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Role of conductivity for the production of charge

patches by ions guided in capillaries

N. Stolterfoht, P. Herczku, Z. Juhász, S. T. S. Kovács, R. Rácz,

S. Biri, and B. Sulik

Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany

MTA Institute for Nuclear Research (Atomki), H-4001 Debrecen, Pf. 51, Hungary

Abstract

Guiding of 3-keV Ne7+ ion through nanocapillaries in highly insulating poly-

mers was studied. By means of simulations it is made evident that oscilla-

tions of the ion emission angle after transmission through capillaries reveals

charge patches within the capillaries. The creation and removal of the charge

patches depend on the conductivity of the capillaries so that a relationship of

the conductivity and the oscillatory structure of the mean ion emission angle

can be established. Experimentally significant differences were found in the

ion fractions transmitted through capillaries prepared in polycarbonate (PC)

and polyethylene terephthalate (PET). For PC the ion fraction decreases with

inserted charge indicating blocking effects on the transmitted ions whereas

for PET the ion transmission was found to be almost constant even for long

term irradiation The observed differences were attributed to different con-

ductivities of the capillaries in the polymer materials. This attribution was

supported by additional measurements concerning the oscillatory structures

of the ion emission angles.
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1. Introduction

Since ion guiding through insulating capillaries with a diameter of hun-

dred nanometer has been observed [1], the subject received considerable inter-

est. Ion guiding in nanocapillaries is supported by charge patches produced
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by the deposition of ions within the capillary interior. The outstanding prop-

erty of ion guiding is the self-organizing process, which governs the charge

patch formation and the corresponding ion deflection.

Initial studies of ion guiding phenomena in insulating materials have been

conducted by means of capillaries in polyethylene terephthalate (PET) [1,

2]. Subsequently, several laboratories performed similar experiments using

PET [3, 4, 5], polycarbonate (PC) [6, 7], and other materials [8, 9]. Moreover,

ion guiding within single glass capillaries was observed [10, 11, 12]. Apart

from the experimental work, simulations of capillary guiding [13, 14] have

provided additional insights into the charge patch formation. Overviews over

the field studying ions and other projectiles are given in recent reviews [15,

16].

In the past, particular attention has been devoted to the time evolution

of the ion emission angle which revealed oscillatory structures when mea-

sured as a functions of the inserted charge [8, 17]. The oscillations can be

associated with the formation of secondary charge patches temporarily cre-

ated in addition to the dominant charge patch within the entrance region.

It is evident that secondary charge patches can only be formed and main-

tained when the charge removal is limited. Thus, the charge patch formation

provides information about the conductivity of the capillary material.

In general, the ion transmission rises with a time delay to a maximum

where stationary (equilibrium) conditions are reached involving a constant

fraction of the transmitted ions [1, 2]. Only recently, experiments with PC

capillaries have shown that after reaching a maximum the transmitted ion

fraction decreases with charge insertion [6, 7], which has been referred to as

ion blocking. Additional experiments with PET capillaries [18] have shown

that ion blocking increases with the areal density of the capillaries. For high

densities, the neighbor capillaries create a repulsive field in a given capillary,

which is responsible for the ion blocking.

Recent experimental studies, comparing PET capillaries from different

laboratories, have revealed significant differences in long-term ion transmis-

sion [19]. The PET capillaries, which showed blocking [18], were prepared

at the GSI Helmholtz-Zentrum in Darmstadt (Germany) [20] whereas new

measurements with capillaries from the Flerov Laboratory of Nuclear Reac-

tion (FLNR) in Dubna (Russia) [21] showed stable transmission [19]. These

different transmissions were associated to differences in the conductivity at

the surface and bulk of the PET samples.

The present work is devoted to the comparison of transmitted ion frac-

2
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tions through capillaries prepared in different materials. We measured guid-

ing of 3-keV Ne7+ through FLNR PET capillaries in view of the previous

results obtained with the PC capillaries from GSI [6]. Significant differ-

ences were observed in the ion transmission through PET and PC capillar-

ies, which were again attributed to different conductivities of the materials

involved. This conclusion was found to be consistent with additional exper-

iments comparing the oscillatory time dependence of the mean ion emission

angle.

