
mK2.
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The motivation of Theorem 1 comes from the effort to determine or estimate the
2-color Ramsey number R(C2

n, C
2
n) where of C2

n is the square of the cycle on n vertices,
i.e. the cycle Cn with all short diagonals (diagonals between vertices at a distance
2 on the cycle). A very recent paper of Allen, Brightwell and Skokan [1] gives lower
bound 3n− 4 and upper bound 20n

3
+ o(n) for that Ramsey number.

Density questions for the square of a cycle have also received a lot of attention
(for example the well-known Pósa-Seymour problem, see [4], [17], [21]). Note also
that there has been a lot of research on the Ramsey numbers of constant maximum
degree graphs (such as C2

n, where the maximum degree is 4). It is known that for a
graph G on n vertices with maximum degree ∆ the Ramsey number is linear, it is at
most c(∆)n [5]. The current best bound c(∆) ≤ 2c∆log∆ is due to Conlon, Fox and
Sudakov [6].

To determine R(C2
n, C

2
n) exactly for every n is hopeless since for n = 5, 6, C2

5 =
K5, C

2
6 = K6−3K2 and these Ramsey numbers are both unknown. Also, the constant

c(4) in the linear bounds c(4)n is very large. However, combining Theorem 1 with
the Regularity Lemma, we shall make a step forward and prove the following. Let
C2,c

n denote an “almost” square of the cycle Cn, a cycle of length n in which all but
at most a constant number c of short diagonals are present.

Theorem 3. For every fixed η > 0 there is a c = c(η) so that for any n ≥ c we have
R(C2,c

n , C2,c
n ) ≤ (1 + η)7n/3.

It is worth noting that Theorem 3, although asymptotically sharp (shown by a similar
construction as in Theorem 1), does not give the right asymptotics for R(C2

n, C
2
n),

where we insist on all short diagonals. Indeed, R(C2
n, C

2
n) ≥ 3n − 4 is proved in [1].

Thus perhaps surprisingly removing these constant number of diagonals makes a big
difference in the Ramsey number.

The following easy lemma from [15] will be used. It extends (when δ(G) =
|V (G)| − 1) the well-known remark of Erdős and Rado that in a 2-colored complete
graph there is a monochromatic spanning tree.

Lemma 4. (Lemma 1.5 in [15]) Suppose that the edges of a graph G with δ(G) ≥
3|V (G)|

4
are 2-colored. Then there is a monochromatic connected subgraph with order

larger than δ(G). This estimate is sharp.

Theorem 1 and Lemma 2 are proved in Section 2. Their perturbed versions are
worked out in Section 3. Section 4 outlines the (rather standard) argument how to
obtain Theorem 3 from the Regularity and Blow-up lemmas.
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2 The proof of Lemma 2 and Theorem 1

Proof of Lemma 2. We prove by induction on m. Since for m = 1 the statement
is trivially true for every n, suppose we have a blue matching M = (m − 1)K2 in a
2-coloring of a K3n+m−1 with vertex set V . If there is no blue mK2 then every edge
ei ∈ M has a vertex pi adjacent in red to all but at most one vertex of X = V −V (M)
(otherwise ei could be replaced by two independent blue edges). Also, X induces a
red complete graph. Since

|X| = 3n + m− 1 − 2(m− 1) = 3n−m + 1 ≥ 2m + 1,

we can select greedily m− 1 pairwise disjoint red triangles with one vertex as pi and
two vertices from X . Then we find red triangles greedily in the remainder of X .
We are guaranteed to find n red triangles this way. These triangles can be certainly
included into a connected red subgraph so we have the required c(nK3). �

Proof of Theorem 1. Consider a 2-coloring of the edges of K = K7n−2 with red
and blue, assume w.l.o.g. that the blue color class has only one connected component
(since one color class is connected by using Lemma 4 with δ(G) = |V (G)| − 1). Since
R(nK3, nK3) = 5n for n ≥ 2, we have a monochromatic nK3. If it is blue, we are
done, therefore it is red and the red color class must define at least two connected
components. Suppose that the red components have vertex sets X1, X2, . . . , Xs, where
s ≥ 2 and |X1| ≥ |X2| ≥ . . . ≥ |Xs| ≥ 1. We may suppose that |X1| ≤ 5n, otherwise
we have the required monochromatic c(nK3) from R(nK3, nK3) = 5n.
Case 1. |X1| ≥ |X2| ≥ 3n, |X1| = 3n + k1, |X2| = 3n + k2. Since by Lemma 2 we
have R(c(nK3), (ki + 1)K2) = 3n + ki for i = 1, 2, Xi contains either a red c(nK3) or
a blue (ki + 1)K2 and we are done if the first possibility appears. Thus we have blue
matchings Mi of size ki + 1 in Xi for i = 1, 2. We can take k1 + 1 vertices in X2 \M2

and k2 + 1 vertices in X1 \ M1 to form a blue T = (k1 + k2 + 2)K3 using the blue
edges between X1 and X2 since from k1 + k2 ≤ n− 2 it follows that

3n + k1 − 2(k1 + 1) = 3n− k1 − 2 ≥ k2 + 1,

3n + k2 − 2(k2 + 1) = 3n− k2 − 2 ≥ k1 + 1.

If k1 + k2 + 2 = n (i.e. s = 2) we have the required blue c(nK3). Otherwise we have
l = n− (k1 + k2) − 2 (> 0) vertices in A = V − (X1 ∪X2) and we can form l vertex
disjoint blue triangles taking one vertex from each of the sets A,X1 − T,X2 − T . We
have enough vertices for that, because

|X1 − T | = 3n + k1 − 2(k1 + 1) − (k2 + 1) = 3n− (k1 + k2) − 3 ≥ n− (k1 + k2) − 2

4



and the same is true for |X2 − T |. Thus we have a connected blue triangle matching
of size at least k1 + k2 + 2 + n− (k1 + k2) − 2 = n, as desired finishing Case 1.
Case 2. |X1| ≥ 3n, 2n ≤ |X2| < 3n, |X1| = 3n + k1, |X2| = 3n − k2, 1 ≤ k2 ≤ n.
Again since by Lemma 2 we have R(c(nK3), (k1 + 1)K2) = 3n + k1, we may suppose
that we have a blue M1 = (k1 + 1)K2 in X1. We transform M1 to a blue triangle
matching T = (k1 + 1)K3 using k1 + 1 vertices from X2 and then extend T using
q = n− k1 + k2 − 2 vertices in A = V − (X1 ∪X2) and q vertices from both X1, X2.
We have enough room for that because

3n + k1 − 2(k1 + 1) ≥ n− k1 + k2 − 2, 3n− k2 − (k1 + 1) ≥ n− k1 + k2 − 2

are both true since k2 ≤ n. Thus we have a connected blue triangle matching of size
at least (k1 + 1) + (n− k1 + k2 − 2) = n + k2 − 1 ≥ n.
Case 3. |X1| ≥ 3n, n ≤ |X2| < 2n, |X1| = 3n+ k1, |X2| = n+ k2, 0 ≤ k2 < n. Again
since by Lemma 2 we have R(c(nK3), (k1 + 1)K2) = 3n + k1, we may suppose that
we have a blue M1 = (k1 + 1)K2 in X1. Furthermore, we may suppose that k1 < n
otherwise M1 can be transformed to a blue triangle matching T = (k1 + 1)K3 using
vertices from X2. Since k2 < n also holds, |V − (X1 ∪X2)| = 3n− (k1 + k2) − 2 ≥ n.
Thus we have at least n vertices in all of the three sets X1, X2, V −(X1∪X2) implying
that we have a connected blue c(nK3).
Case 4. |X1| ≥ 3n, |X2| < n or |X1| < 3n.

From Lemma 2 we may assume |X1| ≤ 4n−2. Indeed, otherwise since by Lemma
2 we have R(c(nK3), nK2) = 4n− 1, we may suppose that we have a blue M1 = nK2

in X1. This blue M1 can be transformed into a blue c(nK3) using n vertices in V −X1

(|X1| < 5n ensures that there are n vertices).
Define the set S1 so that |S1| = n and, starting with X1, all vertices of Xi are

selected before taking vertices from Xi+1. Then, starting from the next Xi, define S2

in the same way. Now set

A = {∪Xi : (S1 ∪ S2) ∩Xi = ∅}.

