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Abstract 

There is increasing attraction of measuring pH in biological studies using nitroxides having pH-

dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity, 

aX, of these probes (i.e. the difference between limiting EPR hyperfine splittings (hfs) in their 

protonated and unprotonated forms), we present here a series of novel linear -carboxy, ’-

diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring a ( or ’)-C−H bond. 

In buffers the three main hfs (aN, aH and aP) of their X-band EPR spectra vary reversibly with pH and, 

when it is inferred from aP or aH titration curves, a 2−4-fold increase in sensitivity is achieved vs 

reference imidazoline or imidazolidine nitroxides. Lead crystallized carboxylate 10b (pKa ≈ 3.6), which 

demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe the stomach 

acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers. 
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Introduction 

In living organisms the pH value is a fundamental parameter whose thorough regulation is essential 

for maintaining the structure of proteins and physiological functions, e.g., by sustaining the active 

conformation of biologically active macromolecules.
1
 Although normal extracellular and cytosolic acid-

base homeostasis is associated with a pH range of 7.0−7.3, a local, substantially acidic intracellular pH 

(pHi) occurs at pH 3−6 in certain cellular compartments such as the endoplasmic reticulum, the trans-

Golgi complex or secretory vesicles, e.g., to allow cell internalization pathways (endosome-lysosome 

system).
2
 Besides, abnormal low pHs are associated with cellular dysfunctions and pathologies such as 

ischemia, oxidative stress
3
, apoptosis

4
 or tumor size progression.

5
 

As non-invasive alternatives to pH microelectrodes, optical and spectroscopic methods to assess pH in 

vivo have been the focus of intense research in the last decades. To sense pHi this usually involves 

introducing in tissue or cells weak acids displaying pH-dependent fluorescence (indicator dyes)
6,7

 or 31P 

NMR parameters (i.e., chemical shift and/or coupling constants).
6,8

 Recently, structural modifications 

around the - and -aminophosphonate scaffold (cyclic or linear) have provided a series of non toxic 

pH markers showing finely tunable subcellular permeation and pKa value, with up to fourfold increased 

31P NMR sensitivity compared to endogenous inorganic phosphate (Pi).
9
 Some of these compounds 

having a pKa < 6 were successfully applied to probe acidic compartments in isolated rat liver, amoeba 

cultures and plant cells (Figure 1A).
10

 

The above spectroscopic techniques having their own limitations such as relative lack of sensitivity or 

requirement of nonabsorbing samples, interest in exogenous ionizable paramagnetic probes arose 

because much lower concentrations can be detected with short acquisition times using continuous wave 

X-band (~9.8 GHz) EPR spectroscopy. Up to now synthetic efforts have established imidazoline (Im)- 

and imidazolidine (In)-based nitroxides as the most utilized pH spin probes in biological studies, a 

model compound being 2,2,3,4,5,5-hexamethylimidazolidine-1-yloxy (In-1; Figure 1B).
6
 These free 

radicals show low toxicity, rather good resistance to reduction into EPR-silent species, and substitution 

can be varied as to offer modulation of their lipophilicity, cell permeability and targeting.
11

 In both Im 
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and In families protonation occurs at N-3, leading to a reversible variation of the two main apparent 

EPR parameters, the nitrogen hyperfine splitting (hfs) aN and g-factor. Furthermore, a wide range of 

pKas is accessible upon varying the electronic effects of substituents of the five-membered ring 

backbone.
12

 Combining low-field (< 1.2 GHz) EPR techniques with appropriately tailored Im- or In-

type pH reporters (i.e., with pKa < 5) allowed monitoring drug-induced changes in the gastric acidity of 

rats.
13

 

Besides the necessary innocuity and stability conditions for a good EPR probe, high accuracy of pH 

measurement requires the largest sensitivity aX for a given coupling nucleus X to be achieved, where 

aX = |(aX)b−(aX)a| is the absolute difference of the coupling constants in the unprotonated basic and 

protonated acid forms of the radical. Since generally a14-N ≈ 15 G in nitroxides and the reported aN 

values in the Im and In families did not exceed 1.25 G so far
12a

, our goal was to develop new ionizable 

-phosphorylated nitroxides on the basis of their known large aP hfs, e.g., they are often > 40 G in the 1-

pyrrolidinyloxyl series.
14,15

 Despite this advantage of getting increased sensitivity only two studies have 

addressed EPR pH effects of such five membered ring nitroxides substituted by a -P(O)(OH)2 group, 

reporting total aP variations > 3 G in the whole pH range.
15

 Yet none of these radicals (one of them 

being a spin adduct
15b

) were further evaluated in vivo and it is noteworthy that, because of the presence 

of two ionizable sites in the phosphono group, the useful aP value for a single acidity may be actually 

lower. Hence, for a total variation of 3.8 G in the biphasic titration curve of Ref.
15b

, the useful aP is 

only ≈ 2 G around pKa 7.5. Such observation supports our earlier strategy in 31P NMR studies
9a

 that a 

better sensitivity for spectral pH measurement is obtained when the ionizable site is remote to the NMR 

resonant (or EPR coupling) phosphorus. 

With this concept in mind, our target EPR probes for acidic pH were -carboxy, ’-

diethoxyphosphoryl nitroxides where (i) ionization occurs at the CO2H function and (ii) the scaffold 

(Figure 1C) is close to that of linear -aminophosphonates we developed as 31P NMR pH probes.
9
 

Many fully alkylated members of this family, such as N-tert-butyl-N-[1-diethylphosphono(2,2-
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dimethylpropyl)] nitroxide (DEPN; Figure 1C), have become popular in nitroxide-mediated living 

polymerization
16

 and more recently a small set of -substituted acyl derivatives has been used to model 

solvent-related EPR hfs.
17

 Although they bear one -hydrogen, all these nitroxides are very persistent in 

solvents and water because their disproportionation into diamagnetic species can be prevented or 

slowered by steric crowding at the remaining ,’ positions
18

, a substitution pattern we adopted in our 

target nitroxides by using (Y,Y’) = Ph, i-Pr or t-Bu groups (Figure 1C). In this paper we report on our 

first foray into the EPR characteristics and biological in vitro activities of novel non-cyclic amino acid-

based -phosphorylated nitroxides. The lead isolable compound that emerged from this series was 

successfully applied to determine by X-band EPR the stomach acidity of living rats, in comparison with 

a structurally related -aminoester especially developed for 31P NMR. 

 

Results and Discussion 

Synthesis. All syntheses of target amino acid-derived -diethoxyphosphoryl nitroxides proceeded via 

the formation of their -aminophosphonate precursors, whose esters were isolated to evaluate their pH-

dependent 31P NMR properties in comparison to other probes of the same class (Figure 1A).
9,10

 The key 

step was a classical Kabachnik-Fields reaction with diethylphosphite and the appropriate carbonyl 

compound and -amino acid, using either a one-pot procedure or a pathway where the intermediate 

imine was isolated. Desired nitroxides were derived by oxidation of -aminophosphonates with m-

chloroperoxybenzoic acid (m-CPBA). The syntheses of a series of -aminophosphonates constructed 

from -amino acids have already been described.
19

 

The one-pot sequence was applied to diethylphosphite and acetone to derive the methyl esters 3a−c of 

alanine, valine and phenylglycine, respectively, starting from the corresponding free amino acid esters 

2a−c (Scheme 1). Saponification of 3a,c yielded the ’-diethoxyphosphoryl carboxylic acids 4a,c in 

good yields. Intriguingly, attempts to hydrolyze 3b by varying base, solvent, temperature and reaction 

time were unsuccessful. This appears consistent with the reported impossibility of saponifying alkyl 
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esters in -position of an i-Pr substituent.
20

 Finally, target nitroxides 5a,c (for which Y’ = Z’ = Me; 

Figure 1C) were obtained by oxidation of 4a,c with aqueous m-CPBA. Buffered solutions of 5a,c were 

EPR stable for at least 3 h at ambient temperature. 

 

Scheme 1. Synthesis of -aminophosphonates 3a−c and 4a,c and nitroxides 5a,ca 

 

aReagents and conditions: (a) ammonia, Et2O, 4 h; (b) diethylphosphite, Na2SO4, acetone, reflux, 18 

h, 54−60% over steps a+b; (c) 5 N NaOH, rt, then concentrated H2SO4; (d) m-CPBA, buffer pH 7.4 or 

cell homogenate, rt. 

 

To synthesize target nitroxides for which Y = Z = Me, ,-dimethylated amino acid based ’-

diethoxyphosphoryl esters were prepared starting from 3-aminoisobutyric acid 6 which was esterified 

quantitatively to the ethyl ester hydrochloride 7. Subsequent treatment of 7 by either pivaldehyde or 

isobutyraldehyde using a reported procedure
21

 afforded the corresponding imines 8a,b with good yields 

(Scheme 2). Microwave-assisted addition of diethylphosphite to 8a,b gave the 2-aminoisobutyric acid-

derived -aminophosphonates ethyl esters 9a,b in rather good yields. Oxidation of 9a,b with m-CPBA 

using a slight modification of a reported procedure
16a

 quantitatively yielded the corresponding esters 

nitroxides 10a and 12 which were isolated as oils. Saponification of 10a with NaOH gave the target 
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,-dimethylated ’-phosphorylated nitroxide (with an overall yield of 23% for the five steps), whose 

sodium salt 10b afforded stable crystals. However, under the same base hydrolysis conditions the i-Pr 

analog 12 failed to give the expected nitroxide 11b as checked by EPR. 

 

Scheme 2. Synthesis of -aminophosphonates 9a,b and 11a and related nitroxides 10a,b, 11b and 12a 

 
aReagents and conditions: (a) CH3COCl, EtOH, 85 °C, 12 h, quantitative yield; (b) pyvaldehyde (for 

synthesis of 8a) or isobutyraldehyde (for synthesis of 8b), CH2Cl2, TEA, 50 °C, 15 or 6 h, respectively; 

(c) diethylphosphite, microwaves, 150 °C, 45 min (synthesis of 9a) or 30 min (synthesis of 9b); (d) m-

CPBA, CHCl3 (synthesis of 10a and 12) or buffer pH 7.4 (formation of 11b), 0 °C, then rt 2 h; (e) 5 N 

NaOH, rt, 15 h. 
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Nevertheless, nitroxide 11b was obtained in two steps, i.e., saponification of 9b to give the -

aminophosphonate -carboxylic acid 11a whose oxidation with aqueous m-CPBA gave 11b. When 

prepared in situ such solutions of 11b exhibited EPR stable signals for at least 3 h but again attempts to 

isolate the nitroxide by organic solvent extraction resulted in degradation, EPR silent products. 

Lastly, we came to prepare -aminophosphonate 16 (Scheme 3) to assess whether increasing both 

electron donating property and steric hindrance at -C may affect the pKa value. 

Commercially available (S)-methylvaline 13 was quantitatively converted to the ethyl ester 

hydrochloride 14, whose subsequent reaction with pivaldehyde gave the corresponding imine 15 with a 

good yield. While microwave-assisted condensation of diethylphosphite on 15 only yielded degradation 

products, a 1:1 mixture of diastereomers of the desired compound 16 was obtained in moderate yield 

upon heating the imine at 55 °C for two weeks in a sealed tube. 

After separation by chiral preparative HPLC (Chiralpak IC eluting with 

hexane/isopropanol/chloroform (8/1/1)), the stereochemistry of the two diastereomers was determined 

by NMR studies including 1H−1H 2D ROESY experiments. For the first eluting diastereomer at tR = 

4.87 min one ROE correlation was observed between the isopropylic proton ( 1.82 ppm) and the ’-

C−H ( 2.73 ppm), demonstrating a (2S,1’R)-16 configuration (Figure S1a, Supporting Information). 

For the second eluting diastereomer at tR = 6.05 min one ROE correlation was observed between the ’-

C−H ( 2.95 ppm) and the protons of the -C−Me ( 1.11 ppm), demonstrating (2S,1’S)-16 

configuration (Figure S1b, Supporting Information). 

Subsequent oxidation by m-CPBA of (2S,1’R)-16 and (2S,1’S)-16 afforded the corresponding 

nitroxides (2S,1’R)-17 and (2S,1’S)-17 in good yields. Disappointingly, in relation to compound 3b all 

diastereomeric -i-Pr substituted esters 16 and 17 resisted hydrolysis (that should have yielded 

compounds 18 and 19) and when drastic conditions (strong base, high temperature, long reaction time) 

were used, only decomposition products were recovered. 
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Scheme 3. Synthesis of diastereomeric -aminophosphonates esters 16 and related nitroxides esters 17a 

 

aReagents and conditions: (a) CH3COCl, EtOH, 85 °C, 12 h; (b) pivaldehyde, CH2Cl2, TEA, rt, 72 h; 

(c) diethylphosphite, 55 °C, 15 d; (d) Chiralpak IC, hexane/isopropanol/chloroform (8/1/1); (e) m-

CPBA, CHCl3, 0 °C, 4 h. 

