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Partitioning the bases of the union of
matroids

Csongor Gy. Csehi * Andras Recski * 1

Abstract: Let B = U}"_, B; be a partition of base B in the union (or sum) of n matroids
into independent sets B; of M;. We prove that every other base B’ has such a partition
where B; and B; span the same set in M, for i = 1,2,...,n.
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1 Introduction

For the definitions and notations in matroid theory the reader is referred to [5] or [6]. In
particular, let £ denote the common underlying set of every matroid and let r{,rs,... 7,
denote the rank functions of the matroids My, Ms, ..., M, respectively. Throughout M
will denote the union (or sum) VI, M; of these matroids, and R will denote the rank
function of M. A subset X C E'is independent in M if and only if it arises as X = U}, X,
with X; independent in M; for each 7. Recall that

n

R(X)=min |> r(Y)+|X —Y]
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by the fundamental results of [1] and [4].

An element of the underlying set E of a matroid is a loop if it is dependent as a single
element subset, and it is a coloop if it is contained in every base. We shall need the fol-
lowing observation ([3], independently rediscovered in [2]):

Proposition 1 If M has no coloops, then R(E) =Y, r;(E).

The weak map relation is defined as follows: the matroid B is freer than A (denoted by
A =< B) if every independent set of A is independent in B as well. Clearly M; < Vi, M,
for every j =1,2,...,n and A < B implies AV C < BV C for every C.

Let 0;(X) denote the closure of a set X C E in M;, that is, 0;(X) = {e|r;(X U{e}) =
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ri(X)}. Let o(X) denote the closure of X in M. A set X C Eis closed if o(X) = X. The
closed sets are also called flats. In particular, the set of loops, that is o() is the smallest
and F is the largest flat. We shall need the following easy property of the closure function:

Proposition 2 Let S;,Sy C E be independent subsets with o(S;) = o(Ss) = S. Let,
furthermore, So C E so that SN Sy =0 and S, U Sy is independent. Then Sy U Sy is also
independent.

PROOF: Observe that |S;| = |9 since both are independent and span the same subset
S. Indirectly suppose that (53U Sp) < |Sa| + [So| = |S1] + |So| = |S1 U Sp|. Since Sy U Sy
is independent, there exists an element x € S; — Sy so that 7(Se U SoU {x}) > r(S, U Sp).
However, z € S; C S = 0(S3) implies that 7(Sy U {z}) = r(S2), a contradiction. O

2 Partitioning the bases

Let B be a base of M. The partition By, By, ..., B, of B is a good partition if B; is
independent in M; for ¢ =1,2,... n.

Let F; = 04(B;) for every i. This collection of flats Fy, F5, ..., F, depends on the actual
good partition of B, as illustrated by the following example.

Example 3 If My and Ms are the cycle matroids of the graphs G and Go of Figure 1,
respectively, then M will be the cycle matroid of the graph of Figure 2. The base B =
{1,2,4,5,6,7} of M has 54 good partitions, see the first two columns of Table 1, where
each row represents six good partitions (put a,b € {1,2,3}, a # b in every possible way).
These good partitions lead to 9 different collections of flats, see columns 3 and 4 of Table
1.



Table 1

B; By P Fy
1| {a,4,6,7} | {b,5) E (1,2,3,5)
2| {a,5,6,7} | {b,4) E (1,2,3,4)
3| {a,4,6} {b,5,7} E — {7} E— {4}
4 | {a,4,7} {b,5,6} E — {6} E — {4}
5| {a,5,6} {b,4,7} E—{7} E — {5}
6 | {a,5,7} {b,4,6} E — {6} E — {5}
71| {a,6,7} {b,4,5} E—{4,5} | E—{6,7}
8 | {a,6} {b,4,5,7} | {1,2,3,6} E
9| {a,7} {b,4,5,6} | {1,2,3,7} E
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Surprisingly if we consider any other base of the union, the list of the possible collections
of flats will always be the same.

Theorem 4 Let My, Ms, ..., M, be matroids and let M be their union. Let B be a base
of M with a good partition By, Bs, ..., B,. For any base B' of M there is a good partition
U B! so that 04(B;) = 0;(B}) fori=1,2,...,n.

PROOF: Suppose that B’ is a base of the union with a good partition X1, Xs,..., X,.
Let A denote the set of the non-coloop elements of the union. B’ is independent in the
union so |B'NA| = R(B'NA). Clearly R(B'NA) = R(A) since B’ is a base in the union,
and o(A) = A. According to Proposition 1 ¥7_,r;(A) = R(A). Now r;(A) > r(X; N A)
since X;NA C A, and r;(X;NA) = | X;NA| since X is independent in M;. These together
give the following:

|IBNAl=R(B'NA)=R(A)=X"r:(4) > X r(X;NA) = |B nA|

Since the two sides are equal, the inequality must be satisfied as equality, so r;(A4) =



ri(X; N A). This means that every good partition Xi, Xy, ..., X, of a base B’ of the union
will satisfy o;(A N X;) = A, that is, X; N A spans A in M, fori =1,2,... n.

These results are true for B, too, so B; N A spans A in M; for ¢ = 1,2,...,n. All
the coloops of M are in B N B’ this way we can get a good partition of B’, namely
Bl = (X;NA)U (B; \ A) according to Proposition 2. This partition satisfies the require-
ments of Theorem 4. O

3 Weak maps with the same union

Let B be an arbitrary base of M with an arbitrary good partition U} | B;. Let F; = 0,(B;)
for every i and let M/ be obtained from M; by replacing all the elements of E — F; by
loops. (That is, M/ has ground set £ and X C FE is independent in M/ if and only if
X C F; and X is independent in M;.)

Proposition 5 If M’ =V} M/ then M' = M.

PRrooF: Clearly M; < M;, and therefore M' =V} M <X VI M, = M.

On the other hand we have to prove that any independent set X of M is independent in
M' as well.

Let B’ be a base of M, containing X. By Theorem 4, there exists a good partition U}, B,
of B’ so that 0;(B]) = F; for every i. Since B/ is independent in M/, so is B/ N X. Hence
X = U, (BN X) is independent in M’, as requested. O

Example 6 illustrates Proposition 5.

Example 6 Let M, and My be the cycle matroids of the graphs G1 and Gy of Figure 1,
as in Example 3. Consider the pair of flats E,{1,2,3,5} as in the first row of Table 1.
The corresponding restricted matroids M, M} are represented by the graphs of the first
row of Figure 3. One can easily see that M|\ M) is still the cycle matroid of the graph of
Figure 2. Similarly, the pairs of flats, given by rows 3 and 9 of Table 1 lead to the second
and third rows of Figure 3, respectively.
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