Partitioning the bases of the union of matroids

Csongor Gy. Csehi ^{∗†} András Recski ^{∗†}

Abstract: Let $B = \bigcup_{i=1}^{n} B_i$ be a partition of base B in the union (or sum) of n matroids into independent sets B_i of M_i . We prove that every other base B' has such a partition where B_i and B'_i span the same set in M_i for $i = 1, 2, \ldots, n$.

Keywords: matroid theory, union of matroids

1 Introduction

For the definitions and notations in matroid theory the reader is referred to [5] or [6]. In particular, let E denote the common underlying set of every matroid and let r_1, r_2, \ldots, r_n denote the rank functions of the matroids M_1, M_2, \ldots, M_n , respectively. Throughout M will denote the union (or sum) $\vee_{i=1}^{n} M_i$ of these matroids, and R will denote the rank function of M. A subset $X \subseteq E$ is independent in M if and only if it arises as $X = \bigcup_{i=1}^{n} X_i$ with X_i independent in M_i for each i. Recall that

$$
R(X) = \min_{Y \subseteq X} \left[\sum_{i=1}^{n} r_i(Y) + |X - Y| \right]
$$

by the fundamental results of [1] and [4].

An element of the underlying set E of a matroid is a *loop* if it is dependent as a single element subset, and it is a coloop if it is contained in every base. We shall need the following observation ([3], independently rediscovered in [2]):

Proposition 1 If M has no coloops, then $R(E) = \sum_{i=1}^{n} r_i(E)$.

The weak map relation is defined as follows: the matroid B is freer than A (denoted by $A \preceq B$) if every independent set of A is independent in B as well. Clearly $M_j \preceq \vee_{i=1}^n M_i$ for every $j = 1, 2, ..., n$ and $A \prec B$ implies $A \lor C \prec B \lor C$ for every C. Let $\sigma_i(X)$ denote the *closure* of a set $X \subseteq E$ in M_i , that is, $\sigma_i(X) = \{e | r_i(X \cup \{e\}) =$

[∗] Department of Computer Science and Information Theory, Budapest University of Technology and Economics, M˝uegyetem rkp. 3-9, H-1521 Budapest, Hungary, cscsgy@cs.bme.hu, recski@cs.bme.hu

[†] Research is supported by grant No. OTKA 108947 of the Hungarian Scientific Research Fund. The reviewer's remarks are greatly appreciated.

Fig. 1.

 $r_i(X)$. Let $\sigma(X)$ denote the closure of X in M. A set $X \subseteq E$ is closed if $\sigma(X) = X$. The closed sets are also called *flats*. In particular, the set of loops, that is $\sigma(\emptyset)$ is the smallest and E is the largest flat. We shall need the following easy property of the closure function:

Proposition 2 Let $S_1, S_2 \subseteq E$ be independent subsets with $\sigma(S_1) = \sigma(S_2) = S$. Let, furthermore, $S_0 \subseteq E$ so that $S \cap S_0 = \emptyset$ and $S_1 \cup S_0$ is independent. Then $S_2 \cup S_0$ is also independent.

PROOF: Observe that $|S_1| = |S_2|$ since both are independent and span the same subset S. Indirectly suppose that $r(S_2 \cup S_0) < |S_2| + |S_0| = |S_1| + |S_0| = |S_1 \cup S_0|$. Since $S_1 \cup S_0$ is independent, there exists an element $x \in S_1 - S_2$ so that $r(S_2 \cup S_0 \cup \{x\}) > r(S_2 \cup S_0)$. However, $x \in S_1 \subseteq S = \sigma(S_2)$ implies that $r(S_2 \cup \{x\}) = r(S_2)$, a contradiction. \Box

2 Partitioning the bases

Let B be a base of M. The partition B_1, B_2, \ldots, B_n of B is a good partition if B_i is independent in M_i for $i = 1, 2, \ldots, n$.

Let $F_i = \sigma_i(B_i)$ for every i. This collection of flats F_1, F_2, \ldots, F_n depends on the actual good partition of B , as illustrated by the following example.

Example 3 If M_1 and M_2 are the cycle matroids of the graphs G_1 and G_2 of Figure 1, respectively, then M will be the cycle matroid of the graph of Figure 2. The base $B =$ $\{1, 2, 4, 5, 6, 7\}$ of M has 54 good partitions, see the first two columns of Table 1, where each row represents six good partitions (put $a, b \in \{1, 2, 3\}$, $a \neq b$ in every possible way). These good partitions lead to 9 different collections of flats, see columns 3 and 4 of Table 1.

Table 1

Fig. 2.

Surprisingly if we consider any other base of the union, the list of the possible collections of flats will always be the same.