 

31P NMR pH-Calibration of -Aminophosphonates Esters. Besides the principal goal of this 

study, we investigated the pH dependence at 22 °C of the 31P NMR chemical shift of the new alkyl ester 

derivatives 3a−c and 9a,b in various physiologically relevant media, including Krebs-Henseleit buffer 

(KH) as well as KCl (125 mM)-supplemented cytosolic homogenates from rat heart (CytMh) or liver 

(CytMl). 

All the esters, except diastereomers of 16, gave monophasic acid-base titration curves reflecting 

protonation at nitrogen and their fitting to the Henderson-Hasselbalch equation (see Methods and Figure 

S2, Supporting Information) allowed calculation of the pKas, the limiting chemical shifts of the 

protonated ammonium (a) and unprotonated amine (b) forms, and the 31P NMR sensitivities ab = 
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a−b around the pKa region (Table 1). The five titrated compounds yielded acidic pKas ~3 with only < 

2% variation with medium (i.e.,  0.04−0.12 pH units). Owing to the strong electron withdrawing effect 

of ester groups, these quite low pKas for 3a−c and 9a,b confirm our previous findings
9,10

 that, in -

diethoxyphosphoryl aminophosphonates, introducing inductive attractors (e.g., phenyl or benzyl) at C 

and/or C’ results in more acidic pKa values (Figure 1A). Among our reported 31P NMR pH indicators, 

only a few cyclic (i.e., -phosphorylated pyrrolidines) or linear (e.g., compound with R5 = P(O)(OEt)2 

in Figure 1A) derivatives featuring two P-containing groups demonstrated pKa values < 3.5.
9a,10b

 

Regarding the main characteristics of 31P chemical shift pH titration, compounds 3a−c and 9a,b 

showed very high ab values of ~10 ppm with < 1% changes with medium (i.e.,  0.15−0.73 ppm) and 

much shorter longitudinal relaxation times T1 than the poorly sensible Pi.
22

 Moreover, in KH the NMR 

sensitivities found for all tested esters were similar to that of DPP (i.e., ~10.2 ppm at 25 °C)
9c

, a highly 

sensitive alkylated -aminophosphonate pH sensor (Figure 1A) in the 5−8 pH range.
9a

 In the case of 

diastereomers of 16 for which no sigmoidal acid-base curves could be obtained (i.e., ab ≈ 0), longer T1 

values were yet measured at pH 4 (Table 1). In principle, the homogeneous low pKas found here for all 

aminophosphonates esters, giving a useful pH range of 1.5−4.5 with great NMR dynamic range, would 

encourage their use to probe subcellular acidic compartments or study physiological conditions such as 

gastric acidity. 

 

Crystal Structure of Nitroxide 10b and Molecular Dynamics Study. The sodium carboxylate 10b 

crystallizes as a dimer pooling two Na
+
, with each cation being linked to six oxygen atoms (from two 

phosphonyl groups, the nitroxyl oxygen and carboxylate anion, and two water molecules), plus µ²-

bridging performed by the two P=O functions and one water molecule. The structure appears similar to 

a square bipyramid centered on Na
+
, the tops being occupied by a P=O group and a water molecule. 
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Chiral HPLC analysis revealed that the synthesis of 10b, which is chiral at ’-C (Figure 1C), produced a 

racemate. 

Figure 2A depicts an ORTEP view of one molecular unit of 10b in the dimeric aggregate, in which 

(,’)-C, P and -H atoms surrounding the N-O• function are highlighted and where the ’-C retains a 

(S) configuration. The main X-ray crystallographic features of 10b, i.e., elongated C’−C(tBu), (,’)-

C−N and C’−P bonds, and a large C−N−C’ bond angle (Table 2), result from the steric effect of the 

two bulky alkyl groups in ,’ positions. Similar geometries have been reported for the DEPN 

derivatives 20
16a

 and 21
16b

 (Figure 1, left panel) but unlike this latter nitroxide, the strongest stabilizing 

electrostatic interaction in crystallized 10b is likely to establish between the partially positively charged 

N-atom and the carboxylate anionic oxygen rather than the phosphonyl oxygen
16b

, as shown by the 

d(N...O) distance of 2.683 Å which is notably smaller than the NO van der Waals radii sum (~ 3.07 Å; 

see
16b

 and references therein). Indeed the preferred electronic structures indicated in the headings of 

Table 2 for 10b and related compounds account for the fact that in the unprotonated (basic) form of the 

radical the electron-donating effect of the CO2
-
 group will favor the resonance dipolar form (b) of the 

nitroxide function while the electron-withdrawing effect of the CO2H group in the protonated (acid) 

form will favor the non-polar form (a), as depicted in the right panel of Figure 1C. 

To better understand the structural features responsible for the good stability in solution of acidic and 

basic forms of 10b and its congeners 5a,c and 11b (see below and Methods), molecular dynamics (MD) 

simulations of the EPR spectra recorded at room temperature were performed to study the 

conformational changes of the solvated nitroxides (see Methods for details). Because the chirality of the 

probes (at either C or C’) can in principle affect the distribution of the conformations, (R)/(S) 

enantiomers were considered (four trajectories for each compound). Table 2 reports the results of MD 

simulations for the (S) enantiomer of the nitroxides and results for the (R) enantiomer led to the same 

conclusions below (Table S1, Supporting Information). Comparing the angle and bond lengths pointed 
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out in the X-ray crystallographic structure of 10b to computed values in solution revealed no or little 

variations suggesting that the -H atom in all nitroxides remains sterically protected from 

disproportionation. Besides, none of the calculated d(N...O) distances in the unprotonated forms or 

d(COOH...O=P) and d(COOH...O−N) distances in the acidic forms (these being all > 3.8 Å, data not 

shown) were compatible with intramolecular bonds, e.g., H-bonds. Therefore the strong interaction 

found above for 10b in the solid state likely results from a crystal packing effect. 

 

EPR Characterization. To construct accurate EPR pH-titration curves for the novel ionizable 

nitroxides, high-resolution signals are needed in order to separatate the contributions of different species 

and to calculate the best sets of hfs at a given pH value. This was achieved by recording the spectra in 

deoxygenated buffer using low modulation amplitude, as illustrated by Figure 3A for 10b at room 

temperature in phosphate buffer, pH ~7. The 12-lines EPR signals given by all carboxylic nitroxides and 

their ester precursors in aqueous solution clearly show that, in addition to aN and aP coupling constants 

observed in this class of radicals, the aH hfs were also resolved. Moreover, simulation of the highly 

resolved spectrum of 10b gave the best fit (r > 0.996) assuming a single species with additional long-

range hfs with both -C-Me groups and the t-Bu group, and a 13C splitting pattern involving both , ’- 

and the three -carbons. Assuming the same long-range coupling model, the hfs and g-factors of the 

novel nitroxides at nearly neutral pH (except for 12) were calculated (Table 3) and used as starting sets 

in EPR titration curves of ionizable compounds (which are all unprotonated under these conditions, see 

below). In the case of the EPR spectrum of DEPN in phosphate buffer, where only six lines can be 

resolved, we performed simulations including also - and -hydrogen hfs besides the nitrogen and 

phosphorous couplings, which improved dramatically the fit (r > 0.996), yielding a reliable aH value ~1 

G, even though no further splitting occurred giving the expected 12 lines pattern. 

According to the simplified Heller-McConnell relationship
23

 the mean EPR -couplings, <aX> (X = H, 

P), of our target nitroxides in solution follow a dihedral dependence 
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<aX> = BX × <cos
2
X>              (1) 

where X is the dihedral angle between the N−C−X plane and the direction of the 2pz orbital at 

nitrogen atom of the N−O• function (see Figure 2B in the case of 10b). Accordingly, unlike DEPN, 20, 

21 and congeners which yield EPR sextets in organic solvents
16,17

, all nitroxides of our series should 

adopt a preferred conformation in aqueous medium with a H value not close to 90°, i.e., the N−O and 

C−H (for 5a,c) or C’−H (for 10b and 11b) bonds are not totally eclipsing. This geometry was 

observed in the X-ray structure of 10b since packing constraints the H−C’−N−O and P−C’−N−O 

torsion angles to about 171° and −76°, respectively (Table 2), corresponding to dihedral angles of H ≈ 

99° and P ≈ 13° (Figure 2A). For both enantiomers of nitroxides 5a,c, 10b and 11b, the average values 

of the torsion angles obtained from the MD simulation studies in water over the last 99.5 ns of the 

trajectory are reported (Tables 2 and S1). Conformational changes due to the release of crystal packing 

and minimization of steric constraints always tended to increase H−C(,’)−N−O dihedral angles in 

both basic and acidic forms near to 180° (corresponding to H = 90°) with consequences on the EPR 

couplings as discussed below. 

While establishing accurate sets of EPR hfs for all nitroxides we observed unusually intensive lines in 

the EPR signal of the ethyl ester (2S,1R’)-17 in degassed water (not shown). A nice fit of the spectrum 

was obtained (r > 0.996) assuming a very large -hydrogen splitting of ~4 G, almost 2.7 times exceeding 

aH (Table 3). We propose such a large long-range coupling in (2S,1’R)-17, but not in its diastereomer 

(2S,1’S)-17, to result from a periplanar ‘W-plan’ arrangement, as reported earlier in i-Pr-substituted 

cyclic nitroxides.
24

 

 

EPR pH Titration. In eq 1 the experimentally determined hyperconjugative parameters BH and BP in -

phosphorylated nitroxides are of 26 G and 58 G, respectively.
14,25

 We thus reasoned that in our novel 

ionizable stable nitroxides, even a minute pH-induced conformational change, leading to H and/or P 
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variation, would translate to large aH and/or aP values, the latter being potentially larger due to the 

greater BP constant. Indeed pH-dependent EPR spectra were obtained with the four carboxylic 

nitroxides 5a,c, 10b and 11b (illustrated in Figure 3B for 10b and 5c) while non ionizable esters 10a, 12 

and 17 exhibited pH-insensitive EPR signals. With parameters of Table 3 as starting points of the 

simulations a set of three monophasic EPR pH titration curves involving aN, aH and aP hfs were obtained 

for each carboxylic nitroxide in 20 mM phosphate buffer or cytosolic homogenates at 22 °C. Titration 

curves for 10b and 5a,c are shown in Figures 4 and S3 (Supporting Information), respectively. 

Importantly, these plots were obtained by reversibly sweeping a 0.5−12 pH window for about 1.5 h 

without any noticeable loss of EPR signal. 

Table 4 reports the limiting hfs and pKas obtained either by fitting the pH titration profiles (each 

spectrum was simulated individually) to the EPR variant of the Henderson-Hasselbalch eq 3 

(Supporting Information) or by a two-dimensional (2-D) procedure
26

 involving simultaneous fitting of 

the whole set of parameters (hfs, g-value, linewidth and pKa) for each titration. Regardless of the 

nucleus considered, limiting hfs and pKas of 5a,c and 10b in synthetic buffer vs the various CytM 

prepared from rat organs were not substantially altered, varying by less than 0.1 G and 0.2 pH units, 

respectively. In particular aN values remained almost constant although spin density at nitrogen in -

phosphorylated nitroxides is known to increase with solvent polarity.
15a,17

 For all nitroxides in a given 

milieu, acidic pKas extracted from the three aX (X = N, H, P) vs pH titration curves (n = 2−4) showed 

little variation ( 0.06 pH units), except when aH was used to probe pH using 11b, probably because of 

the very small EPR sensitivity found in this case. As compared with these data, 2-D calculation yielded 

small differences in limiting hfs (< 0.2 G; not shown) but slightly different pKas which however 

followed the same trend among compounds (Table 4). In agreement with the known effect of electron-

withdrawing substituents in -position of the carboxylic acid function, the lowest pKa in the nitroxide 

series found for 5c vs 5a follows the trends observed for 3c vs 3a in the 31P NMR study (Table 1) and 

of the -amino acids building blocks phenylglycine vs alanine, which show pKas of 1.83 vs 2.34, 
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respectively. In another hand, protonation/deprotonation of the nitroxides generates a characteristic 

linewidth alternation responsible for slightly asymmetric EPR lines as seen in Figure 3. The proton 

exchange times calculated by 2-D simulation were 13.2, 13.8, 104 and 31 ns for 5a,c, 10b and 11b, 

respectively, reflecting a fast exchange on the EPR time scale. 