1.1. Trajectories and charge distributions

Before presenting the experiments, we show a few results from simulations

of 4.5 Ar7+ ions guided through a single macrocapillary. The simulations were

described in detail previously [22] so that no details about the theoretical

method are given here. The capillary shape and the tilt angle were chosen

in accordance the previous experiments [12]. Thus, the parameters of the

calculations are not the same as those used in the present experiments. Here,

the primary aim is to demonstrate the relationship between the variation of

the ion emission angle and the conductivity of the capillary material.

Figure 1 is composed of two groups of results, which correspond to cap-

illary bulk conductivities differing by more than an order of magnitude, i.e.,

1.45×10−16 S/cm for the upper group and 24.6×10−16 S/cm for the lower

group. The labels (a) to (f) refer to the increase of the ion charge Q

deposited into the capillary. The left and right hand column depict, respec-

tively, ion trajectories and deposited charges within the capillary.

Let us first consider the upper group in Fig. 1. In panel (b) the ion

trajectories are deflected by the entrance patch so that they are directly

transmitted to the capillary exit. From Figs. 1(c) - 1(f) it is seen that the

ions follow oscillatory trajectories along the capillary to the exit where they

leave under varying emission angles. In Fig. 1 the right-hand column shows

the distributions of deposited charges, which allows for the distinction of the

entrance patch from three additional charge patches. These charge patches

are responsible for the oscillations of the ion emission angle.

Next, consider the lower group of graphs corresponding to a bulk conduc-

tivity increased by more than an order of magnitude. Figs. 1(b) - 1(f) shows

that the ion trajectories do not change much with increasing charge insertion.

The ions are deflected by the entrance charge patch directly to the capil-

lary exit and are emitted essentially under the same angle. This behavior

is consistent with the right-hand panels, which show that no charge patches

3
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Figure 1: (color online).Trajectories of 4.5- keV Ar7+ (left-hand column) and correspond-

ing distributions for the deposited charges (right-hand column) obtained from simula-

tions [22]. The tilt angle is 2◦. Two groups of results are shown with the capillary

conductivity of 1.45×10−16 S/cm for the upper group and 24.6×10−16 S/cm for the lower
group. In the upper group the inserted charge  is equal to 0.1 pC in (a), 2.1 pC in (b),

6.8 pC in (c), 15 pC in (d), 29 pC in (e), and 58 pC in (f) and in the lower group it is

equal to 0.1 pC in (a), 1.1 pC in (b), 6.8 pC in (c), 13 pC in (d), 21 pC in (e), and 27 pC

in (f)

are created apart from the entrance patch. The missing charge patches are

attributed to the relatively high conductivity, which rapidly depletes the de-

posited charges. Therefore, Fig. 1 demonstrates that the variation of the ion

emission angle provides information about the conductivity of capillaries.

2. Experimental results

The experiment was carried out at the Institute of Nuclear Research of the

Hungarian Academy of Sciences (ATOMKI), Debrecen. The experimental

arrangement has been described in Refs. [5, 19] so that only a few details shall

be given here. Highly charged ions were provided by an electron cyclotron

resonance (ECR) ion source [23], from which 3 keV Ne7+ were extracted.

The beam of typically 100 pA was collimated by two diaphragms of 0.5 mm

4
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diameter spaced 20 cm apart involving a beam divergence of ∼ 0.2◦ FWHM
(full width at half maximum). The final charge state of the ion that passed

through a capillary, could be selected using an electric deflection field in front

of the ion detector.

In the experiments, capillaries in a PET sample from FLNR were used

with a diameter of 200 nm and an areal densities of 1×108 cm−2. These PET
samples were initially prepared in Dubna by producing ion tracks by 250

MeV Kr ions and further treated at the Ionenstrahl-Labor (ISL) in Berlin by

etching the ion tracks in a NaOH solution. In the previous experiments [6]

with PC samples, the capillaries were prepared at GSI in Darmstadt by 2.2

GeV gold ion irradiation [20] and etching. Thus, capillaries with a diameter

of ∼ 165 nm and a density of 6×107 cm−2 were obtained.
The capillary samples were mounted on a goniometer, which allowed for

an alignment in three axial dimensions and around one rotational axis. The

PET membranes were spanned on a circular frame with an inner diameter

of 7 mm. In the experimental chamber the incident ions were transmitted

through the capillaries and observed using a multi channel plate detector

(MCP). Previous studies [2] have shown that the experimental results scale

with the inserted charge so that this parameter was used to display the

measured results in the following.