Then we have the following claim.

|A| ≥ n (or equivalently |V \ A| ≤ 6n− 2).

Indeed, this is true either because |X1| ≤ 4n − 2 and |X2| < n so the last Xi which
intersects S2 satisfies |Xi| < n or because 3n > |X1| ≥ |X2|. But then we can select
S3 ⊂ A with |S3| = n, and the blue complete tripartite graph [S1, S2, S3] defines the
required blue c(nK3). �
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3 Perturbed version of Theorem 1

As in many applications of the Regularity Lemma, one has to handle a few irregular
pairs and the corresponding edges will not be present in the reduced graph. We
say that the graph G on n vertices is ε-perturbed if it is almost complete, at most
ε
(

n

2

)

edges are missing. We cannot apply Theorem 1 in the reduced graph because
in Theorem 1 we have a 2-colored complete graph, yet the reduced graph will be a
2-colored ε-perturbed graph. Thus we need perturbed versions of Theorem 1 and first
Lemma 2. It will be convenient to think of the missing edges as edges in a third color
class (white or “invisible”), so we move up from 2-color Ramsey numbers to 3-color
Ramsey numbers. K1,t denotes the star with t leaves.

Lemma 5. For 1 ≤ m ≤ n, 0 ≤ t ≤ n, R(c(nK3), mK2, K1,t) ≤ 3n + m− 1 + 2t.

Proof. We prove by induction on m as in the non-perturbed case. The starting
case, m = 1 follows easily from a well-known result of Corradi and Hajnal [7] (or it
could also be proved directly by an easy induction on n). Indeed, if there is no blue
edge, we have a red graph on N = 3n + 2t vertices with minimum degree at least
3n + t > 2N

3
and it contains at least ⌊N/3⌋ ≥ n vertex disjoint red triangles. Since

our red graph is automatically connected from the minimum degree condition, we
have the required red c(nK3). Thus, we may select a blue matching M = (m− 1)K2

in a 2-coloring of a K3n+m−1+2t with vertex set V . We may assume that from every
vertex fewer than t edges are missing (or white edges). If there is no blue mK2 then
every edge ei ∈ M again has a vertex pi that is adjacent in blue to at most one vertex
in X = V − V (M). However, now pi is not necessarily adjacent in red to all other
vertices in X since some edges might be missing. But all the edges that are actually
present are indeed red to the other vertices. Furthermore, in X all edges that are
present are red as well. Since

|X| = 3n + m− 1 + 2t− 2(m− 1) = 3n−m + 1 + 2t ≥ 2m + 1 + 2t,

again we can select greedily m − 1 pairwise disjoint red triangles with one vertex
as pi and two vertices from X . Indeed, pi is still adjacent in red to more than
(2t + 3) − t = t + 3 > t vertices in X but then there is a (red) edge among these
neighbors, giving a red triangle as desired. Then we find red triangles greedily in the
remainder of X similarly. Finally, we find the n-th red triangle in the remainder of
X as follows. Select an arbitrary remaining vertex of X . Since it has more than t
neighbors left in X , there is an edge among these neighbors and all edges are red in
X . The red graph spanned by X is connected because |X|/2 > t, thus the n red
triangles form a c(nK3). �

We will also need a perturbed version of the classical result of Burr, Erdős and
Spencer, R(nK3, nK3) = 5n.
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Lemma 6. For n ≥ 2, 1 ≤ t ≤ n,R(nK3, nK3, K1,t) ≤ 6n− 2 + 5t.

Proof. Consider the largest blue triangle matching, remove it, then consider the
largest red triangle matching in the remainder and remove it. We have at least 5t+ 4
vertices left and there are no more monochromatic triangles. However, consider an
arbitrary vertex, it is still adjacent to at least 4t + 4 vertices in the leftover. Then in
one of the colors (say blue) it is adjacent to at least 2t+2 vertices. These neighbors will
induce a triangle which must be red (otherwise we get a blue triangle), a contradiction.
Indeed, consider again an arbitrary vertex from these at least 2t+2 vertices, it is still
adjacent to at least t + 2 vertices from these at least 2t + 2 vertices. But then there
must be an edge within these at least t + 2 vertices, giving a triangle.