As anticipated, an important feature of novel nitroxides pH markers is their enhanced EPR sensitivity 

in the acidic region making them good candidates to probe the gastric pH in vivo. Consistent with the 

high potential of conformational-related variation of hfs, 5a,c offered the best properties, e.g., for 5a: 

aH = 2.35 G and aP ≈ 3.7 G while 10b still showed appreciable interest, with aP ≈ 1.9 G (Table 4). It 

is worth underlining that unlike our lead compound 10b, related nitroxides having demonstrated aP 

values up to 3.5 G were not isolated.
15

 

In the Im-(1,2) and In-(1,2) families developed as EPR pH probes (Figure 1B) a through-bond 

mechanism operates by which protonation/deprotonation modifies spin density at nitrogen, and thereby 

pH sensing mainly relies on changes in aN.
6,11,12

 In our designed nitroxides a deprotonation-induced rise 

in aN occurred as the resonance form (b) becomes predominant (Figure 1C, left panel) with aN values 

ranging 0.18−0.38 G (Table 4), yet below the sensitivities of In-1 nitroxides having acidic pKas.
12,13a

 

In 10b and 11b, the finding that aH increases (that is, H decreases) while aP decreases (that is, P 

increases) upon increasing pH (Figure 4 and Table 4) is an obvious consequence of eq 1 (schematized in 

Figure 2B) since in these nitroxides the coupling nuclei H and P are attached to the same C’. In 5a,c 

where H and P are linked to C and C’, respectively, both aH and aP increased with pH (Figure S3 and 

Table 4). These opposite trends were confirmed by applying eq 1 with BP = 58 G to P angles derived 

from MD simulations of P−C’−N−O dihedral angle in the protonated and unprotonated forms of the 

nitroxides (Tables 4 and S1). Assuming a (R)/(S) racemic mixture for 5a,c, 10b and 11b gave predicted 

absolute aP>) values of 2.1, 4.1, −0.6 and −2.8 G, respectively, in relatively good agreement 

(especially the sign was well reproduced) with the corresponding experimental values of 3.74, 3.88, 
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−1.87 and −0.36 G, respectively (Table 4). For 5a,c dihedral angle distributions revealed two symmetric 

positions in the protonated forms while the P(O)(OEt)2 moiety adopts almost the same orientation in the 

unprotonated form (Figures S4 and S5, Supporting Information). For (10b, 11b) no significant changes 

in dihedral distributions with pH were found (Figures S6 and S7, Supporting Information) suggesting 

that phosphoryl group rotation is almost frozen. Altogether these data could explain the differences 

(amplitude and sign) of <aP> between the two couples of nitroxides. In accordance, MD simulation of 

H−C’−N−O dihedral angle predicts smaller standard-deviation values for (10b, 11b) vs 5a,c (Table 2) 

in agreement with larger experimental aH values in these latter nitroxides (Table 4). 

 

Bioreduction Studies. In vivo, nitroxides are converted to diamagnetic hydroxylamines by 

antioxidants such as ascorbate and glutathione, or by enzymatic systems located, e.g., in liver 

microsomes. To assess the metabolic stability of 10b near its pKa it was incubated at 37 °C in the 

presence of CytMl in phosphate-citrate buffer adjusted to pH 3.5 and compared to non ionizable -

phosphorylated nitroxide 2-diethoxyphosphoryl-2,5,5-trimethylpyrrolidine 1-oxyl (TMPPO) and the 

widely studied 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl (3-CP) which demonstrates an acidic 

pKa = 4.0 but a weak EPR pH reporting property (aN = 0.19 G).
27

 At pH 3.5 the rates of reduction and 

half-lifes, determined under pseudo first-order conditions from the relative decay curves of 10b, 3-CP 

and TMPPO (Figure 5), were kred = 0.27 ± 0.03, 0.29 ± 0.02 and 0.07 ± 0.02 min
-1

 and t1/2 = 3.1, 2.5 and 

14.5 min, respectively, indicating that both carboxylic nitroxides are reduced at a significantly faster 

rate. When incubations were carried out in KH adjusted to pH 7.0, 10b became the more resistant 

compound, with kinetic parameters ranking: kred = 0.10 ± 0.01, 0.16 ± 0.02 and 0.29 ± 0.04 min
-1

 and t1/2 

= 9.5, 4.3 and 2.4 min for 10b, 3-CP and TMPPO, respectively. Such difference in stability with pH is 

not unexpected since the reduction of the carboxylate form, which is the dominant species at neutral pH 

for 10b and 3-CP, is clearly unlikely.
28

 Abundant literature addressing structure-activity relationships 

for the stability toward reductants of cyclic nitroxides, including Im and In classes of EPR pH markers, 
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has identified ,’-tretraalkyl substitution of the ring as a key feature to sterically protect nitroxide 

function.
11c,28,29

 In this regard 10b appears an exception to this rule and it may have some interest in 

probing acidic cell compartments. 

 

In Vitro Toxicity Studies. Cytotoxicity assays were performed on 10b and selected -

aminophosphonates esters to investigate their effects on cell viability and metabolic activity in vitro. 

IC50 values against human normal fibroblasts (NHLF) and lung cancer (A549) cell lines were 

determined by measuring the release of total intracellular lactate dehydrogenase (LDH) and by FMCA 

and MTT assays
30

 following a 48 h incubation at 37 °C with test compounds (0.1−50 mM). The results 

are summarized in Table 5 along with that of reference compounds and calculated lipophilicities. In 

general all novel compounds, TMPPO and DEPN demonstrated low cytotoxicity, with IC50 values in the 

millimolar range in the three assays, and in most cases A549 cells were found less sensitive than NHLF. 

Nitroxides are being increasingly employed for their antioxidant properties, with the purpose of 

therapeutic use. Thus, we have reported on cardioprotective effects of low concentrations of TMPPO in 

ischemic rat hearts, with EPR signal of the nitroxide being still detected up to 30 min following 

reperfusion both in perfusate and tissue homogenate medium.
31

 In order to ensure that negligible 

nitroxide degradation into secondary species susceptible to interfere with the assay may have occurred 

in cell medium when incubation time was prolonged, A549 cells were exposed to 15 mM of 10b, 

TMPPO or DEPN for 48 h at 37 °C and no significant loss of EPR signals was found (not shown). 

Among the tested compounds the most hydrophilic diethyl(2-methylpyrrolidin-2-yl) phosphonate 

(DEPMPH), a cyclic 31P NMR pH marker already applied ex vivo
10a

, yielded the highest IC50 value. In 

contrast 3c has increased cytotoxicity, a result that could account for its high lipophilicity and/or the 

presence of an aromatic substituent, as previously found in structural analogs such as those shown in 

Figure 1A.
9b

 Based on their toxicity data and in view of obtaining well-resolved signals with short 

acquisition times, the concentrations of 3 and 5 mM for 10b and 3a, respectively, were selected for the 

next ex vivo spectroscopic experiments. 
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In Vivo pH Measurement in the Rat Stomach. According to the steepest part of their titration 

curves (Figures 4 and S2) and their pKa ≈ 3.6, 10b and 3a are appropriate to probe a ~2.1−5.1 pH 

window, which conforms to the admitted useful range of pKa ± 1.5 pH units for spectroscopic pH 

markers.
6
 When anesthetized rats had their stomach filled for 30 min with a solution of 10b (3 mM) in 

either phosphate buffer (5 mM; starting pH 7.19), or in bicarbonate (0.1 M; starting pH 8.41) or Maalox 

taken as antacids (starting pH 8.72), pH-dependent EPR spectra were obtained in gastric fluid samples. 

These signals, recorded at 22 °C five min after sampling, were strong enough to obtain good resolution 

(e.g., modulation amplitude < 0.1 G was applied) and a short sweep time (< 1.5 min), as can be seen in 

Figure 6A where only the four low-field doublets are shown to best visualize the changes in hfs. In 

normal gastric fluid, pH ~ 2.6, the EPR signal of 10b exhibited a slower first-order decay (k ≈ 0.04 min
-

1
 and t1/2 ≈ 20 min) compared to the bioreduction process in CytMl, with no change in hfs. In the rat 

stomach a better in vivo stability has been reported for two Im-type EPR pH probes, which yet show a 

2-times lower spectral sensitivity vs 10b.
13b

 

Finally, a very good agreement was found between pH values determined spectroscopically and that 

obtained using a microelectrode (Figure 6B). We found differences ≤ 0.15 pH units among the three 

methods for a given condition when pH was obtained against the aP EPR titration curve in CytMs but 

alternate use of aN and aH hfs resulted in identical precision. Comparing EPR to 31P NMR, it should be 

noted that while the amine 3a was very stable in the stomach fluid (typical 31P NMR spectra are shown 

in Figure S8, Supporting Information), a longer acquisition time was necessary (at least 8 min) to 

achieve a similar accuracy in pH determination. A sampling time of 30 min was selected in all groups 

on the basis of reported almost full normalization of gastric pH level in rats given an EPR pH probe 

with pKa ~4.9.
13b

 In this time frame, the pH of the stock solutions of 10b and 3a stored at 37 °C 

remained neutral or slightly basic, stabilizing at less than +0.15 pH units vs the corresponding starting 

value. Therefore Figure 6B demonstrates in particular that 10b (i) did not chemically interact with the 

early (5 min) relaxation of stomach pH, and (ii) faithfully probed the expected slower pH decrease in the 
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high-buffering capacity antacids vs phosphate buffer, in line with other EPR studies.
13

 Thus, 30 min 

after administration of 10b in 5 mM phosphate buffer, a physiologically relevant value for gastric pH of 

2.58 ± 0.11 (n = 7) could be determined. 

 

Conclusion 

In our continuous efforts to discover a novel generation of spectroscopic pH markers, we have 

designed a series of -hydrogen substituted, -phosphorylated linear nitroxides based on an amino acid 

core structure. Notably, crystallized sodium carboxylate 10b displayed triple sensing (using aN, aP or aH 

couplings), pH dependent EPR spectra and its pKa = 3.6 and good resistance to bioreduction render it 

particularly suited to probe acidic sub-cellular compartments or study normal and pathological 

conditions linked to low pH. Based on known rules for EPR conformation-dependent hfs of -

substituted nitroxides, introducing a non-titrating phosphorus moiety in 10b improved its spectral 

sensitivity by ~2-fold, as compared to the more rigid cyclic probes described before. Interestingly, even 

better sensitivities were obtained for 5a,c, the isolation of which is in due course. 

On the EPR side of this study, further follow-up will include a MD-assisted structure-based rational 

nitroxide design, with the general structure shown in Figure 1C as a starting point. In the course of the 

syntheses, a series of novel -aminophosphonates esters were produced and their 31P NMR constants 

will increment our existing library of about 50 analog pH probes with the purpose of optimizing 

structure-activity relationships. 

 

Experimental Section 

 

Chemistry. General Methods. All solvents and chemicals were reagent grade from commercial 

suppliers and were used as such. Doubly distilled deionized water was used throughout and test 

solutions were filtered through a 0.2-µm Millipore filter prior to use. Ultrapure DEPMPH
32

 and 

diethyl(2-propylaminoprop-2-yl)phosphonate (DPP)
9a

 were obtained as previously described. 3-CP was 
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from Sigma-Aldrich Chimie (St. Quentin Fallavier, France) and TMPPO was synthesized and purified 

as described.
29a 

DEPN
16a

 was a kind gift of Dr. D. Gigmes. Microwave reactions were conducted in an 

Anton Paar Monowave 300 reactor. Reactions were followed by TLC on Merck-Kieselgel 60 F254 

precoated silica gel plates and the spots were visualized under UV light, or by staining with 

phosphomolybdic acid. Melting points were obtained using a Büchi Melting Point B-540 apparatus and 

are not corrected. Analytical NMR spectra were recorded using a Bruker Avance III Nanobay 

spectrometer. Chemical shifts () are reported in parts per million (ppm) relative to internal Me4Si (1H 

and 13C) or 85% external H3PO4 (31P) and coupling constants (J) are given in hertz (Hz). Splitting 

patterns are reported as follows: s = singlet; d = doublet; dd = doublet of doublets; t = triplet; quint = 

quintuplet; hept = heptuplet; m = multiplet; br = broad peak. High-resolution mass spectrometry 

(HRMS) in electron spray ionization (ESI; Q-STAR Elite instrument, Applied Biosystems, USA) and 

elemental analyses (Thermo Finnigan EA 1112 series Flash elemental analyzer) were undertaken at the 

Spectropole (Analytical Laboratory) at Campus St. Jérôme (Marseille, France). Optical rotations were 

determined on an Anton Paar MCP200 polarimeter with a 0.2 cm length. The purity of all synthesized 

compounds was > 96% as ascertained by elemental analysis. 

 

Synthesis of Methyl Esters of Amino Acid Based Phosphonates 3a−c by the Kabachnik−Fields 

Reaction. Dry ammonia was bubbled for 4 h into a suspension of the (S)-amino acid methyl ester 

hydrochloride 1a−c in dry Et2O (60 mL). After filtration, Et2O was removed under reduced pressure and 

the resulting free amino acid methyl ester 2a−c was processed without further purification as follows: a 

stirred mixture of diethylphosphite, 2a−c and Na2SO4 (5.0 g, 35.2 mmol) was refluxed in acetone (30 

mL) for 18 h. The mixture was filtered, concentrated in vacuum and the residue was purified to give the 

desired compound 3a−c as detailed below. 