2.1. Total yield of the transmitted ions

The total yield  for the transmission of 3-keV Ne
7+ ions was determined

by summing up the counts within an image measured by the MCP detector.

The total yield was normalized by the number of incident ions  to obtain
the fraction  =  of transmitted ions. In Fig. 2 the fraction  for
the present measurements with PET capillaries is compared with previous

results obtained with PC capillaries [6]. The density as large as 108 cm−2 is
relatively high so that blocking effects due to the influence of neighbor capil-

laries are expected. Indeed, in Fig. 2 (a) the ion fraction exhibit an increase

at the beginning of the charge insertion and after reaching a maximum the

transmission curve starts to decrease by about a factor of two as  rises

from 13 - 40 fC. This decrease can be considered as the partial blocking of

the ions.

In Figs. 2(b) and 2(c) the present results for the PET capillaries are

shown. The important feature of the PET samples is that the transmission

curves increase rather than decrease with increasing charge insertion, i.e.,

they remain stable for a charge insertion as large as  = 38 fC. Hence, no

5
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Figure 2: Fraction  of 3-keV Ne
7+ ions transmitted through polymer capillaries displayed

as a function of the inserted charge . In (a) results for the PC sample from GSI are

presented [6]. In (b) and (c) results for the FLNR PET samples are given. The tilt angles

are close to 5◦as indicated in each panel.

blocking effects were observed for the PET capillary even for the relatively

large areal density of 108 cm−2. This feature for the PET capillaries differs
from the corresponding results for the PC samples.

To search for an explanation, one notes that the capillary types somewhat

differ in diameter, density, and tilt angle. The diameters of the PC and PET

capillaries are nearly equal (165 nm and 200 nm) so that it is not expected

that the capillary diameter plays an important role. However, blocking effects

on PC capillaries have been found to increase with decreasing capillary tilt

angle [6]. Therefore, we investigated the ion transmission through the FLNR

capillaries for two different tilt angles. As seen from Figs.2(b) and 2(c) no

significant difference is found between the corresponding ion transmissions.

Finally, it is noted that the density of the PET capillaries (108 cm−2) is
higher than that of the PC capillaries (6×107 cm−2) for which less blocking
should be expected [18] although the opposite was observed. Thus, neither

the capillary density nor the capillary diameter or the tilt angle are likely

6
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be responsible for the differences in the ion transmissions for the two sets of

capillaries. Rather, in the following, we interpret the observed differences in

terms of the capillary conductivities.

2.2. Emission angle of the transmitted ions

As was shown in Fig. 1, information about the capillary conductivities

may be obtained from the angular emission of the transmitted ions. Thus,

we measured the mean angle of ion emission from the capillary exit. In Fig. 3

results for the mean emission angle are shown for capillaries in PC and PET

materials. The curves in the graphs labelled (a), (b), and (c) correspond to

the cases presented in Fig. 2. All data were taken with 3-keV Ne7+ ions and

similar tilt angles indicated in the graphs.

Figure 3: Mean angle of 3-keV Ne7+.ion emitted from polymer capillaries In (a) results [6]

for PC capillaries from GSI with a density of 6x107 cm−2 are displayed, in (b) and (c)
results for FLNR PET capillaries with a density of 1x108 cm−2 are shown. The capillary
tilt angles are given in each panel.

In Fig. 3(a) the data were measured previously using a PC sample from

GSI [6]. The observed curve indicates significant oscillations, which exceeds

the limits of ±1◦. The oscillatory structures of the mean angle reveal the

7
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formation of transient charge patches partially located within the capillary

center region. Figures 3(b) and 3(c) show the present results, which were

measured with PET samples from FLNR. The curves exhibit a maximum at

the beginning of the charge insertion whereas for higher charge values the

mean angle is nearly constant.

The maximum can be associated with the formation of the entrance

charge patch. Ions transmitted through the capillaries are first ejected along

the capillary axis corresponding to the center angle equal to the tilt angle.

Some ions, passing from the upper edge of the entrance to the lower edge

of the exit, may even be ejected at angles somewhat smaller than the center

angle. After the entrance charge patch has grown, the ions are reflected to

angles larger than the center angle giving rise to the maximum observed for

charge insertions within 2-5 fC. The subsequent constancy of mean angle

allows for the conclusion that secondary charge patches are weak or miss-

ing in the inner part of the capillary. This finding provides evidence for

mechanisms, which inhibit the formation of these transient charge patches.

