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Email: kolos.agoston@uni-corvinus.hu.

2 Institute of Economics, Research Centre for Economic and Regional Studies,
Hungarian Academy of Sciences, H-1112, Budaörsi út 45, Budapest, Hungary, and
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Abstract. We develop Integer Programming (IP) solutions for some special college
admission problems arising from the Hungarian higher education admission scheme.
We focus on four special features, namely the solution concept of stable score-limits,
the presence of lower and common quotas, and paired applications. We note that
each of the latter three special feature makes the college admissions problem NP-
hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being
used in the Hungarian application. The IP methods that we propose are not only
interesting theoretically, but may also serve as an alternative solution concept for this
practical application, and other similar applications. We finish the paper by presenting
a simulation using the 2008 data of the Hungarian higher education admission scheme.
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Introduction

Gale and Shapley [15] introduced and solved the college admissions problem, which gen-
erated a broad interdisciplinary research field in mathematics, computer science, game
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theory and economics1. The Hungarian higher education admission scheme is also based
on the Gale-Shapley algorithm, but the algorithm is extended with a number of heuristics
since the model contains some special features. In this paper we study the possibility of
modelling and resolving these special features with integer programming techniques.

In the Hungarian higher education matching scheme (see a detailed description in
[6] and [5]), the students apply for programmes under two possible contract terms, as
most programmes can be attended in state-financed and self-financed ways. Thus the
application of a student contains ranked contracts, the first choice may be a state-financed
economics programme at university A, the second choice a state-financed computer science
programme at university B, and the third choice a self-financed economics programme
again at university A, etc. The central coordinating agency then collects the scores of the
students and based on the applications and the scores they compute the cut-off scores for
all the programmes under both contract terms. Each student is then admitted to the first
place on her list, where she met the cut-off score. In this paper, for simplicity and for
being consistent with the literature, we will refer to the programmes with contract terms
simply as colleges in our models, except when we describe the details of the Hungarian
application. The Hungarian application has four special features that we study in the
paper.

The first special feature of the application is the presence of ties, and the solution
concept of stable score-limits. According to the Hungarian admission policy, when two
applicants have the same score at a programme then they should either both be accepted
or rejected by that programme. The solution of stable score-limits ensures that no quota
is violated, hence the last group of students with the same score that would cause a quota
violation is always rejected. A set of stable score-limits always exists, and a student-
optimal solution can be found efficiently by an extension of the Gale-Shapley algorithm,
as shown in [9]. This method is the basis of the heuristic used in the Hungarian application.

The second and third special features studied in this paper are the lower and common
quotas. A university may set not just an upper quota for the number of admissible
students for a programme, but also a lower quota. A violation of this lower quota would
imply the cancellation of the programme. Furthermore, a common upper quota may be
also introduced for a set of programmes, to limit the number of students admitted to a
faculty, at a university or nationwide with regard to the state-financed seats in a particular
subject. These concepts were studied in [7], where the authors showed that each of these
special features makes the college admission problem NP-hard, even in the form that is
present in the Hungarian application. Finally, students can apply for pairs of programmes
in case of teacher education programmes. This possibility was reintroduced in the scheme
in 2010. This problem is closely related to the Hospitals / Residents problem with Couples,
where couples may apply for pairs of positions. The latter problem is also known to be
NP-hard [24], even for unit-capacity hospitals, for so-called consistent preferences [21], and
also for a specific setting present in Scotland [8] where hospitals have common rankings.
The fact that the unit-capacity case is also NP-hard implies the NP-hardness of the paired
application problem as well.

The polytope of stable matchings was described in a number of papers for the stable
marriage problem [30], [28], and for the college admissions problem [4], [13], [31]. For

1The 2012 Nobel-Prize in Economic Sciences was awarded to Alvin Roth and Lloyd Shapley for the
theory of stable allocations and the practice of market design.
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these classical models, since the extremal point of the polytopes are integral, and thus
correspond to stable matchings, one could always use a linear programming solver to
compute stable solutions in polynomial time (although the computation of solutions can
also be done efficiently using the Gale-Shapley algorithm).

However, by introducing even just one special feature, the existence of a stable match-
ing can no longer be guaranteed, and the problem of finding a stable solution may become
NP-hard. In such cases it may be worth investigating integer programming techniques for
solving these problems in theory and in practice as well. To the best of our knowledge there
have been only two recent studies of this kind so far. In the first study Kwanashie and
Manlove [20] investigated the problem of finding a maximum size weakly stable matchings
for college admissions problems with ties, a problem known to be NP-hard, and motivated
by the Scottish resident allocation scheme2. In the other paper [12] the above mentioned
matching with couples problem has been studied. As we have already mentioned, one of
the four special features of the Hungarian higher education scheme, namely the presence
of paired applications, has a close connection to the problem of couples. However, the re-
maining three special features studied in our paper, namely, the stable score-limits, lower
quotas, and common quotas, have not been investigated from this perspective.