Methyl 2-{[2-(diethoxyphosphoryl)propan-2-yl]-amino}propanoate (3a). Free alanine methyl ester 2a 

was obtained as a colorless oil (4.6 g, 89%) from hydrochloride 1a (7.0 g, 50.1 mmol). Compound 3a 

was then obtained from 2a (4.6 g, 44 mmol) and diethylphosphite (6.1 g, 44 mmol) according to the 
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above procedure. Distillation of the residue under reduced pressure afforded 3a as a light yellow oil (7.4 

g, 59%): bp 80 °C (3.7 × 10
-2

 mmHg); 1H NMR (300 MHz, CDCl3) δ 4.15−4.12 (m, 4H, 2 × CH2), 3.78 

(quint, 1H, J = 9.0 Hz, CHCO2Me), 3.65 (s, 3H, CO2CH3), 1.89 (br s, 1H, NH), 1.29−1.18 (m, 15H, 5 × 

CH3);13C NMR (75.5 MHz, CDCl3) δ 177.5 (C=O), 62.5 (d, JCP = 7.5 Hz, CH2), 62.0 (d, JCP = 7.5 Hz, 

CH2), 53.1 (d, JCP = 153.2 Hz, C), 51.8 (CO2CH3), 51.0 (d, JCP = 4.5 Hz, CH), 23.9 (d, JCP = 3.8 Hz, 

CCH3), 22.6 (d, J = 3.8 Hz, CCH3), 21.7 (CHCH3), 16.5 (d, JCP = 3.0 Hz, CH2CH3), 16.4 (d, JCP = 3.0 

Hz, CH2CH3); 31P NMR (121.5 MHz, CDCl3) δ 28.9. Anal. Calcd. for C11H24NO5P: C, 46.97; H, 8.60; 

N, 4.98. Found: C, 46.63; H, 8.60; N, 4.77. 

Methyl 2-{[2-(diethoxyphosphoryl)propan-2-yl]-amino}-3-methylbutanoate (3b). Free valine methyl 

ester 2b was obtained as a colorless oil (4.6 g, 98%) from hydrochloride 1b (8.9 g, 35.0 mmol). 

Compound 3b was then obtained from 2b (4.6 g, 37.3 mmol) and diethylphosphite (5.2 g, 37.3 mmol) 

according to the above procedure. The residue was purified by silica gel column chromatography 

eluting with pentane/acetone/methanol (80/18/2) to afford 3b as a yellow oil (5.9 g; 54%). 1H (300 

MHz, CDCl3)  4.20−4.00 (m, 4H, 2 × CH2), 3.70 (s, 3H, CO2CH3), 3.37 (d, 1H, J = 6.0 Hz, 

CHCO2Me), 1.94 (s, 1H, NH), 1.81 (m, 1H, CH(CH3)2), 1.33 (t, 3H, J = 7.1 Hz, OCH2CH3), 1.32 (t, 3H, 

J = 7.5 Hz, OCH2CH3), 1.25 (d, 3H, JHP = 11.0 Hz, CCH3), 1.23 (d, 3H, JHP = 13.1 Hz, CCH3), 0.91 (d, 

3H, J = 6.8 Hz, CH(CH3)2), 0.89 (d, 3H, J = 6.8 Hz, CH(CH3)2); 13C NMR (75.5 MHz, CDCl3)  176.6 

(C=O), 62.3 (CH2), 60.5 (NHCH), 53.3 (d, JHP = 158.2 Hz, C), 51.6 (CO2CH3), 32.9 (CH(CH3)2), 23.4 

(2 × CCH3), 19.4 (CH(CH3)2), 18.4 (CH(CH3)2), 16.7 (2 × CH2CH3); 31P NMR (121.4 MHz, CDCl3)  

30.4. Anal. Calcd. for C13H28NO5P: C, 50.48; H, 9.12; N, 4.53. Found: C, 49.98; H, 9.39; N, 4.49. 

Methyl 2-{[2-(diethoxyphosphoryl)propan-2-yl]-amino}-3-methylbutanoate (3c). Free phenylglycine 

methyl ester 2c was obtained as a colorless oil (3.0 g, 92%) from hydrochloride 1c (4.0 g, 19.8 mmol). 

Compound 3c was then obtained from 2c (3.0 g, 18.2 mmol) and diethylphosphite (5.0 g, 20.2 mmol) 

according to the above procedure. The residue was purified by silica gel column chromatography 

eluting with pentane/acetone (70/50) to afford 3c as a light yellow oil (3.77 g; 60%). 1H NMR (300 
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MHz, CDCl3) δ 7.43−7.41 (m, 2H, Hmeta), 7.32−7.24 (m, 3H, Hortho and Hpara), 4.99 (s, 1H, CH), 

4.14−4.02 (m, 4H, 2 × CH2), 3.66 (s, 3H, CO2CH3), 2.51 (br s, 1H, NH), 1.34−1.18 (m, 12H, C(CH3)2 

and 2 × –OCH2CH3); 13C NMR (75.5 MHz, CDCl3) δ 174.6 (C=O), 140.7 (Ar, Ph), 128.4 (Ar, Ph), 

127.5 (Ar, Ph), 127.4 (Ar, Ph), 62.3 (d, JCP = 7.5 Hz, CH2), 62.1 (d, JCP = 7.5 Hz, CH2), 59.6 (d, JCP = 

3.8 Hz, CH), 54.4 (d, JCP = 149.4 Hz, C), 52.3 (CO2CH3), 23.9 (d, JCP = 3.0 Hz, CCH3), 23.4 (d, JCP = 

3.8 Hz, CCH3), 16.5 (d, JCP = 2.3 Hz, CH2CH3), 16.4 (d, JCP = 2.3 Hz, CH2CH3); 31P NMR (121.4 

MHz, CDCl3) δ 30.1. Anal. Calcd. for C16H26NO5P: C, 55.97; H, 7.63; N, 4.08. Found: C, 55.69; H, 

7.77; N, 4.01. 

 

Synthesis of Amino Acid Based Phosphonates 4a,c. The appropriate compound 3a,c (1.07 mmol) 

was stirred in aqueous NaOH (5 N, 3 mL) at rt until complete solubilization. The mixture was carefully 

acidified with H2SO4 to pH 1 and the aqueous phase was extracted with Et2O (3 × 5 mL). Combined 

organic layers were dried over MgSO4, filtered and concentrated in vacuum to give the corresponding 

4a,c which were used without further purification. 

2-{[2-(Diethoxyphosphoryl)propan-2-yl]-amino}propanoic acid (4a). Saponification of 3a (0.3 g, 

1.07 mmol) afforded 4a as a yellow oil (0.16 g, 56%). 1H (300 MHz, CDCl3) δ 5.36 (br s, 1H, NH), 

4.17−4.06 (m, 4H, 2 × CH2), 3.71 (quint, 1H, J = 9 Hz, CHCO2H), 1.34−1.24 (m, 15H, 5 × CH3); 13C 

NMR (75.5 MHz, CDCl3) δ 176.7 (C=O), 62.9 (d, JCP = 7.5 Hz, CH2), 62.7 (d, JCP = 7.5 Hz, CH2), 53.2 

(d, JCP = 153.0 Hz, C), 51.4 (d, JCP = 3.8 Hz, CH), 23.2 (d, JCP = 1.5 Hz, CCH3), 22.0 (d, JCP = 2.3 Hz, 

CCH3), 20.3 (CHCH3), 16.4 (d, JCP = 1.5Hz, CH2CH3), 16.3 (d, JCP = 1.5 Hz, CH2CH3); 31P NMR 

(121.4 MHz, CDCl3) δ 29.72. Anal. Calcd. for C11H24NO5P: C, 46.97; H, 8.60; N, 4.98. Found: C, 

46.75; H, 8.70; N, 4.99. 

2-{[2-(Diethoxyphosphoryl)propan-2-yl]-amino}-2-phenyl-ethanoic acid (4c). Saponification of 3c 

(0.2 g, 0.58 mmol) afforded 4c as a yellow oil (0.12 g, 62%). 1H (300 MHz, CDCl3) δ 7.43−7.41 (m, 

2H), 7.34−7.24 (m, 3H), 5.67 (br s, 2H, NH and CO2H), 4.90 (s, 1H, CH), 4.17−4.04 (m, 4H, 2 × CH2), 

1.36−1.18 (m, 12H, 4 × CH3);
 13C NMR (75.47 MHz, CDCl3) δ 174.4 (C=O), 139.9 (Ar, Ph), 128.6 
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(Ar, Ph), 127.9 (Ar, Ph), 127.4 (Ar, Ph), 62.8 (d, JCP = 3.0 Hz, CH2), 62.7 (d, JCP = 2.3 Hz, CH2), 59.9 

(d, JCP = 3.8 Hz, CH), 53.4 (d, JCP = 150.9 Hz, C), 23.2 (d, JCP = 3.8 Hz, CCH3), 23.1 (d, JCP = 3.0 Hz, 

CCH3), 16.4 (d, JCP = 1.5 Hz, CH2CH3), 16.3 (d, JCP = 1.5 Hz, CH2CH3); 31P NMR (121.4 MHz, 

CDCl3) δ 29.7. Anal. Calcd. for C16H26NO5P: C, 55.97; H, 7.63; N, 4.08. Found: C, 55.53; H, 7.80; N, 

4.09. 

 

In Situ Formation of Carboxylic Nitroxides 5a and 5c. Solutions of the appropriate amine 4a,c 

(100 mM) and a solution of m-CPBA (10 mM) were first prepared in phosphate buffer (i.e., 20 mM 

KH2PO4, pH 7.4). An aliquot of NaOH (1 N) was added to the m-CPBA solution (final concentration, 

15%) to achieve complete solubilization of the peracid. Two hundred microliters of each solution of 

4a,c were then diluted to 10 mM by adding phosphate buffer or CytMh
10a,31

 (see preparation below), and 

an aliquot (30 L) of m-CPBA solution was added to this mixture (final peracid concentration, 0.15 

mM) to reach a final volume of 2 mL. The resulting working solutions of nitroxides 5a,c can be used in 

EPR titration experiments within 3−4 h following addition of the oxidant. 

 

Synthesis of Aminophosphonates Esters 9a and 9b. Ethyl 2-amino-2-methylpropanoate 

hydrochloride (7). To a solution of 3-aminoisobutyric acid 6 (1.2 g, 11.72 mmol) in ethanol (50 mL) 

was added acetyl chloride (2.7 mL, 37.4 mmol, 3.2 equiv) at 0 °C under argon atmosphere. The 

resulting mixture was stirred at 85 °C for 24 h, cooled to rt and concentrated under reduced pressure to 

give 7 as a white powder (1.93 g, 11.5 mmol, quantitative yield); mp 155.7−155.9 °C (lit.
33

 mp 156−157 

°C). 1H NMR (300 MHz, D2O) δ 4.18 (q, 2H, J = 7.2 Hz, CH2), 1.49 (s, 6H, C(CH3)2), 1.19 (t, 3H, J = 

7.2 Hz, CH2CH3); 13C NMR (75.5 MHz, CDCl3) δ 172.5 (C=O), 63.7 (CO2CH2), 56.8 (C(CH3)2), 22.9 

(C(CH3)2), 13.1 (CO2CH2CH3). 

Methyl 2-{[1-(diethoxyphosphoryl)-2,2-dimethylpropan-1-yl]-amino}-2-methylpropanoate (9a). To a 

solution of hydrochloride 7 (4.86 g, 29 mmol) in dichloromethane (30 mL) under argon atmosphere was 

added dropwise triethylamine (4.2 mL, 30.5 mmol, 1.05 equiv) and the mixture was stirred at rt for 1 h. 
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To this mixture was added MgSO4 (3 spatula tips) and pyvaldehyde (3.8 mL, 34.8 mmol, 1.2 equiv) and 

the reaction mixture was stirred at 50 °C for 15 h. The mixture was cooled at rt, filtered and the filtrate 

was concentrated in vacuum. The residue was dissolved in dichloromethane (30 mL), the resulting 

solution was washed with water (2 × 30 mL), dried on MgSO4 and filtered. Evaporation of the solvents 

in vacuum afforded the imine 8a (5.3 g, 26.6 mmol, 92%) as a colorless oil. 1H NMR (300 MHz, 

CDCl3) δ 7.38 (s, 1H, NCH), 4.08 (quint, 2H, J = 7.2 Hz, CH2), 1.32 (s, 6H, C(CH3)2), 1.17 (t, 3H, J = 

7.2 Hz, CH2CH3), 0.97 (s, 9H, C(CH3)3); 13C NMR (75.5 MHz, CDCl3) δ 174.8 (C=O), 169.4 (C=N), 

64.5 (C(CH3)2), 60.6 (CO2CH2), 36.2 (C(CH3)3), 26.7 (C(CH3)3), 26.1 (C(CH3)2), 14.1 (CO2CH2CH3). 