3. Discussion and conclusion

In this work, intensity and emission angle for highly charged ions through

capillaries in PC and PET were studied. The capillary samples were prepared

at different laboratories in past years so that it is difficult to record detailed

information about the surface treatments. However, the experimental re-

sults can be interpreted in view of mechanisms affecting the blocking. These

effects are enhanced for capillaries of high areal density as has been found

experimentally and in model calculations [18]. The ion transmission can be

influenced of the charges accumulated in neighbor capillaries.

The neighbor capillaries produce a noticeable electric field along the cap-

illary axis (z direction), which is generally small in the absence of those

neighbors [14]. The induced z-field is particularly important within the cap-

illary interior where the secondary charge patches usually occur. Oscillations

of the mean angle indicate that charge patches are formed within the capil-

lary interior and this charge is likely be responsible for the blocking effects

observed for the PC sample [3(a)].

On the other hand, the missing charge patches for the PET capillaries

provides evidence that the deposited charges are removed during irradiation.

An efficient mechanism for charge depletion is the drift along the capillary

surface to the conducting metal layers at the capillary entrance and exit [14].

8
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With the removal of charges in the capillary neighbors, the z-field is reduced

and blocking effects diminish.

Reduction of the z-field occurs for the PET sample, for which the ion

transmission was found to be stable [Figs. 2(b) and 2(c)]. Recall that the

capillaries, considered here, have a relatively high areal density. Also, it

should be added that in low-density PET capillaries, wherein only a small

z-field is produced, no ion blocking occurs. Moreover, charge patches within

the capillaries are not removed so that significant oscillations of the angular

emission have been seen [18]. The latter finding supports the present scenario

of charge patch formation.

In conclusion, stable transmission through capillaries is observed for ma-

terials with sufficient conductivity. The present experiments provide evidence

that the conductivity higher in PET capillaries than in PC. In particular, it

can be concluded that ion blocking is not a general phenomenon for high den-

sity capillaries [19]. This result is important for applications of ion guiding

through capillaries, for which stable transmission is a mandatory condition.
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Role of conductivity for the production of charge

patches by ions guided in capillaries
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Abstract

Guiding of 3-keV Ne7+ ion through nanocapillaries in highly insulating poly-
mers was studied. By means of simulations it is made evident that oscilla-
tions of the ion emission angle after transmission through capillaries reveals
charge patches within the capillaries. The creation and removal of the charge
patches depend on the conductivity of the capillaries so that a relationship of
the conductivity and the oscillatory structure of the mean ion emission angle
can be established. Experimentally significant differences were found in the
ion fractions transmitted through capillaries prepared in polycarbonate (PC)
and polyethylene terephthalate (PET). For PC the ion fraction decreases with
inserted charge indicating blocking effects on the transmitted ions whereas
for PET the ion transmission was found to be almost constant even for long
term irradiation The observed differences were attributed to different con-
ductivities of the capillaries in the polymer materials. This attribution was
supported by additional measurements concerning the oscillatory structures
of the ion emission angles.

Keywords:

Ion transmission, highly charged, guiding, nanocapillaries, polymers

1. Introduction

Since ion guiding through insulating capillaries with a diameter of hun-
dred nanometer has been observed [1], the subject received considerable inter-
est. Ion guiding in nanocapillaries is supported by charge patches produced
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by the deposition of ions within the capillary interior. The outstanding prop-
erty of ion guiding is the self-organizing process, which governs the charge
patch formation and the corresponding ion deflection.

Initial studies of ion guiding phenomena in insulating materials have been
conducted by means of capillaries in polyethylene terephthalate (PET) [1,
2]. Subsequently, several laboratories performed similar experiments using
PET [3, 4, 5], polycarbonate (PC) [6, 7], and other materials [8, 9]. Moreover,
ion guiding within single glass capillaries was observed [10, 11, 12]. Apart
from the experimental work, simulations of capillary guiding [13, 14] have
provided additional insights into the charge patch formation. Overviews over
the field studying ions and other projectiles are given in recent reviews [15,
16].