We note that more is true (5n+ ct) but for our purposes this weaker statement is
sufficient. �

Next we are ready to give the perturbed version of Theorem 1.

Theorem 7. For n ≥ 2, 0 ≤ t ≤ 2n/3, R(c(nK3), c(nK3), K1,t) ≤ 7n− 2 + 7t.

Proof. Again suppose we have a 2-coloring of a K7n−2+7t with vertex set V . We may
assume that from every vertex fewer than t edges are missing (edges in the third color).
Applying Lemma 4, we get a monochromatic (say blue) connected component X of
size at least (7n−2+7t)−t = 7n−2+6t. By Lemma 6, since 7n−2+6t ≥ 6n−2+5t,
we have a monochromatic nK3 in X . If it is blue, we are done, therefore it is red
and thus the red color class must define at least two connected components within
X . Suppose that the red components of V have vertex sets X1, X2, . . . , Xs, where
s ≥ 2 and |X1| ≥ |X2| ≥ . . . ≥ |Xs| ≥ 1. We may suppose that |X1| ≤ 6n − 2 + 5t
otherwise we have the required monochromatic c(nK3) from Lemma 6.
Case 1. |X1| ≥ |X2| ≥ 3n + 2t, |X1| = 3n + 2t + k1, |X2| = 3n + 2t + k2. Here we
apply Lemma 5 to the two subgraphs induced by X1 and X2. We find either a red
c(nK3) or a blue (ki + 1)K2 in them and we are done if the first possibility appears.
Thus we have blue matchings M1,M2 of size k1 + 1, k2 + 1, respectively.

We extend M1 to a blue (k1 + 1)K3 by taking k1 + 1 vertices in X2 −M2. This
can be done if |X2 −M2| ≥ k1 + 1 + 2t− 2, extending the edges of M1 one by one to
blue triangles, at each step we have at most 2t− 2 vertices in X2 −M2 not adjacent
(in blue) to at least one of the ends of the edge to be extended. Indeed,

|X2 −M2| = 3n + 2t + k2 − 2(k2 + 1) = 3n + 2t− k2 − 2 ≥ k1 + 1 + 2t− 2

i.e 3n ≥ k1 + k2 + 1 which is true since k1 + k2 + 1 ≤ n+ 3t− 1 ≤ n+ 2n− 1 from the
assumption t ≤ 2n/3. The same argument allows to extend M2 to a blue (k2 + 1)K3

with k2 +1 vertices of X−M1. Thus we have a blue T = (k1 +k2 +2)K3 and noticing

7



that the blue graph spanned by X1 ∪ X2 is connected (by |X1|, |X2| > 2t, any two
vertices of X1 and of X2 has a common blue neighbor) we are done if k1 +k2 + 2 ≥ n.

Otherwise we have l = n+3t−(k1+k2)−2 (> 0) vertices in A = V −(X1∪X2) and
we plan to extend T to nK3 with n− (k1 +k2+2) vertex disjoint blue triangles taking
one vertex from each of the sets A,X1−T,X2−T . Since T is already connected, the
extension will be automatically connected as well. We have enough vertices for that
if all the three sets have size at least n− (k1 + k2 + 2) + 2t (in fact two of them can
be only at least n − (k1 + k2 + 2) + t). In our case the condition holds for A with t
to save and for Xi − T it holds with about 2n to save:

|X1 − T | = 3n + 2t + k1 − 2(k1 + 1) − (k2 + 1) =

= 3n + 2t− (k1 + k2) − 3 ≥ n− (k1 + k2 + 2) + 2t

and the same is true for |X2 − T |. Thus we have a blue c(nK3).
Case 2. |X1| ≥ 3n+2t, 2n+2t ≤ |X2| < 3n+2t, |X1| = 3n+2t+k1, |X2| = 3n+2t−k2,
1 ≤ k2 ≤ n.
Here we apply Lemma 5 to the subgraph induced by X1. We may suppose we have
a blue M1 = (k1 + 1)K2 in X1, we transform M1 to a blue triangle matching T =
(k1 + 1)K3 using k1 + 1 vertices from X2 and then extend T using q = n− k1 + k2− 2
vertices in A = V − (X1 ∪ X2) and q vertices from both X1, X2. We have enough
room for that because |A| = n + 3t− k1 + k2 − 2 ≥ q + 2t and