HRMS-ESI: calcd. for C11H22NO2
+
 [M+H]

+
 200.1645; found 200.1642. 

A mixture of imine 8a (200 mg, 1 mmol) and diethylphosphite (200 L, 1.3 mmol, 1.3 equiv) was 

stirred inside a microwave reactor at 150 °C for 45 min. After cooling down to rt, the solution was 

diluted with dichloromethane (20 mL), washed with water (2 × 20 mL), dried over MgSO4, filtered and 

evaporated in vacuum. The crude residue was purified by silica gel column chromatography eluting 

with pentane/acetone (5/1) to give 9a as a colorless oil (250 mg; 74%). 1H NMR (300 MHz, CDCl3) δ 

4.12−3.93 (m, 6H, 3 × CH2CH3), 2.73 (d, 1H, J = 17.4 Hz, CH), 1.28−1.18 (m, 15H, 2 × POCH2CH3, 

CO2CH2CH3, 2 × CH3), 0.97 (s, 9H, C(CH3)3); 13C NMR (75.5 MHz, CDCl3) δ 176.2 (C=O), 61.3 (d, 

JCP = 7.2 Hz, POCH2), 61.2 (d, JCP = 7.2 Hz, POCH2), 60.2 (CO2CH2), 58.5 (d, JCP = 137.0 Hz, CH), 

57.5 (C(CH3)2), 35.0 (d, JCP = 9.4 Hz, C(CH3)3), 27.7 (d, JCP = 6.1 Hz; C(CH3)3), 23.7 (C(CH3)2), 16.4 

(d, JCP = 6.6 Hz, POCH2CH3), 14.0 (CO2CH2CH3); 31P NMR (121.4 MHz, CDCl3) δ 28.01. Anal. 

Calcd. for C15H32NO5P: C, 53.40; H, 9.56; N, 4.15. Found: C, 53.00; H, 9.90; N, 4.15. 

Methyl 2-{[1-(diethoxyphosphoryl)-2-methylpropan-1-yl]-amino}-2-methylpropanoate (9b). To a 

solution of hydrochloride 7 (2 g, 12 mmol) in dichloromethane (12 mL) under argon atmosphere was 

added dropwise triethylamine (1.8 mL, 13.2 mmol, 1.05 equiv) and the mixture was stirred at rt for 1 h. 

To this mixture was added MgSO4 (3 spatula tips) and isobutyraldehyde (2.4 mL, 14.4 mmol, 1.2 equiv) 

and the reaction mixture was stirred at 50 °C for 6 h. The mixture was cooled at rt, filtered and the 
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filtrate was concentrated in vacuum. The residue was dissolved in dichloromethane (30 mL), the 

resulting solution was washed with water (2 × 30 mL), dried on MgSO4 and filtered. Evaporation of the 

solvents in vacuum afforded the imine 8b (2.1 g, 11.4 mmol, 95%) as a colorless oil. 1H NMR (300 

MHz, CDCl3) δ 7.40 (d, J = 6.0 Hz, 1H, NCH), 4.12 (quint, 2H, J = 6.0 Hz, CH2), 2.50−2.40 (m, 1H, 

CH(CH3)2), 1.37 (s, 6H, C(CH3)2), 1.21 (t, 3H, J = 6.0 Hz, CH2CH3), 1.02 (m, 6H, CH(CH3)2); 13C 

NMR (75.5 MHz, CDCl3) δ 176.6 (C=O), 167.9 (C=N), 64.5 (C(CH3)2), 60.7 (CO2CH2), 34.6 (CH), 

26.0 (C(CH3)2), 19.2 (CH(CH3)2), 14.1 (CO2CH2CH3). HRMS-ESI: calcd. for C10H20NO2
+
 [M+H]

+
 

186.1489; found 186.1488. 

A mixture of imine 8b (400 mg, 2.16 mmol) and diethylphosphite (362 L, 2.81 mmol) was stirred 

inside a microwave reactor at 150 °C for 30 min. After cooling down to rt, water (100 mL) was added 

and the mixture was treated with concentrated aqueous HCl until pH 2 and extracted with pentane (5 × 

50 mL). The combined organic layers were dried over MgSO4, filtered and evaporated in vacuum. The 

crude residue was purified by silica gel column chromatography eluting with pentane/acetone (5/1) to 

give 9b as light yellow oil (650 mg; 68%). 1H NMR (300 MHz, CDCl3) δ 4.15−4.08 (m, 6H, 3 × 

CH2CH3), 3.02 (dd, 1H, 
 
J = 15.0 and 2.8 Hz, NHCH), 2.02−1.93 (m, 1H, CH(CH3)2), 1.32 (t, 3H, J = 

8.0 Hz, POCH2CH3), 1.30 (t, 3H, J = 8.0 Hz, POCH2CH3), 1.29 (s, 6H, NHC(CH3)2), 1.27 (t, 3H, J = 

8.0 Hz, CO2CH2CH3), 1.00 (d, 6H, J = 8.0 Hz, CH(CH3)2); 13C NMR (75.5 MHz, CDCl3) δ 176.8 

(C=O), 62.2 (d, JCP = 7.5 Hz, POCH2), 61.4 (d, JCP = 7.5 Hz, POCH2), 60.6 (CO2CH2), 57.4 (d, JCP = 

8.3 Hz, NHC(CH3)2), 55.2 (d, JCP = 148.6 Hz, CH), 30.1 (d, JCP = 6.8 Hz, CH(CH3)2), 26.5 (NHCCH3), 

25.5 (NHCCH3), 19.2 (d, JCP = 10.6 Hz, CHCH3), 18.7 (d, JCP = 10.6 Hz, CHCH3), 16.5 (d, JCP = 6 Hz, 

POCH2CH3), 16.4 (d, JCP = 6 Hz, POCH2CH3), 14.0 (CO2CH2CH3); 31P NMR (121.4 MHz, CDCl3) δ 

27.6. Anal. Calcd. for C14H30NO5P: C, 52.00; H, 9.35; N, 4.33. Found: C, 52.36; H, 9.71; N, 4.19. 

 

Synthesis of Aminophosphonate Ester 16. (S)-Methylvaline ethyl ester hydrochloride (14). This 

compound was prepared from (S)-methylvaline 13 (0.5 g, 3.82 mmol) and acetyl chloride (870 L, 12.2 

mmol, 3.2 equiv) in ethanol (5 mL) according to the procedure used for preparing 7, with a reaction 
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time of 72 h. Compound 14 was obtained as a white powder (745 mg, 3.81 mmol, quantitative yield); 

mp 121.0−121.5 ° C; []
25

D = −13.5° (0.01, H2O). 1H NMR (300 MHz, D2O) δ 4.21 (q, J = 7.0 Hz, 2H, 

CH2), 2.14 (m, 1H, CH(CH3)2), 1.45 (s, 3H, CH3), 1.21 (t, 3H, J = 7.0 Hz, CH2CH3), 0.91 (br s, 6H, 

CH(CH3)2); 13C NMR (75.5 MHz, CDCl3) δ 172.0 (C=O), 66.0 (C), 63.7 (CO2CH2), 34.0 (CH(CH3)2), 

18.9 (C(CH3)), 16.2 (C(CH3)2), 15.4 (C(CH3)2), 13.1 (CO2CH2CH3). 

Methyl 2-{[1-(diethoxyphosphoryl)-2,2-dimethylpropan-1-yl]-amino}-2,3-dimethylbutanoate (16). To 

a solution of hydrochloride 14 (745 mg, 3.82 mmol) in dichloromethane (5 mL) under argon atmosphere 

was added dropwise triethylamine (558 L, 4.01 mmol, 1.05 equiv) and the mixture was stirred at rt for 

1 h. To this mixture was added MgSO4 (3 spatula tips) and pyvaldehyde (500 L, 4.6 mmol, 1.2 equiv) 

and the reaction mixture was stirred at rt for 72 h. The mixture was filtered, the filtrate concentrated in 

vacuum, then diluted in dichloromethane (10 mL). The solution was washed with water (2 × 10 mL), 

dried on MgSO4 and filtered. Evaporation of the solvents in vacuum afforded the imine 15 (563 mg, 

2.48 mmol, 65%) as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 7.37 (s, 1H, NCH), 4.08 (quint, 2H, J 

= 7.3 Hz, CH2), 2.16 (hept, 1H, J = 6.8 Hz, CH(CH3)2), 1.17 (t, 3H, J = 7.3 Hz, CO2CH2CH3), 1.14 (s, 

3H, C(CH3)), 0.97 (s, 9H, C(CH3)3), 0.85 (d, 3H, J = 6.8 Hz, CH(CH3)2), 0.77 (d, 3H, J = 6.8 Hz, 

CH(CH3)2); 13C NMR (75.5 MHz, CDCl3) δ 174.5 (C=O), 169.5 (C=N), 70.4 (C), 60.2 (CO2CH2), 

36.5(CH(CH3)2), 35.5 (C(CH3)3), 26.6 (C(CH3)3), 18.6 (C(CH3)), 17.3 and 16.9 (CH(CH3)2), 14.1 

(CO2CH2CH3); HRMS-ESI: calcd. for C13H26NO2
+
 [M+H]

+
 228.1958; found: 228.1953. 

A mixture of imine 15 (0.5 g, 2.20 mmol) and diethylphosphite (400 L, 2.86 mmol, 1.3 equiv) was 

stirred for 15 days at 55 °C in a sealed vessel. After cooling down to rt, the mixture was diluted with 

dichloromethane (20 mL), washed with water (2 × 20 mL), dried over MgSO4, filtered and evaporated 

in vacuum. The crude residue was purified by silica gel column chromatography eluting with 

pentane/acetone (5/1) to give compound 16 as a colorless oil (300 mg; 37%) containing a 1:1 ratio of 

diastereomers (determined by HPLC). Anal. Calcd. for C17H36NO5P: C, 55.87; H, 9.93; N, 3.83. Found: 

C, 55.97; H, 9.99; N, 3.75. 
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Separation of the Two Diastereomers of 16. The two diastereomers were separated by chiral 

column chromatography under the following conditions: column, Chiralpak IC, 250 mm × 10 mm; 

mobile phase, hexane/isopropanol/chloroform (8/1/1); flow rate, 5 mL/min; sample concentration, 300 

mg/10 mL in hexane/isopropanol/chloroform (4/3/3); injected volume per run, 230 L injected 45 times 

every 4.5 min; UV detection at 230 nm. 

First eluted diastereomer (tR = 4.87 min) (2S,1’R)-16: []
25

D = +28.8° (0.034, CHCl3). 1H (300 MHz, 

CDCl3) δ 4.24−4.02 (m, 6H, 3 × CH2CH3), 2.73 (d, 1H, J = 16.3 Hz, CH), 1.82 (hept, 1H, J = 6.8 Hz, 

CH(CH3)2), 1.36−1.27 (m, 9H, 2 × POCH2CH3, CO2CH2CH3), 1.11 (s, 3H, CCH3), 1.09 (s, 9H, 

C(CH3)3), 0.98 (d, 3H, J = 6.8 Hz, CH(CH3)2), 0.83 (d, 3H, J = 6.8 Hz, CH(CH3)2); 13C NMR (75.5 

MHz, CDCl3) δ 176.0 (C=O), 63.5 (CO2CH2), 61.5 (d, JCP = 6.6 Hz, POCH2), 60.6 (d, JCP = 7.7 Hz, 

POCH2), 60.0 (CH(CH3)2), 57.9 (d, JCP = 129.9 Hz, CH), 38.8 (d, JCP = 2.8 Hz, C(CH3)3), 35.7 (d, JCP = 

9.9 Hz; C(CH3)3), 28.2 (CH(CH3)2), 28.1 (CH(CH3)2), 23.5 (C(CH3)iPr), 20.2 (C(CH3)iPr), 17.6 (d, JCP 

= 7.2 Hz, POCH2CH3), 16.9 (d, JCP = 8.2 Hz, POCH2CH3), 14.0 (CO2CH2CH3); 31P NMR (121.4 MHz, 

CDCl3) δ 28.08. 