In the past, particular attention has been devoted to the time evolution
of the ion emission angle which revealed oscillatory structures when mea-
sured as a functions of the inserted charge [8, 17]. The oscillations can be
associated with the formation of secondary charge patches temporarily cre-
ated in addition to the dominant charge patch within the entrance region.
It is evident that secondary charge patches can only be formed and main-
tained when the charge removal is limited. Thus, the charge patch formation
provides information about the conductivity of the capillary material.

In general, the ion transmission rises with a time delay to a maximum
where stationary (equilibrium) conditions are reached involving a constant
fraction of the transmitted ions [1, 2]. Only recently, experiments with PC
capillaries have shown that after reaching a maximum the transmitted ion
fraction decreases with charge insertion [6, 7], which has been referred to as
ion blocking. Additional experiments with PET capillaries [18] have shown
that ion blocking increases with the areal density of the capillaries. For high
densities, the neighbor capillaries create a repulsive field in a given capillary,
which is responsible for the ion blocking.

Recent experimental studies, comparing PET capillaries from different
laboratories, have revealed significant differences in long-term ion transmis-
sion [19]. The PET capillaries, which showed blocking [18], were prepared
at the GSI Helmholtz-Zentrum in Darmstadt (Germany) [20] whereas new
measurements with capillaries from the Flerov Laboratory of Nuclear Reac-
tion (FLNR) in Dubna (Russia) [21] showed stable transmission [19]. These
different transmissions were associated to differences in the conductivity at
the surface and bulk of the PET samples.

The present work is devoted to the comparison of transmitted ion frac-
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tions through capillaries prepared in different materials. We measured guid-
ing of 3-keV Ne7+ through FLNR PET capillaries in view of the previous
results obtained with the PC capillaries from GSI [6]. Significant differ-
ences were observed in the ion transmission through PET and PC capillar-
ies, which were again attributed to different conductivities of the materials
involved. This conclusion was found to be consistent with additional exper-
iments comparing the oscillatory time dependence of the mean ion emission
angle.

1.1. Trajectories and charge distributions

Before presenting the experiments, we show a few results from simulations
of 4.5 Ar7+ ions guided through a single macrocapillary. The simulations were
described in detail previously [22] so that no details about the theoretical
method are given here. The capillary shape and the tilt angle were chosen
in accordance the previous experiments [12]. Thus, the parameters of the
calculations are not the same as those used in the present experiments. Here,
the primary aim is to demonstrate the relationship between the variation of
the ion emission angle and the conductivity of the capillary material.

Figure 1 is composed of two groups of results, which correspond to cap-
illary bulk conductivities differing by more than an order of magnitude, i.e.,
1.45×10−16 S/cm for the upper group and 24.6×10−16 S/cm for the lower
group. The labels (a) to (f) refer to the increase of the ion charge Qin

deposited into the capillary. The left and right hand column depict, respec-
tively, ion trajectories and deposited charges within the capillary.

Let us first consider the upper group in Fig. 1. In panel (b) the ion
trajectories are deflected by the entrance patch so that they are directly
transmitted to the capillary exit. From Figs. 1(c) - 1(f) it is seen that the
ions follow oscillatory trajectories along the capillary to the exit where they
leave under varying emission angles. In Fig. 1 the right-hand column shows
the distributions of deposited charges, which allows for the distinction of the
entrance patch from three additional charge patches. These charge patches
are responsible for the oscillations of the ion emission angle.

Next, consider the lower group of graphs corresponding to a bulk conduc-
tivity increased by more than an order of magnitude. Figs. 1(b) - 1(f) shows
that the ion trajectories do not change much with increasing charge insertion.
The ions are deflected by the entrance charge patch directly to the capil-
lary exit and are emitted essentially under the same angle. This behavior
is consistent with the right-hand panels, which show that no charge patches

3
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are created apart from the entrance patch. The missing charge patches are
attributed to the relatively high conductivity, which rapidly depletes the de-
posited charges. Therefore, Fig. 1 demonstrates that the variation of the ion
emission angle provides information about the conductivity of capillaries.

2. Experimental results

The experiment was carried out at the Institute of Nuclear Research of the
Hungarian Academy of Sciences (ATOMKI), Debrecen. The experimental
arrangement has been described in Refs. [5, 19] so that only a few details shall
be given here. Highly charged ions were provided by an electron cyclotron
resonance (ECR) ion source [23], from which 3 keV Ne7+ were extracted.
The beam of typically 100 pA was collimated by two diaphragms of 0.5 mm
diameter spaced 20 cm apart involving a beam divergence of ∼ 0.2◦ FWHM
(full width at half maximum). The final charge state of the ion that passed
through a capillary, could be selected using an electric deflection field in front
of the ion detector.