3n + 2t + k1 − 2(k1 + 1) ≥ q + 2t, 3n + 2t− k2 − (k1 + 1) ≥ q + 2t

are both true since k2 ≤ n. Thus we have a connected blue triangle matching of size
at least (k1 + 1) + q = n + k2 − 1 ≥ n.
Case 3. |X1| ≥ 3n+2t, n+2t ≤ |X2| < 2n+2t, |X1| = 3n+2t+k1, |X2| = n+2t+k2,
0 ≤ k2 < n.
Again we apply Lemma 5 to the subgraph induced by X1 and select the blue M1 =
(k1 + 1)K2 in X1. We may suppose that k1 < n otherwise M1 can be transformed to
a blue triangle matching T = (k1 + 1)K3 using vertices from X2. Since k2 < n also
holds, |V − (X1 ∪ X2)| = 3n + 3t − (k1 + k2) − 2 ≥ n + 2t. Thus we have at least
n+ 2t vertices in all of the three sets X1, X2, V − (X1 ∪X2) implying that we have a
connected blue c(nK3).
Case 4. |X1| ≥ 3n + 2t, |X2| < n + 2t or |X1| < 3n + 2t.
We may assume |X1| ≤ 4n − 2 + 2t, otherwise we can apply Lemma 5 with m = n
to X1 to find a blue nK2 and, since from Lemma 7 |X1| ≤ 6n − 2 + 5t we have at
least 7n − 2 + 7t − (6n − 2 + 5t) = n + 2t vertices in V − X1, the blue nK2 can be
transformed into a blue c(nK3) using n vertices of V −X1.

8



If |X1| ≥ n+2t, take an (n+2t)-vertex subset S1 ⊂ X1 then take an (n+2t)-vertex
set S2 from ∪i>1Xi so that in S2 we use all vertices of Xi before taking vertices from
Xi+1. Define

A = {∪i>1Xi : S2 ∩Xi 6= ∅}
Then |X1∪A| ≤ 6n−2+6t either because |X1| ≤ 4n−2+2t and |X2| < n+2t so the
last Xi which intersects S2 satisfies |Xi| < n + 2t or because 3n + 2t > |X1| ≥ |X2|.
Thus we can select S3 ⊂ V − A with |S3| ≥ n + t, and the blue tripartite graph
[S1, S2, S3] has lower bounds n+ 2t, n+ 2t, n+ t for its vertex classes which allows to
pick the vertices of the required blue c(nK3).

If |X1| < n + 2t, define S1 so that |S1| = n + t and all vertices of Xi are selected
before taking vertices from Xi+1. Then, starting from the next Xi, define S2 in the
same way. Now set

B = {∪Xi : (S1 ∪ S2) ∩Xi 6= ∅}
and observe that |B| ≤ 4n + 6t thus we can select S3 ⊂ V − B with |S3| ≥ 7n− 2 +
7t− (4n+6t) = 3n−2+ t ≥ n+2t, and the blue complete tripartite graph [S1, S2, S3]
has lower bounds n + t, n + t, n + 2t for its vertex classes which allows to pick the
vertices of the required blue c(nK3). �

4 Proof of Theorem 3; applying the Regularity

Lemma

Next we show how to prove Theorem 3 from Theorem 7, the Regularity Lemma [23]
and the Blow-up Lemma. The material of this section is fairly standard by now (see
[2, 11, 12, 13, 14, 15, 16] for similar techniques) so we omit some of the details. In
particular in [13] Section 2 follows a similar outline.