Second eluted diastereomer (tR = 6.05 min) (2S,1’S)-16: []
25

D = −14.5° (0.014, CHCl3); 1H (300 

MHz, CDCl3) δ 4.08−3.98 (m, 6H, 3 × CH2CH3), 2.95 (d, 1H, J = 19.1 Hz, CH), 1.91 (hept, 1H, J = 6.8 

Hz, CH(CH3)2), 1.26 (t, 3H, J = 6.9 Hz, POCH2CH3), 1.25 (t, 3H, J = 6.9 Hz, POCH2CH3), 1.21 (t, 3H, 

J = 7.2 Hz, CO2CH2CH3), 1.11 (s, 3H, CCH3), 0.95 (s, 9H, C(CH3)3), 0.91 (d, 3H, J = 6.8 Hz, 

CH(CH3)2), 0.76 (d, 3H, J = 6.8 Hz, CH(CH3)2); 13C NMR (75.5 MHz, CDCl3) δ 176.3 (C=O), 61.8 (d, 

JCP = 6.2 Hz, POCH2), 61.2 (d, JCP = 7.7 Hz, POCH2), 61.0 (CO2CH2), 60.5 (CH(CH3)2), 59.4 (d, JCP = 

132.1 Hz, CH), 37.4 (br s, C(CH3)3), 35.4 (d, JCP = 10.5 Hz; C(CH3)3), 28.9 (CH(CH3)2), 28.8 

(CH(CH3)2), 23.4 (C(CH3)iPr), 20.2 (C(CH3)iPr), 16.8 (d, JCP = 6.2 Hz, POCH2CH3), 16.5 (d, JCP = 5.5 

Hz, POCH2CH3), 14.1 (CO2CH2CH3); 31P NMR (121.4 MHz, CDCl3) δ 27.08. 

 

General Procedure for the Synthesis of Nitroxides -Esters 10a, 12 and 17. The corresponding 

aminoester (1 equiv) was dissolved in a volume of chloroform as to give a final concentration of 250 
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mM. This solution was cooled at 0 °C and a solution of m-CPBA (2 equiv) in chloroform (same 

volume) was added dropwise in 2 h. The mixture was stirred for 2 h at 0 °C then the organic layer was 

washed with saturated aqueous Na2CO3 (3 × 4 mL) and by brine (4 mL). The organic layer was dried 

over MgSO4, filtered and evaporated in vacuum to give the crude nitroxides -esters. 

N-(ethyl-2-methylpropanoate)-(1-diethoxyphosphoryl-2,2-dimethylpropyl) nitroxide (10a). Title 

compound was prepared from solutions of 9a (250 mg, 0.73 mmol) and m-CPBA (360 mg, 1.5 mmol), 

both in chloroform (3 mL). Purification of the crude residue by silica gel column chromatography 

eluting with dichloromethane/acetone (5/1) afforded 10a as an orange oil (197 mg, 80%). Anal. Calcd. 

for C15H32NO6P: C, 51.13; H, 8.87; N, 3.97. Found: C, 51.19; H, 9.34; N, 3.93. 

N-(ethyl-2-methylpropanoate)-(1-diethoxyphosphoryl-2-methylpropyl) nitroxide (12). Title compound 

was prepared from solutions of 9b (30 mg, 0.09 mmol) and m-CPBA (46 mg, 0.19 mmol), both in 

chloroform (1 mL). Compound 12 was obtained as pale orange oil (32 mg, quantitative yield). HRMS-

ESI: calcd. for C14H30NO6P [M+H]
+
 339.1805; found 339.1802. Anal. Calcd. for C14H29NO6P: C, 

49.70; H, 8.64; N, 4.14. Found: C, 51.10; H, 8.97; N, 3.93. 

N-(ethyl-2,3-dimethylbutanoate)-(1-diethoxyphosphoryl-2,2-dimethylpropyl) nitroxide ((2S,1’R)-17). 

Title compound was prepared from solutions of (2S,1’R)-16 (110 mg, 0.30 mmol) and m-CPBA (149 

mg, 0.60 mmol), both in chloroform (1.5 mL). Compound (2S,1’R)-17 was obtained as a pale orange oil 

(67 mg, 60%). HRMS-ESI: calcd. for C17H36NO6P [M+H]
+
 381.2275; found 381.2274. Anal. Calcd. 

for C17H35NO6P: C, 53.67; H, 9.27; N, 3.68. Found: C, 53.97; H, 9.04; N, 3.93. 

N-(ethyl-2,3-dimethylbutanoate)-(1-diethoxyphosphoryl-2,2-dimethylpropyl) nitroxide ((2S,1’S)-17). 

Title compound was prepared from solutions of (2S,1’S)-16 (80 mg, 0.22 mmol) and m-CPBA (108 mg, 

0.44 mmol), both in chloroform (1 mL). Compound (2S,1’S)-17 was obtained as a pale orange oil (54 

mg, 65%). HRMS-ESI: calcd. for C17H36NO6P [M+H]
+
 381.2275; found 381.2274. Anal. Calcd. for 

C17H35NO6P: C, 53.67; H, 9.27; N, 3.68. Found: C, 53.75; H, 9.23; N, 3.72. 
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N-2-(2-methylpropanoate)-(1-diethoxyphosphoryl-2,2-dimethylpropyl) nitroxide sodium salt (10b). 

Nitroxide 10a (197 mg, 0.6 mmol) was dissolved in a 5 M aqueous NaOH (1.2 mL, 10 equiv) and 

stirred vigorously for 15 h at rt. The mixture was extracted with dichloromethane (4  5 mL), the 

organic layers were gathered, dried over MgSO4, filtrered and concentrated in vacuum. The resulting 

crude residue was precipitated with pentane to give a precipitate which was filtered, affording 10b as 

yellow crystals (81 mg, 42%); mp 111.6−112.0 °C. Anal. Calcd. for C13H26NO6PNa: C, 45.09; H, 7.57; 

N, 4.0. Found: C, 45.45; H, 7.58; N, 4.33. 

 

In Situ Formation of Carboxylic Nitroxide 11b. N-2-(2-methylpropan)-(1-diethoxyphosphoryl-2-

methylpropyl)-oic acid (11a). Ester 9b (0.1 g, 310 mol) was saponified according to the procedure 

used to prepare 10b, affording carboxylic acid 11a as a yellow oil (91 mg, quantitative yield). 1H (300 

MHz, CDCl3) δ 6.43 (br s, 2H, CO2H and NH), 4.18−4.08 (m, 4H, 2 × CH2CH3), 3.04 (dd, 1H, J = 18.3 

and 2.9 Hz, NHCH), 2.08 (m, 1H, CH(CH3)2), 1.37−1.29 (m, 12H, 2 × POCH2CH3 and NHC(CH3)2), 

1.03 (d, 3H, J = 6.0 Hz, CH(CH3)2), 1.01 (d, 3H, J = 6.0 Hz, CH(CH3)2); 13C NMR (75.5 MHz, CDCl3) 

δ 178.5 (C=O), 65.6 (CO2CH2), 62.2 (d, JCP = 8.3 Hz, POCH2), 62.1 (d, JCP = 8.3 Hz, POCH2), 58.4 (d, 

JCP = 8.8 Hz, NHC(CH3)2), 55.1 (d, JCP = 151.3 Hz, CH), 29.8 (d, JCP = 5.0 Hz, CH(CH3)2), 26.2 

(NHCCH3), 24.6 (NHCCH3), 19.2 (d, JCP = 11.0 Hz, CHCH3), 18.7 (d, JCP = 10.6 Hz, CHCH3), 16.2 (d, 

JCP = 1.6 Hz, POCH2CH3), 16.1 (d, JCP = 1.6 Hz, POCH2CH3); 31P NMR (121.4 MHz, CDCl3) δ 27.1; 

HRMS-ESI: calcd. for C12H27NO5P
+
 [M+H]

+
 296.1621; found 296.1623. Anal. Calcd. for C12H26NO5P: 

C, 48.81; H, 8.87; N, 4.74. Found: C, 49.13; H, 8.98; N, 4.45. 

N-2-(2-methylpropan)-(1-diethoxyphosphoryl-2-methylpropyl)-oic acid oxide (11b). Title compound 

was formed in situ from 11a according to the procedure used for 5a,c and the resulting nitroxide 

working solution in 20 mM phosphate buffer can be used in EPR titration experiments within 3−4 h 

following addition of oxidant. Using a calibration curve established with 0.01−0.1 mM TMPPO, the 

initial concentration of the working solutions of nitroxides 5a,c and 11b prepared in situ was found 

ranging 0.05−0.1 mM. 
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X-ray Diffraction Analysis. X-ray diffraction data were collected at 293 K on a Bruker-Nonius 

Kappa CCD diffractometer using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). 

Cystal data for 10b: C13H26NNaO6P M = 347.31 monoclinic space group C2/c, Hall group –C 2yc, a = 

22.2170(5), b = 16.2403(5), c = 10.8482(3) Å, = 91.788(2)°. 

Crystallographic data for the structure of 10b have been deposited at the Cambridge Crystallographic 

Data Center with the deposition number number 793807. This material can be obtained free of charge at 

www.ccdc.cam.uk/conts/retrieving.html or from the CCDC at deposit@ccdc.cam.ac.uk. 

 

31P NMR pH-Calibration of -Aminophosphonate Esters 3a−c, 9a,b and diastereomers of 16. 

Calibration experiments were carried out in the following media: phosphate buffer (1 mM KH2PO4), 

KH (containing: 118.5 mM NaCl, 4.8 mM KCl, 1.2 mM MgSO4, 25 mM NaHCO3 and 1.2 mM 

KH2PO4) having a ionic strength of 0.154, or homogenates CytMl or CytMh.
10a,31

 Test compounds (5 

mM) were dissolved in the selected medium and the pH was adjusted to 15−20 different values in the 

range 1.0−12.0 with 1 N solutions of HCl or NaOH. The pH was measured using a SevenCompact 

digital pH-meter equipped with an Inlab Micro Pro micro-electrode (Mettler Toledo, Switzerland). 

The 31P NMR spectra of titration solutions were acquired (32 accumulated scans) at 22 °C on either 

Bruker AMX 400 (at 161.9 MHz) or Avance I 500 MHz (at 202.46 MHz) instruments equipped with 

10- or 5-mm probes, respectively. The chemical shifts (referenced to external 85% H3PO4 at 0 ppm) 

were plotted against pH to fit the Henderson-Hasselbalch equation for NMR using a nonlinear 

regression: 

pH = pKa + log
d -da

db -d
              (2) 

where  is the experimental 31P chemical shift and  a and  b correspond to the limiting chemical shift 

values of the protonated and unprotonated form, respectively. The T1 values were determined at pH ≈ 

pKa using a standard inversion / recovery (180°−−90°)−TR pulse-sequence with a 180° composite 

pulse, with the repetition time TR being 6−7 times the T1 value. The number of scans was 8 and 16 

http://www.ccdc.cam.uk/conts/retrieving.html
mailto:deposit@ccdc.cam.ac.uk
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evolution decays () were used. For both diastereomers of 16 T1 was measured at pH 4.00. Data are 

means of 3−10 repeated titrations. 

 

Molecular Dynamics Simulations. All calculations were performed using GROMACS 5.0.5 package.
34

 

The best conformer of the protonated and unprotonated forms of each titrating nitroxide was fully 

optimized at the PBE0/6-31+G(d,p) level using the ab initio program Gaussian 09 revision D.01 

package.
35

 Each nitroxide was solvated in a quasi-cubic box containing about 800 water molecules. In 

the case of unprotonated species the net charge of the system was neutralized with one sodium ion. The 

force fields employed in the simulations were TIP3P
36

 (description of the water molecules) and 

AMBER (ff99SB)
37

 including additional parameters for nitroxide moieties.
38

 The atomic charges were 

computed at the HF/6-31G(d) level of theory with the RESP scheme.
39

 To optimize the simulation box 

size a NPT calculation was performed at 300 K and 1 bar during 200 ps with a time step of 0.5 fs. After 

this first stage, a NVT trajectory was performed at 300 K during 100 ns with a time step of 0.5 fs. The 

last 99.5 ns of the trajectory were kept in the simulation and the data analysis calculations were 

performed on 99500 structures with system coordinates saved every 1 ps. 

 

In Vitro EPR Experiments. General. All EPR measurements were performed at 22 °C unless 

otherwise noted, using an X-band (9.79 GHz) Bruker ESP 300 spectrometer (Karlsruhe, Germany) with 

a TM110 microwave cavity, using a modulation frequency of 100 KHz and a microwave power of 10 

mW. The magnetic field strength and microwave frequency were measured with a Bruker ER 035M 

proton probe gaussmeter and a Hewlett-Packard 5350B frequency meter, respectively. The temperature 

inside the resonant cavity was controlled by a Bruker ER 4111VT variable temperature unit. Coupling 

constants and g-factors were determined by computer simulation of spectra having 4k resolution using 

the program of Rockenbauer and Korecz.
40

 In order to resolve long-range EPR couplings, samples were 

deoxygenated by argon bubbling before their transfer into 50 µL glass capillary tubes sealed at both 

ends with Critoseal. To optimize signal resolution of each tested nitroxide, other instrument settings 

were adjusted within the following ranges: modulation amplitude, 0.02−0.48 G; time constant, 
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5.12−81.92 ms; receiver gain, 2.5  104−2  105; scan rate, 0.25−1.51 G/s; sweep width, 83−110 G (see 

also Figure legends). 