In the experiments, capillaries in a PET sample from FLNR were used
with a diameter of 200 nm and an areal densities of 1×108 cm−2. These PET
samples were initially prepared in Dubna by producing ion tracks by 250
MeV Kr ions and further treated at the Ionenstrahl-Labor (ISL) in Berlin by
etching the ion tracks in a NaOH solution. In the previous experiments [6]
with PC samples, the capillaries were prepared at GSI in Darmstadt by 2.2
GeV gold ion irradiation [20] and etching. Thus, capillaries with a diameter
of ∼ 165 nm and a density of 6×107 cm−2 were obtained.

The capillary samples were mounted on a goniometer, which allowed for
an alignment in three axial dimensions and around one rotational axis. The
PET membranes were spanned on a circular frame with an inner diameter
of 7 mm. In the experimental chamber the incident ions were transmitted
through the capillaries and observed using a multi channel plate detector
(MCP). Previous studies [2] have shown that the experimental results scale
with the inserted charge so that this parameter was used to display the
measured results in the following.

2.1. Total yield of the transmitted ions

The total yield Yt for the transmission of 3-keV Ne7+ ions was determined
by summing up the counts within an image measured by the MCP detector.
The total yield was normalized by the number of incident ions Yin to obtain

4
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the fraction ft = Yt/Yin of transmitted ions. In Fig. 2 the fraction ft for
the present measurements with PET capillaries is compared with previous
results obtained with PC capillaries [6]. The density as large as 108 cm−2 is
relatively high so that blocking effects due to the influence of neighbor capil-
laries are expected. Indeed, in Fig. 2 (a) the ion fraction exhibit an increase
at the beginning of the charge insertion and after reaching a maximum the
transmission curve starts to decrease by about a factor of two as Qin rises
from 13 - 40 fC. This decrease can be considered as the partial blocking of
the ions.

In Figs. 2(b) and 2(c) the present results for the PET capillaries are
shown. The important feature of the PET samples is that the transmission
curves increase rather than decrease with increasing charge insertion, i.e.,
they remain stable for a charge insertion as large as Qin = 38 fC. Hence, no
blocking effects were observed for the PET capillary even for the relatively
large areal density of 108 cm−2. This feature for the PET capillaries differs
from the corresponding results for the PC samples.

To search for an explanation, one notes that the capillary types somewhat
differ in diameter, density, and tilt angle. The diameters of the PC and PET
capillaries are nearly equal (165 nm and 200 nm) so that it is not expected
that the capillary diameter plays an important role. However, blocking effects
on PC capillaries have been found to increase with decreasing capillary tilt
angle [6]. Therefore, we investigated the ion transmission through the FLNR
capillaries for two different tilt angles. As seen from Figs.2(b) and 2(c) no
significant difference is found between the corresponding ion transmissions.

Finally, it is noted that the density of the PET capillaries (108 cm−2) is
higher than that of the PC capillaries (6×107 cm−2) for which less blocking
should be expected [18] although the opposite was observed. Thus, neither
the capillary density nor the capillary diameter or the tilt angle are likely
be responsible for the differences in the ion transmissions for the two sets of
capillaries. Rather, in the following, we interpret the observed differences in
terms of the capillary conductivities.

2.2. Emission angle of the transmitted ions

As was shown in Fig. 1, information about the capillary conductivities
may be obtained from the angular emission of the transmitted ions. Thus,
we measured the mean angle of ion emission from the capillary exit. In Fig. 3
results for the mean emission angle are shown for capillaries in PC and PET
materials. The curves in the graphs labelled (a), (b), and (c) correspond to

5
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the cases presented in Fig. 2. All data were taken with 3-keV Ne7+ ions and
similar tilt angles indicated in the graphs.

In Fig. 3(a) the data were measured previously using a PC sample from
GSI [6]. The observed curve indicates significant oscillations, which exceeds
the limits of ±1◦. The oscillatory structures of the mean angle reveal the
formation of transient charge patches partially located within the capillary
center region. Figures 3(b) and 3(c) show the present results, which were
measured with PET samples from FLNR. The curves exhibit a maximum at
the beginning of the charge insertion whereas for higher charge values the
mean angle is nearly constant.