Let e(X, Y ) denote the number of edges between X and Y in a graph G. For
disjoint X, Y , we define the density

d(X, Y ) =
e(X, Y )

|X| · |Y | .

For two disjoint subsets A,B of V (G), the bipartite graph with vertex set A ∪ B
which has all the edges of G with one endpoint in A and the other in B is called the
pair (A,B).

A pair (A,B) is ε-regular if for every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B|

we have
|d(X, Y ) − d(A,B)| < ε.

9



A pair (A,B) is (ε, δ)-super-regular if it is ε-regular and furthermore,

deg(a) ≥ δ|B| for all a ∈ A,

and deg(b) ≥ δ|A| for all b ∈ B.

We need a 2-edge-colored version of the Szemerédi Regularity Lemma.1

Lemma 8. For every integer m0 and positive ε, there is an M0 = M0(ε,m0) such
that for n ≥ M0 the following holds. For any n-vertex graph G, where G = G1 ∪ G2

with V (G1) = V (G2) = V , there is a partition of V into ℓ + 1 clusters V0, V1, . . . , Vℓ

such that

• m0 ≤ ℓ ≤ M0, |V1| = |V2| = . . . = |Vℓ|, |V0| < εn,

• apart from at most ε
(

ℓ

2

)

exceptional pairs, all pairs Gs|Vi×Vj
are ε-regular, where

1 ≤ i < j ≤ ℓ and 1 ≤ s ≤ 2.

Our other main tool is the Blow-up Lemma (see [18, 19]). It basically says that
super-regular pairs behave like complete bipartite graphs from the point of view of
bounded degree subgraphs.

Lemma 9. Given a graph R of order r and positive parameters δ,∆, there exists
an ε > 0 such that the following holds. Let m be an arbitrary positive integer, and
let us replace the vertices of R with pairwise disjoint m-sets V1, V2, . . . , Vr (blowing
up). We construct two graphs on the same vertex-set V = ∪Vi. The graph R(m) is
obtained by replacing all edges of R with copies of the complete bipartite graph Km,m,
and a sparser graph G is constructed by replacing the edges of R with some (ε, δ)-
super-regular pairs. If a graph H with ∆(H) ≤ ∆ is embeddable into R(m) then it is
already embeddable into G.

Actually we will need the following consequence of the Blow-up Lemma (where R
is a triangle).

Lemma 10. For every δ > 0 there exist an ε > 0 and m0 such that the following
holds. Let G be a tripartite graph with tripartition V (G) = V1 ∪ V2 ∪ V3 such that
|V1| = |V2| = |V3| = m ≥ m0, and let all the 3 pairs (V1, V2), (V1, V3), (V2, V3) be
(ε, δ)-super-regular. Then for every pair of vertices v1 ∈ V1, v2 ∈ V3 and for every
integer p, 4 ≤ p ≤ 3m, G contains an “almost” P 2

p , the square of a path with p
vertices connecting v1 and v2 from which at most two short diagonals are missing.

1For background, this variant and other variants of the Regularity Lemma see [20].
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We emphasize that Lemma 10 is true for any value of p between 4 and 3m, not just
for the ones that are divisible by 3. The price we pay is that two short diagonals might
be missing which is allowed in our application. Note also that an easier approximate
version of this lemma would suffice as well, but for simplicity we use this lemma.
Proof. We think of G as having the orientation (V1, V2, V3). Because of the Blow-up
Lemma it is sufficient to check the statement for the complete tripartite graph (using
r = 3 and ∆ = 4 in the Blow-up Lemma). We distinguish three cases depending
on p. If p = 3k for some integer 2 ≤ k ≤ m, then we just go around (V1, V2, V3) k
times starting with v1 and ending with v2, so in this case actually no short diagonal
is missing. If p = 3k + 1 with k ≥ 1, then we go around (V1, V2, V3) (k − 1) times
starting with v1, but then in the last round we “turn around”, i.e. we finish with
vertices u1, u2, u3, v2 chosen from V1, V2, V1, V3, respectively. Then the only short
diagonal missing is between u1 and u3. Finally, if p = 3k + 2 with k ≥ 1, then we
go around (V1, V2, V3) (k − 1) times starting with v1, but then in the last round we
“double up”, i.e. we finish with vertices u1, u2, u3, u4, v2 chosen from V1, V2, V1, V2, V3,
respectively. Then the only two short diagonals missing are between u1 and u3 and
between u2 and u4. �

With these preparations now we are ready to prove Theorem 3 from Theorem 7.
Let

ε ≪ η ≪ 1, (1)

m0 sufficiently large compared to 1/ε and M0 obtained from Lemma 8. Suppose we
have a 2-coloring of a complete graph with vertex set V , |V | = (1 + η)7n/3 (for
simplicity assume that this is a sufficiently large integer). We apply Lemma 8. We
obtain a partition of V , that is V = ∪0≤i≤ℓVi. We define the following reduced graph
GR: The vertices of GR are p1, . . . , pℓ, and there is an edge between vertices pi and pj if
the pair (Vi, Vj) is ε-regular in both colors. The edge pipj is colored with the majority
color in K(Vi, Vj). Thus GR is a (1− ε)-dense 2-colored graph on ℓ vertices. Then we
“trim” GR in the standard way: there is a subgraph HR on at least (1−√

ε)ℓ vertices
where the maximum degree of the complement is less than

√
εℓ (see for example

Lemma 9 in [13]). In other words the third color class does not contain a star K1,t

with t =
√
εℓ, as we need in Theorem 7.

Applying Theorem 7 to HR with t =
√
εℓ, we can get a large monochromatic (say

red) connected triangle matching in HR (and thus in GR). For a triangle Ti, 1 ≤ i ≤ ℓ1
in this connected triangle matching denote the corresponding clusters by (V i

1 , V
i
2 , V

i
3 ).

Thus (using (1)) we may assume that the number of vertices in the union of these
clusters is between (1 + η

2
)n and (1 + η)n. Next, first using the fact that this is a

connected triangle matching we find red connecting paths PR
i in GR between Ti and

Ti+1, 1 ≤ i ≤ ℓ1 (where Tℓ1+1 = T1) and then from these connecting paths PR
i we can

find vertex disjoint red connecting paths Pi in the original graph between a vertex of
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V i
3 to a vertex of V i+1

1 . This procedure is rather standard by now, see for example
[13] for the details.

These connecting paths Pi will be part of the final monochromatic C2,c
n we are

constructing, so on these segments there will not be any short diagonals guaranteed.
However, since the paths PR

i are in GR, their total length is indeed a constant de-
pending on ε only. We remove the internal vertices of the paths Pi from our graph;
let us denote their total number by c1. Thus on the remaining segments we need
exactly n− c1 vertices.

Furthermore, we remove some more vertices from each (V i
1 , V

i
2 , V

i
3 ), 1 ≤ i ≤ l1 to

achieve super-regularity in red in all of the three pairs. Finally we remove some more
vertices to get a balanced super-regular tripartite graph. The number of remaining
vertices in the union of the clusters in the triangles is still between n and (1 + η)n
using (1). For simplicity we still denote the clusters by V i

j .
Finally we will lift the triangles back to almost square-paths in the original graph

using Lemma 10. Let us denote by (1−η′) the ratio of n and the number of remaining
vertices in the union of the clusters in the triangles, so 0 ≤ η′ ≪ 1. Let us use
Lemma 10 in each balanced super-regular tripartite graph (V i

1 , V
i
2 , V

i
3 ), 2 ≤ i ≤ l1

with pi = ⌊(1 − η′)3|V i
1 |⌋ to connect the two endpoints of the connecting paths Pi−1

and Pi with an almost square-path of length pi. Finally we use Lemma 10 one more
time in the balanced super-regular tripartite graph (V 1

1 , V
1
2 , V

1
3 ) with a p1 value that

makes the total length exactly n, to connect the two endpoints of the connecting
paths Pℓ1 and P1 with an almost square-path of length p1. This is possible since this
p value is less than ⌊(1 − η′)3|V 1

1 |⌋ only by a constant. Putting together the almost
square-paths within the triangles with the connecting paths we get the red almost
square-cycle of length n with only a constant number of short diagonals missing. �
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