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Abstract: Let B = ∪ni=1Bi be a partition of base B in the union (or sum) of n matroids
into independent sets Bi of Mi. We prove that every other base B′ has such a partition
where Bi and B′i span the same set in Mi for i = 1, 2, . . . , n.
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1 Introduction

For the definitions and notations in matroid theory the reader is referred to [5] or [6]. In
particular, let E denote the common underlying set of every matroid and let r1, r2, . . . , rn
denote the rank functions of the matroids M1,M2, . . . ,Mn, respectively. Throughout M
will denote the union (or sum) ∨ni=1Mi of these matroids, and R will denote the rank
function of M . A subset X ⊆ E is independent in M if and only if it arises as X =

⋃n
i=1Xi

with Xi independent in Mi for each i. Recall that

R(X) = min
Y⊆X

[
n∑

i=1

ri(Y ) + |X − Y |
]

by the fundamental results of [1] and [4].
An element of the underlying set E of a matroid is a loop if it is dependent as a single
element subset, and it is a coloop if it is contained in every base. We shall need the fol-
lowing observation ([3], independently rediscovered in [2]):

Proposition 1 If M has no coloops, then R(E) =
∑n

i=1 ri(E).

The weak map relation is defined as follows: the matroid B is freer than A (denoted by
A � B) if every independent set of A is independent in B as well. Clearly Mj � ∨ni=1Mi

for every j = 1, 2, . . . , n and A � B implies A ∨ C � B ∨ C for every C.
Let σi(X) denote the closure of a set X ⊆ E in Mi, that is, σi(X) = {e|ri(X ∪ {e}) =
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ri(X)}. Let σ(X) denote the closure of X in M . A set X ⊆ E is closed if σ(X) = X. The
closed sets are also called flats. In particular, the set of loops, that is σ(∅) is the smallest
and E is the largest flat. We shall need the following easy property of the closure function:

Proposition 2 Let S1, S2 ⊆ E be independent subsets with σ(S1) = σ(S2) = S. Let,
furthermore, S0 ⊆ E so that S ∩ S0 = ∅ and S1 ∪ S0 is independent. Then S2 ∪ S0 is also
independent.

Proof: Observe that |S1| = |S2| since both are independent and span the same subset
S. Indirectly suppose that r(S2 ∪ S0) < |S2|+ |S0| = |S1|+ |S0| = |S1 ∪ S0|. Since S1 ∪ S0

is independent, there exists an element x ∈ S1−S2 so that r(S2 ∪S0 ∪{x}) > r(S2 ∪S0).
However, x ∈ S1 ⊆ S = σ(S2) implies that r(S2 ∪ {x}) = r(S2), a contradiction. 2

2 Partitioning the bases

Let B be a base of M . The partition B1, B2, . . . , Bn of B is a good partition if Bi is
independent in Mi for i = 1, 2, . . . , n.
Let Fi = σi(Bi) for every i. This collection of flats F1, F2, . . . , Fn depends on the actual
good partition of B, as illustrated by the following example.

Example 3 If M1 and M2 are the cycle matroids of the graphs G1 and G2 of Figure 1,
respectively, then M will be the cycle matroid of the graph of Figure 2. The base B =
{1, 2, 4, 5, 6, 7} of M has 54 good partitions, see the first two columns of Table 1, where
each row represents six good partitions (put a, b ∈ {1, 2, 3}, a 6= b in every possible way).
These good partitions lead to 9 different collections of flats, see columns 3 and 4 of Table
1.
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Table 1

B1 B2 F1 F2

1 {a, 4, 6, 7} {b, 5} E {1, 2, 3, 5}

2 {a, 5, 6, 7} {b, 4} E {1, 2, 3, 4}

3 {a, 4, 6} {b, 5, 7} E − {7} E − {4}

4 {a, 4, 7} {b, 5, 6} E − {6} E − {4}

5 {a, 5, 6} {b, 4, 7} E − {7} E − {5}

6 {a, 5, 7} {b, 4, 6} E − {6} E − {5}

7 {a, 6, 7} {b, 4, 5} E − {4, 5} E − {6, 7}

8 {a, 6} {b, 4, 5, 7} {1, 2, 3, 6} E

9 {a, 7} {b, 4, 5, 6} {1, 2, 3, 7} E
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Surprisingly if we consider any other base of the union, the list of the possible collections
of flats will always be the same.

Theorem 4 Let M1,M2, . . . ,Mn be matroids and let M be their union. Let B be a base
of M with a good partition B1, B2, . . . , Bn. For any base B′ of M there is a good partition
∪ni=1B

′
i so that σi(Bi) = σi(B

′
i) for i = 1, 2, . . . , n.

Proof: Suppose that B′ is a base of the union with a good partition X1, X2, . . . , Xn.
Let A denote the set of the non-coloop elements of the union. B′ is independent in the
union so |B′ ∩A| = R(B′ ∩A). Clearly R(B′ ∩A) = R(A) since B′ is a base in the union,
and σ(A) = A. According to Proposition 1 Σn

i=1ri(A) = R(A). Now ri(A) ≥ ri(Xi ∩ A)
since Xi∩A ⊆ A, and ri(Xi∩A) = |Xi∩A| since Xi is independent in Mi. These together
give the following:

|B′ ∩ A| = R(B′ ∩ A) = R(A) = Σn
i=1ri(A) ≥ Σn

i=1ri(Xi ∩ A) = |B′ ∩ A|

Since the two sides are equal, the inequality must be satisfied as equality, so ri(A) =
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ri(Xi∩A). This means that every good partition X1, X2, . . . , Xn of a base B′ of the union
will satisfy σi(A ∩Xi) = A, that is, Xi ∩ A spans A in Mi for i = 1, 2, . . . , n.
These results are true for B, too, so Bi ∩ A spans A in Mi for i = 1, 2, . . . , n. All
the coloops of M are in B ∩ B′, this way we can get a good partition of B′, namely
B′i = (Xi ∩ A) ∪ (Bi \ A) according to Proposition 2. This partition satisfies the require-
ments of Theorem 4. 2

3 Weak maps with the same union

Let B be an arbitrary base of M with an arbitrary good partition ∪ni=1Bi. Let Fi = σi(Bi)
for every i and let M ′

i be obtained from Mi by replacing all the elements of E − Fi by
loops. (That is, M ′

i has ground set E and X ⊆ E is independent in M ′
i if and only if

X ⊆ Fi and X is independent in Mi.)

Proposition 5 If M ′ = ∨ni=1M
′
i then M ′ = M .

Proof: Clearly M ′
i �Mi, and therefore M ′ = ∨n

i=1M
′
i � ∨ni=1Mi = M .

On the other hand we have to prove that any independent set X of M is independent in
M ′ as well.
Let B′ be a base of M , containing X. By Theorem 4, there exists a good partition ∪ni=1B

′
i

of B′ so that σi(B
′
i) = Fi for every i. Since B′i is independent in M ′

i , so is B′i ∩X. Hence
X = ∪n

i=1(B
′
i ∩X) is independent in M ′, as requested. 2

Example 6 illustrates Proposition 5.

Example 6 Let M1 and M2 be the cycle matroids of the graphs G1 and G2 of Figure 1,
as in Example 3. Consider the pair of flats E, {1, 2, 3, 5} as in the first row of Table 1.
The corresponding restricted matroids M ′

1, M ′
2 are represented by the graphs of the first

row of Figure 3. One can easily see that M ′
1 ∨M ′

2 is still the cycle matroid of the graph of
Figure 2. Similarly, the pairs of flats, given by rows 3 and 9 of Table 1 lead to the second
and third rows of Figure 3, respectively.
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