The maximum can be associated with the formation of the entrance
charge patch. Ions transmitted through the capillaries are first ejected along
the capillary axis corresponding to the center angle equal to the tilt angle.
Some ions, passing from the upper edge of the entrance to the lower edge
of the exit, may even be ejected at angles somewhat smaller than the center
angle. After the entrance charge patch has grown, the ions are reflected to
angles larger than the center angle giving rise to the maximum observed for
charge insertions within 2-5 fC. The subsequent constancy of mean angle
allows for the conclusion that secondary charge patches are weak or miss-
ing in the inner part of the capillary. This finding provides evidence for
mechanisms, which inhibit the formation of these transient charge patches.

3. Discussion and conclusion

In this work, intensity and emission angle for highly charged ions through
capillaries in PC and PET were studied. The capillary samples were prepared
at different laboratories in past years so that it is difficult to record detailed
information about the surface treatments. However, the experimental re-
sults can be interpreted in view of mechanisms affecting the blocking. These
effects are enhanced for capillaries of high areal density as has been found
experimentally and in model calculations [18]. The ion transmission can be
influenced of the charges accumulated in neighbor capillaries.

The neighbor capillaries produce a noticeable electric field along the cap-
illary axis (z direction), which is generally small in the absence of those
neighbors [14]. The induced z-field is particularly important within the cap-
illary interior where the secondary charge patches usually occur. Oscillations
of the mean angle indicate that charge patches are formed within the capil-
lary interior and this charge is likely be responsible for the blocking effects

6
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observed for the PC sample [3(a)].
On the other hand, the missing charge patches for the PET capillaries

provides evidence that the deposited charges are removed during irradiation.
An efficient mechanism for charge depletion is the drift along the capillary
surface to the conducting metal layers at the capillary entrance and exit [14].
With the removal of charges in the capillary neighbors, the z-field is reduced
and blocking effects diminish.

Reduction of the z-field occurs for the PET sample, for which the ion
transmission was found to be stable [Figs. 2(b) and 2(c)]. Recall that the
capillaries, considered here, have a relatively high areal density. Also, it
should be added that in low-density PET capillaries, wherein only a small
z-field is produced, no ion blocking occurs. Moreover, charge patches within
the capillaries are not removed so that significant oscillations of the angular
emission have been seen [18]. The latter finding supports the present scenario
of charge patch formation.

In conclusion, stable transmission through capillaries is observed for ma-
terials with sufficient conductivity. The present experiments provide evidence
that the conductivity higher in PET capillaries than in PC. In particular, it
can be concluded that ion blocking is not a general phenomenon for high den-
sity capillaries [19]. This result is important for applications of ion guiding
through capillaries, for which stable transmission is a mandatory condition.
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Figure 1: (color online).Trajectories of 4.5- keV Ar7+ (left-hand column) and correspond-
ing distributions for the deposited charges (right-hand column) obtained from simula-
tions [22]. The tilt angle is 2◦. Two groups of results are shown with the capillary
conductivity of 1.45×10−16 S/cm for the upper group and 24.6×10−16 S/cm for the lower
group. In the upper group the inserted charge Qin is equal to 0.1 pC in (a), 2.1 pC in (b),
6.8 pC in (c), 15 pC in (d), 29 pC in (e), and 58 pC in (f) and in the lower group it is
equal to 0.1 pC in (a), 1.1 pC in (b), 6.8 pC in (c), 13 pC in (d), 21 pC in (e), and 27 pC
in (f)
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Figure 2: Fraction ft of 3-keV Ne7+ ions transmitted through polymer capillaries displayed
as a function of the inserted charge Qin. In (a) results for the PC sample from GSI are
presented [6]. In (b) and (c) results for the FLNR PET samples are given. The tilt angles
are close to 5◦as indicated in each panel.
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Figure 3: Mean angle of 3-keV Ne7+.ion emitted from polymer capillaries In (a) results [6]
for PC capillaries from GSI with a density of 6x107 cm.−2 are displayed, in (b) and (c)
results for FLNR PET capillaries with a density of 1x108 cm−2 are shown. The capillary
tilt angles are given in each panel.
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