Theorem 4 Let M_1, M_2, \ldots, M_n be matroids and let M be their union. Let B be a base of M with a good partition B_1, B_2, \ldots, B_n . For any base B' of M there is a good partition $\bigcup_{i=1}^n B_i'$ so that $\sigma_i(B_i) = \sigma_i(B_i')$ for $i = 1, 2, \ldots, n$.

PROOF: Suppose that B' is a base of the union with a good partition X_1, X_2, \ldots, X_n . Let A denote the set of the non-coloop elements of the union. B' is independent in the union so $|B' \cap A| = R(B' \cap A)$. Clearly $R(B' \cap A) = R(A)$ since B' is a base in the union, and $\sigma(A) = A$. According to Proposition 1 $\sum_{i=1}^{n} r_i(A) = R(A)$. Now $r_i(A) \geq r_i(X_i \cap A)$ since $X_i \cap A \subseteq A$, and $r_i(X_i \cap A) = |X_i \cap A|$ since X_i is independent in M_i . These together give the following:

$$
|B' \cap A| = R(B' \cap A) = R(A) = \sum_{i=1}^{n} r_i(A) \ge \sum_{i=1}^{n} r_i(X_i \cap A) = |B' \cap A|
$$

Since the two sides are equal, the inequality must be satisfied as equality, so $r_i(A)$

 $r_i(X_i \cap A)$. This means that every good partition X_1, X_2, \ldots, X_n of a base B' of the union will satisfy $\sigma_i(A \cap X_i) = A$, that is, $X_i \cap A$ spans A in M_i for $i = 1, 2, \ldots, n$.

These results are true for B, too, so $B_i \cap A$ spans A in M_i for $i = 1, 2, ..., n$. All the coloops of M are in $B \cap B'$, this way we can get a good partition of B', namely $B_i' = (X_i \cap A) \cup (B_i \setminus A)$ according to Proposition 2. This partition satisfies the requirements of Theorem 4. \Box

3 Weak maps with the same union

Let B be an arbitrary base of M with an arbitrary good partition $\cup_{i=1}^n B_i$. Let $F_i = \sigma_i(B_i)$ for every i and let M_i' be obtained from M_i by replacing all the elements of $E - F_i$ by loops. (That is, M'_i has ground set E and $X \subseteq E$ is independent in M'_i if and only if $X \subseteq F_i$ and X is independent in M_i .)

Proposition 5 If $M' = \vee_{i=1}^{n} M'_{i}$ then $M' = M$.

PROOF: Clearly $M'_i \preceq M_i$, and therefore $M' = \vee_{i=1}^n M'_i \preceq \vee_{i=1}^n M_i = M$.

On the other hand we have to prove that any independent set X of M is independent in M' as well.

Let B' be a base of M, containing X. By Theorem 4, there exists a good partition $\cup_{i=1}^n B_i'$ of B' so that $\sigma_i(B_i') = F_i$ for every i. Since B_i' is independent in M_i' , so is $B_i' \cap X$. Hence $X = \bigcup_{i=1}^{n} (B_i' \cap X)$ is independent in M', as requested. \Box

Example 6 illustrates Proposition 5.

Example 6 Let M_1 and M_2 be the cycle matroids of the graphs G_1 and G_2 of Figure 1, as in Example 3. Consider the pair of flats E , $\{1, 2, 3, 5\}$ as in the first row of Table 1. The corresponding restricted matroids M'_1 , M'_2 are represented by the graphs of the first row of Figure 3. One can easily see that $M'_1 \vee M'_2$ is still the cycle matroid of the graph of Figure 2. Similarly, the pairs of flats, given by rows 3 and 9 of Table 1 lead to the second and third rows of Figure 3, respectively.

References

[1] J. EDMONDS, Minimum partition of a matroid into independent subsets J. Res. Nat. Bur. Stand. (1965) 69B, 67-72.

Fig. 3.

- [2] A. K. Kelmans, M. V. Lomonosov, and V. P. Polesskii, On minimum coverings in matroids Problemy Peredachi Informatsii (1976) 12/3, 94-107.
- [3] L. Lovász AND A. RECSKI, On the sum of matroids, Acta Math. Acad. Sci. Hungar. (1973) 24, 329-333.
- [4] C. St. J. A. NASH-WILLIAMS, On applications of matroids to graph theory, Theory of Graphs Intern. Symposium (1967) 263-265.
- [5] J. Oxley, Matroid Theory, Second Edition, Oxford University Press (2011)
- [6] A. Recski, Matroid Theory and its Applications in Electric Network Theory and in Statics, Springer, Berlin (1989)