EPR pH-Calibration. Working solutions of the nitroxides 5a,c and 11b prepared in situ as described 

above or aqueous stock solutions of isolated nitroxides prepared by weighing and diluted in appropriate 

solvent to yield a final concentration of 0.05 mM (10b), 1 mM (10a, 12) or 3 mM (diastereomers of 17) 

were used in calibration experiments. The pH was serially adjusted to 10−15 different values in the 

range 0.5−12.0 with 1 N HCl or NaOH, and the EPR scan was initiated at room temperature 90 s 

following stabilization of the pH. 

The plot of hfs as a function of pH as determined from spectral simulations of experimental EPR 

spectra yielded the pKa value and the EPR sensitivity aX for 5a,c, 10b and 11b using the Henderson-

Hasselbalch equation for EPR 

 
  XbX

aXX

a
aa

aa
K




 logppH               (3) 

where aX is the experimental coupling constant of the nucleus X, and (aXa and (aXb are the 

corresponding limiting coupling constants in the protonated and unprotonated form of the nitroxide, 

respectively. Data are means of 3 repeated titrations. 

Bioreduction of 10b, TMPPO and 3-CP. Twenty microliters of an aqueous stock solution of tested 

compound were diluted with an aliquot (80 L) of CytMl in either KH buffer, pH 7.0 or a phosphate-

citrate buffer (0.25 M; pH 3.5) to reach a final nitroxide concentration of 0.1 mM (see preparation 

below). The mixture was vortexed for 10 s, transferred into a glass capillary and the decay of EPR 

double integrated simulations was monitored over time at 37 °C. Spectral acquisition was started 1 min 

after mixing using the settings: modulation amplitude, 0.31−0.48 G; time constant, 20.48 ms; receiver 

gain, 1−4  105; scan rate, 2.4−4.8 G/s; sweep width, 50 G (for 3-CP) or 100 G (for 10b and TMPPO). 

For each nitroxide data ± SD were computed from at least 5 independent determinations in each 

medium. 

 



 

33 

Biology. Reagents. Doubly distilled deionized water was used throughout. Dulbecco’s modified 

Eagle’s medium (DMEM), phosphate buffered saline (PBS), fetal calf serum (FCS), antibiotics and 

antimycotic agents were from Gibco Life Technologies (Thermo Fisher Scientific, Saint Aubin, France). 

Stock solutions were freshly diluted in the appropriate culture medium prior to use and filtered through 

a 0.2-µm Millipore filter. 

Cell Culture and Exposure. Cell culture was performed according to the conditions described 

earlier.
30

 Briefly, human alveolar epithelial A549 cells (CCL-185; ATCC, LGC Standards, Molsheim, 

France) were grown in DMEM containing 10% FCS, 100 U/mL penicillin, 100 g/mL streptomycin and 

2 mM GlutaMax (Gibco) at 37 °C in a 5% CO2 humidified atmosphere. NHLF (Lonza, Amboise, 

France) were seeded in culture dishes and incubated in fibroblast basal medium (FBM; Lonza) 

supplemented by growth factors (FGM; Clonetics FGM-2 Bullet Kit; Lonza). The exponential growth 

phase of the cells was performed at 37 °C in 5% CO2 humidified atmosphere and the culture medium 

was renewed every two days. Confluent cells (in 25 cm2 flasks) were trypsinized, seeded onto 96-well 

plates (at a density of 2.5 × 104 cells/well) and incubated up to confluence in appropriate medium. The 

medium was renewed and cells were exposed to varying concentrations of test compounds for 48 h in 

wells containing the appropriate medium. 

 

Evaluation of Cytotoxicity. Following exposure 10 µL of medium was removed from each well to 

determine LDH activity released into the incubation medium according to the instructions of the 

Biolabo LDH kit (Maizy, France). The total cellular LDH content was obtained by treating control wells 

with Triton X-100 (1% final) to induce 100% loss of viability and total LDH release. After removal of 

the remaining incubation medium cells were washed two times with PBS 1X (+/+) and cytotoxicity was 

determined using the fluorometric microculture cytotoxicity assay (FMCA)
30

 and the 3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. 

FMCA Assay. Once washed, cells in each well were incubated at 37 °C for 30 min with 220 L PBS 

1X (+/+) containing fluorescein diacetate (4.8 M; Sigma-Aldrich). After addition of Triton X-100 (3% 
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final) incubation was prolonged for 5 min under stirring and the mixture was transferred onto 96-well 

black plates for fluorescence determination at 535 nm, following excitation at 485 nm. For each test 

compound, dose-response curves were established from at least 4 different concentrations made in 

triplicate, and IC50 values were obtained as the concentration inhibiting 50% of fluorescence. 

MTT Assay. An aliquot of 100 µL PBS 1X (+/+) containing 0.5 mg/mL MTT (Acros) was reloaded 

onto the wells and incubation was extended for 2 h at 37 °C. The medium was replaced by 100 µL/well 

DMSO and incubation was prolonged for 15 min at room temperature under stirring. The conversion of 

MTT to a purple formazan precipitate was monitored at 570 nm. The inhibition of cell viability was 

calculated as IC50 values using regression calculations from at least 4 different concentrations made in 

triplicate. 

 

Animal Procedures and Ethics. Seventeen Sprague-Dawley male rats weighing ~450 g (CERJ, Le 

Genest St Isle, France) were used in the study. Rats were maintained in the local animal house under 

conventional conditions including an enrichment of the structural and social environment while 

promoting physical and cognitive activity, in a room with controlled temperature (22 ± 3 °C) and a 

reverse 12 h light/dark cycle with food (standard Teklad 2016 diet, Harlan Laboratories, Gannat, 

France) and water available ad libitum. All research involving animals were performed in strict 

compliance with the guidelines of the Directive 2010/63/EU of the European Parliament. The CNRS 

and Aix Marseille Université have currently valid license for animal housing and experimentation 

(agreement C13-055-06) delivered by the French Government and the study was under the supervision 

of a DVM at CNRS (agreement N°13-122). The protocol was approved by the National Research 

Committee for the project. 

 

Preparation of Rat Organ Homogenates. Heart, liver or stomach extracts were prepared from freshly 

excised organs as previously described.
10a

 Briefly, 8 g of tissue were minced in 12 mL of 125 mM KCl 

at 2 °C, homogenized in a blender for 10 min and centrifuged at 10,000  g for 20 min at 2−3 °C. The 

clear supernatant solution taken as a cytosolic–like medium was used for 31P NMR titrations. For EPR 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:EN:PDF
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bioreduction assays rat liver homogenates were prepared by mixing in a blender 2 g of freshly excised 

tissue with 6 mL of either KH buffer (pH 7.0) or phosphate-citrate buffer (0.25 M, pH 3.5). 

pH Measurement in the Rat Stomach Fluid. Rats fasted for 10 h were anesthetized with 3% 

sevoflurane using previously described procedures
41 and instrumented with a thin teflon cannula 

inserted into the stomach. This allowed administration of 3.5 mL aliquots of 3a (5 mM) or 10b (3 mM) 

dissolved in 5 mM phosphate buffer (pH 7.01; to keep physiological conditions), 100 mM bicarbonate 

buffer (pH 8.27), or a 1:1 dilution of Maalox in water (pH 8.67). Maalox, a solid formulation of 34.9 

mg/mL of Al(OH)3 and 39.9 mg/mL of Mg(OH)2, was form Theraplix (France). 

Five min after drug administration the gastric medium (0.5 mL) was drawn and the pH was measured 

using a pH microelectrode. After 30 min equilibration samples of the stomach fluid containing 3a (~2 

mL) or 10b (~0.5 mL) were drawn, scanned by 31P NMR or EPR, respectively (see below), and the pH 

calculated from the corresponding titration curves. In parallel, the pH of each gastric fluid was measured 

with a pH electrode. 31P NMR spectra were acquired from 2 mL samples of stomach fluid on a Bruker 

AVL 400 (at 162 MHz) instrument equipped with a 10-mm probe and using sequences of at least 64 

accumulated scans. EPR analysis was carried out 3 min after the end of sampling using the following 

settings: modulation amplitude, 0.088 G; time constant, 20.48 ms; receiver gain, 8  104; scan rate, 1.13 

G/s; sweep width, 95 G. 

During anesthesia heart function was monitored by the tail-cuff method using a Letica Scientific LE 

5000/5500 instrument (Barcelona, Spain) and a programmed electrosphygmomanometer (LE 5160-R; 

Panlab, Barcelona, Spain). At the end of experiments animals were kept alive and no mortality 

associated with anesthesia and compound toxicity was observed in the long term. Data represent means 

± SEM with n = 3−7 (electrode) or n = 7 (spectroscopic measurements) / experimental condition. 

 

Data Calculations and Statistics. Titration curves were obtained using Prism 5.0 software 

(GraphPad, San Diego, CA). Data are expressed as mean ± SD or SEM for the indicated number of 

independent experiments. Differences were analyzed using a one-way analysis of variance (ANOVA) 
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followed by a posteriori Newman–Keuls test. Intergroup differences were considered to be significant at 

P < 0.05. 
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FIGURE CAPTIONS 

Figure 1. (A) 31P NMR pH probes and their pKas in Krebs-Henseleit buffer.
9a,9b,10b

 (B) EPR pH probes 

with their reported pKas and sensitivities in Tris-HCl buffer.
12,13a

 (C) General structure of target 

carboxylic EPR pH probes showing preferred resonance forms of ionization states. Left panel: 

structurally related pH insensitive DEPN and crystallized derivatives. 

 

Figure 2. (A) ORTEP view of 10b showing the nitroxide function and the atoms and dihedral angles 

implicated in the Heller-McConnell relation. Thermal ellipsoids represent 50% equiprobability 

envelopes. (B) Newman projection along the N−C’ axis. 

 

Figure 3. (A) EPR spectrum of 10b (1 mM) in degassed phosphate buffer (20 mM; pH 7.21) showing 

long-range hydrogen couplings (expanded region with simulation) and two 
13

C satellites (arrows). 

Settings: modulation amplitude, 0.03 G; time constant, 20.48 ms; gain, 3.2 × 104; scan rate, 0.57 G/s, 
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accumulated scans, 10. (B) Limiting protonated and unprotonated EPR spectra of 10b (0.36 mM) and 5c 

(~0.1 mM) in 20 mM phosphate buffer. Settings (10b, 5c): modulation amplitude, (0.06, 0.48) G; time 

constant, (40.96, 5.12) ms; gain, (1 × 105, 4 × 104); scan rate, (1.13, 1.31) G/s. Signals of 5c were 

recorded in the reaction mixture 4 min (pH 6.25) and 40 min (pH 1.64) following oxidation of amine 4c 

by m-CPBA. The vertical lines allow a visual comparison of differences in aP values. 

 

Figure 4. EPR pH titration curves for 10b in phosphate buffer at 22 °C. 

 

Figure 5. Reduction of nitroxides (0.1 mM) by cytosolic rat liver homogenate at 37 °C in phosphate-

citrate buffer, pH 3.5 or Krebs-Henseleit medium, pH 7.0. I0 is the initial intensity of the EPR signal 

recorded 1 min after mixing. 

 

Figure 6. Low-field lines of EPR spectra recorded from the gastric fluid of a resting rat 30 min after 

receiving a solution of 10b (3 mM) in (a) 5 mM phosphate buffer (pH 7.0), (b) Maalox:water (1:1, v/v; 

pH 8.7), or (c) 0.1 M sodium bicarbonate (pH 8.4) via a cannula inserted into the stomach. (B) Mean 

value ± SEM (n = 3−7/group) of gastric pH measured 30 min after drug administration using a pH 

electrode, or by EPR (from aP coupling) or 31P NMR using 10b (3 mM) or 3a (5 mM) as pH probes, 

respectively. Starting pH values at 5 min correspond to animals given 10b. 

 

Abbreviations used 

a, limiting chemical shift of the protonated form; b, limiting chemical shift of the unprotonated 

form; ab = a –b; 3-CP, 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl; CytMh, heart cytosolic 

homogenate; CytMl, liver cytosolic homogenate; CytMs, rat stomach cytosolic medium; m-CPBA, m-

chloroperoxybenzoic acid; DEPMPH, diethyl(2-methylpyrrolidin-2-yl) phosphonate; DEPN, N-tert-
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butyl-N-[1-diethylphosphono(2,2-dimethylpropyl)] nitroxide; DMEM, Dulbecco’s modified Eagle’s 

medium; DPP, diethyl(2-propylaminoprop-2-yl)phosphonate; FCS, fetal calf serum; FGM, fibroblast 

basal medium; KH, Krebs-Henseleit; LDH, lactate dehydrogenase; MD, molecular dynamics; pHi, 

intracellular pH; Pi, inorganic phosphate; PBS, phosphate-buffered saline; TEMPO, 2,2,6,6-

tetramethylpiperidine 1-oxyl; TMPPO, 2-diethoxyphosphoryl-2,5,5-trimethylpyrrolidine 1-oxyl. 

 

Associated Content 

Supporting Information. ROESY spectra of diastereomers of compound 16; 31P NMR acid-base 

titration curves of compounds 3a and 9a,b; Additional EPR pH titration curves of compounds 5a,c; 

Additional molecular dynamics data. 
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Table 1. 31P NMR pH Calibrationa and Relaxationb Characteristics of -Aminophosphonates Esters in 

Biologically Relevant Mediac 

_______________________________________________________________________________________ 

compd medium pKa a b ab T1 

 _________________________ 

 (ppm) (s) 

_______________________________________________________________________________________ 

Pi KH 6.64 0.68 3.26 2.58 9.80−11.50 

 CytMh 6.78 0.68 3.22 2.54 1.30−3.80 

3a KH 3.63 22.31 32.69 10.38 3.60 

         CytMh 3.48 22.48 32.84 10.36 2.97 

         CytMl 3.52 22.48 32.71 10.23 2.41 

3b KH 3.35 22.29 32.68 10.39 2.90 

         PB 3.24 21.81 32.21 10.40 3.00 

 

3c KH 2.60 22.15 32.52 10.37 2.40 

         CytMh 2.48 22.34 32.41 10.04 ndd 

 

9a KH 2.39 20.20 30.74 10.54 3.07 

          CytMl 2.47 20.81 30.62 9.81 0.30 

          PB 2.54 20.63 30.09 9.46 1.91 

9b KH 2.99 19.73 29.91 10.18 3.20 

          CytMl 2.95 19.89 29.80 9.91 1.55 

          PB 3.18 19.47 29.27 9.80 5.58 

(2S,1’S)-16 PB nd 27.76 27.74 0.02 6.83e 
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Table 1 (continued) 

 

(2S,1’R)-16 PB nd 30.61 30.61 0 6.15e 

 

 

___________________________________________________________________________________ 

aa and b, limiting chemical shift of the protonated and unprotonated form, respectively; ab = a−b; 

determined at 22 °C and given as means from 3−10 repeated titrations with < 1% precision. bT1 = 

longitudinal relaxation time measured at pH ≈ pKa. cPi, inorganic phosphate; KH, Krebs-Henseleit 

medium; CytMh, rat heart cytosolic homogenate; CytMl, rat liver cytosolic homogenate; PB, phosphate 

buffer (i.e., 1 mM KH2PO4). dnot determined.  epH 4.00. 
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Table 2. Selected Crystallographic data of 10b (R = Me) and Molecular Dynamics Simulation for the Average Geometry of the (S) Enantiomer of 

10b, 11b (R = H), 5a (R’ = Me) and 5c (R’ = Ph) in Aqueous Solution.a 
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 ______________________ ___________________ _____________________ _____________________ 

 X-ray unprotonated protonated unprotonated protonated 

compd 10b 10b 11b 10b 11b 5a 5c 5a 5c 

Bond lengths (Å) 

C(1)−P(53) 1.835(2) 1.84(3) 1.83(3) 1.83(3) 1.82(3) 1.83(3) 1.83(3) 1.83(3) 1.83(3) 

C(1)−C(13) 1.569(3) 1.57(3) 1.56(3) 1.57(3) 1.56(3) 
_______

 
_______

 
_______

 
_______

 

N(40)−C(1) 1.473(3) 1.50(3) 1.50(3) 1.50(3) 1.50(3) 1.50(3) 1.51(3) 1.51(3) 1.51(3) 

N(40)−O(45) 1.288(2) 1.27(3) 1.27(3) 1.27(3) 1.27(3) 1.27(3) 1.27(3) 1.27(3) 1.27(3) 

N(40)−C(3) 1.482(3) 1.50(3) 1.51(3) 1.51(3) 1.51(3) 1.50(3) 1.49(3) 1.50(3) 1.50(3) 

Distances (Å) 

O(42)......N(40) 3.124 3.7(3) 3.6(4) 3.7(3) 3.6(3) 3.5(4) 3.6(4) 3.6(3) 3.6(4) 

O(46)......N(40) 2.683 3.2(2) 3.2(2) 3.2(2) 3.2(2) 3.2(2) 3.2(3) 3.2(2) 3.0(2) 

Bond angle (°) 

C(3)−N(40)−C(1) 126.77(19) 126(3) 126(3) 126(3) 126(3) 125(3) 124(3) 125(3) 125(3) 
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Table 2 (continued) 

Dihedral angles (°) 

P(53)−C(1)−N(40)−O(45) −76.47 −70(11) −70(11) −70(12) −71(12) 96(30) 99(25) −93(34) −106(34) 

        93(35)b 97(32)b 

H(2)−C(1)−N(40)−O(45) 170.90 −179(12) 177(12) 179(12) 175(12) −174(17) −171(25) 179(17) 179(25) 

_________________________________________________________________________________________________________________ 

aValues in parentheses are the estimated SD. In all structures atom numbering is given similar to the deposited structure of 10b. bValues 

obtained for alternative stable conformations. 
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Table 3. Calculated EPR Parameters of -Diethoxyphosphoryl Nitroxides at 22 °C 

N
R4

R5

P(O)(OEt)2

O

R3

R1

R2

 

_________________________________________________________________________________________________________________ 

compd mediuma R1 R2 R3 R4 R5 aN (G) aH (G) aP (G) long-range couplings (G) g 

_________________________________________________________________________________________________________________ 

5a PB (pH 6.62) H Me CO2

-
 Me Me 14.62 4.88 51.45 0.27(3H), 0.15(3H) 

_______
 

5c PB (pH 6.25) H Ph CO2

-
 Me Me 14.50 4.48 49.47 0.35(3H) 

_______
 

10a W (pH 7.12) Me Me CO2Et H t-Bu 14.38 1.29 41.75 0.45(3H), 0.26(3H)  2.00557 

10b W (pH 6.56) Me Me CO2

-
 H t-Bu 14.67 1.43 40.25 0.36(3H), 0.26(3H), 0.23(9H) 2.00547 

          5.6(2×
13

C), 7.4(3×
13

C) 

11b PB (pH 6.67) Me Me CO2

-
 H i-Pr 14.92 1.39 44.04 0.45(3H), 0.22 (6H), 0.10(1H) 2.00636 

12 W (pH 3.23) Me Me CO2Et H i-Pr 14.59 1.38 44.05 0.39(3H), 0.21(6H) 2.00543 

(2S,1’S)-17 W (pH 7.17) Me i-Pr CO2Et H t-Bu 13.69 1.17 38.46 0.30(1H) 2.00560 

(2S,1’R)-17 W (pH 7.08) Me i-Pr CO2Et H t-Bu 14.65 1.47 43.61 3.95(1H) 2.00554 

DEPN PB (pH 7.3) Me Me Me H t-Bu 14.93 0.99 45.68 0.34(9H) 2.00542 

_________________________________________________________________________________________________________________ 

aW, water; PB, 20 mM phosphate buffer. 
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Table 4. EPR pH-Calibration Parameters of -Phosphorylated Carboxylic Nitroxides at 22 °Ca 

_______________________________________________________________________________________________________________________________ 

compd mediumb limiting hyperfine splittings (G)c and pKa values 

 ___________________________________________________________________________________________________________________ 

 from aN titration curve from aH titration curve from aP titration curve 2-Dd 

 __________________________________ ________________________________ __________________________________ 

 (aN)a (aN)b pKa (aH)a (aH)b pKa (aP)a (aP)b pKa pKa 

________________________________________________________________________________________________________________________ 

5a 

 PB 14.49 ± 0.02 14.67 ± 0.01 2.91 ± 0.06 2.53 ± 0.04 4.88 ± 0.01 2.97 ± 0.02 47.71 ± 0.04 51.45 ± 0.01 2.95 ± 0.01 2.57
 

 CytMh 14.48 ± 0.04 14.67 ± 0.04 3.11 ± 0.04 2.47 ± 0.03 4.93 ± 0.09 3.06 ± 0.01 47.67 ± 0.03 51.56 ± 0.01 3.06 ± 0.01 

5c 

 PB 14.25 ± 0.01 14.50 ± 0.01 2.47 ± 0.06 2.69 ± 0.02 4.50 ± 0.01 2.48 ± 0.02 45.67 ± 0.06 49.55 ± 0.03 2.45 ± 0.02 2.49 

 CytMh 14.26 ± 0.01 14.50 ± 0.01 2.54 ± 0.07 2.74 ± 0.02 4.46 ± 0.01 2.50 ± 0.02 45.77 ± 0.09 49.45 ± 0.03 2.51 ± 0.02 

10b 

 PB 14.34 ± 0.01 14.67 ± 0.01 3.61 ± 0.03 1.28 ± 0.01 1.42 ± 0.01 3.59 ± 0.07 42.10 ± 0.02 40.23 ± 0.01 3.60 ± 0.03 3.76 

 CytMl 14.32 ± 0.01 14.66 ± 0.01 3.58 ± 0.02 1.27 ± 0.01 1.42 ± 0.01 3.44 ± 0.02 42.05 ± 0.02 40.21 ± 0.01 3.59 ± 0.02 

 CytMs 14.32 ± 0.01 14.70 ± 0.01 3.56 ± 0.02 1.27 ± 0.01 1.42 ± 0.01 3.52 ± 0.01 42.05 ± 0.02 40.22 ± 0.01 3.58 ± 0.02 

11b 

 PB 14.56 ± 0.01 14.91 ± 0.01 3.41 ± 0.02 1.37 ± 0.01 1.39 ± 0.01 3.59 ± 0.29 44.36 ± 0.01 44.00 ± 0.01 3.35 ± 0.06 3.62 

________________________________________________________________________________________________________________________________ 
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Table 4 (continued) 

aMean ± SD (n = 2−4 independent titrations). bPB, 20 mM phosphate buffer; CytMh, rat heart cytosolic homogenate; CytMl, rat liver cytosolic 

homogenate; CytMs, rat stomach cytosolic medium. c(aX)a, limiting coupling constant in the protonated form; (aX)b, limiting coupling constant in 

the unprotonated form. dTwo-dimensional EPR simulation. 

 

 



 

53 

Table 5. Cytotoxicity of -Phosphorylated Nitroxides and Amines pH Markers against A549 Cells and 

Normal Human Lung Fibroblasts (NHLF)a, and Predicted Lipophilicities. 

___________________________________________________________________________________ 

compd IC50 (mM)b AlogPc 

 _____________________________________________________________ 

 FMCA MTT LDH 

 __________________ __________________ __________________ 

 A549 NHLF A549 NHLF A549 NHLF 

___________________________________________________________________________________ 

DEPN 4.4 ± 0.2 ndd 2.5 ± 0.1 nd 4.2 ± 0.3 nd 2.01 

TMPPO 12.1 ± 2.1 19.8 ± 2.4 10.5 ± 2.4 17.5 ± 0.9 > 45 40.8 ± 2.4 1.12 

10b 15.8 ± 1.4 13.8 ± 0.4 13.2 ± 1.6 10.3 ± 0.9 13.5 ± 2.0 9.2 ± 1.3 1.71 

3a 18.4 ± 1.6 10.8 ± 1.2 22.7 ± 1.2 13.8 ± 1.2 25.3 ± 1.9 12.5 ± 1.0 1.68 

3b 12.7 ± 0.4 2.2 ± 0.5 6.7 ± 1.2 3.5 ± 0.3 12.4 ± 1.5 8.1 ± 0.2 2.27 

3c 1.7 ± 0.4 1.8 ± 0.1 1.8 ± 0.2 1.0 ± 0.2 2.1 ± 0.2 1.1 ± 0.1 2.71 

9a 3.9 ± 0.5 1.4 ± 0.3 4.9 ± 0.3 1.5 ± 0.1 5.1 ± 0.4 4.1 ± 0.1 2.21 

9b 7.6 ± 0.1 3.4 ± 1.3 14.3 ± 0.2 4.2 ± 1.4 19.8 ± 0.2 3.8 ± 0.9 1.88 

DEPMPH 70.2 ± 2.1 62.5 ± 0.8 72.5 ± 0.9 60.9 ± 1.1 126.3 ± 1.5 102.2 ± 1.2  1.04 

___________________________________________________________________________________ 

aCells seeded at 2.5 × 104 cells/well in DMEM (A549) or FBM (NHLF) until confluence were treated 

with test compounds at 0.01−100 mM for 48 h. Data are means ± SD of 3−6 independent experiments 

made in triplicate for at least four concentrations. bIC50 defined as the concentration of compound 

resulting in 50% cell viability (FMCA and MTT; calculated from concentration-response curves) or 

50% decrease of intracellular LDH content with respect to total LDH. cObtained using the ALOGPS 2.1 

software (www.vcclab.org/lab/alogps/). dnot determined. 
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