It is interesting to note that whilst we are not aware of any large scale application
for two-sided stable matching markets, except two minor examples3, integer programming
is the standard technique used for kidney exchange programs [1], [29] and [22], where
patients exchange their incompatible donors in a centralised scheme.

Finally, we would like to highlight that the models and solution techniques presented in
this college admission context may well be useful for other applications, too. Two impor-
tant applications are immediately apparent. Firstly, controlled school choice [2], where the
policy makers might want to improve the socio-ethnic diversity of the schools by setting
different quotas for some types of students. The other example is the resident allocation
program, as used in Japan [19], where both lower and upper quotas can be requested as
regional caps to ensure a better coverage in health care services in all geographic areas
with regard to each medical specialty.

In section 1 we describe a basic model for the classical College Admissions problem that
will be the basis of our extended models. In section 2 we consider the College Admissions
problem with ties and describe two integer linear programs for finding a stable set of score-
limits. The first model uses the objective function to achieve stability and thus leads to the
student-optimal stable set of score-limits. The second model describes all the stable sets
of score-limits using an extended IP model. In section 3 we formulate an IP for describing
the College Admissions problem with lower quotas, we provide some useful lemmas that
can speed up a solution, and we also extend the model for the case where the lower quotas
are established for sets of colleges. In section 4 we study the College Admissions problem
with common quotas and we give an integer programming model that describes the set

2The same problem has also been investigated in a master’s thesis [23].
3In a famous study Roth [26] analysed the nature and the long term success of a dozen resident allocation

schemes established in the UK in the late seventies. He found that two schemes produced stable outcomes
and both of them remained in use. From the remaining six ones, that did not always produce stable
matchings, four were eventually abandoned. The two programs that were not always produced stable
solutions but yet remained in use were based on linear programming techniques and has been operating in
the two smallest markets. Ünver [32] studied these programs and the possible reasons for their survival in
detail.
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of stable solutions. In section 5 we describe the special feature of paired applications. In
section 6, we analyse the possibility and difficulties of formulating general IP models to
describe the stable solutions when some combination of special features are present in the
application. Finally, in section 7 we test our IP formulations on a real data of the 2008
Hungarian higher education admission.

1 A model for the classical College Admissions problem

Our basic model is an extension of the Rothblum [30] model (analysed also in [28]). This
model has been described in [4].

Let A = {a1, . . . an} be the set of applicants and C = {c1, . . . , cm} the set of colleges.
Let uj denote the upper quota of college cj . Regarding the preferences and priorities, let
rij denote the rank of college cj in ai’s preference list, meaning that ai prefers cj to ck if
rij < rik. Let sij be an integer representing the score of ai at college cj , meaning that ai
has priority over ak at college cj if sij > skj . Let s̄ denote the maximum possible score
and E the set of applications. A matching is a set of applications, where each applicant is
assigned to at most one college and each college is assigned to at most as many applicants
as its upper quota. A matching is said to be stable if for any applicant-college pair not
included in the matching either the applicant is matched to a more preferred college or
the college filled its upper quota with better applicants.

We introduce binary variables xij ∈ {0, 1} for each application coming from ai to cj ,
as a characteristic function of the matching, where xij = 1 corresponds to the case when
ai is assigned to cj . The feasibility of a matching can be ensured with the following two
sets of constraints. ∑

j:(ai,cj)∈E

xij ≤ 1 for each ai ∈ A (1)

∑
i:(ai,cj)∈E

xij ≤ uj for each cj ∈ C (2)

Here, (1) implies that no applicant can be assigned to more than one college, and (2)
implies that the upper quotas of the colleges are respected.

One way to enforce the stability of a feasible matching is by the following constraint. ∑
k:rik≤rij

xik

 · uj +
∑

h:(ah,cj)∈E,shj>sij

xhj ≥ uj for each (ai, cj) ∈ E (3)

Note that for each (ai, cj) ∈ E, if ai is matched to cj or to a more preferred college
then the first term provides the satisfaction of the inequality. Otherwise, when the first
term is zero, then the second term is greater than or equal to the right hand side if and
only if the places at cj are filled with applicants with higher scores.

Remark 1: When we have ties in the priorities (due to equal scores), then the following
modified stability constraints, together with the feasibility constraints (1) and (2), lead
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to weakly stable matchings (in a model also known as Hospitals/Residents problem with
Ties). Note that here only the strict inequality shj ≥ sij becomes weak. ∑

k:rik≤rij

xik

 · uj +
∑

h:(ah,cj)∈E,shj≥sij

xhj ≥ uj for each (ai, cj) ∈ E (4)

We remark that weakly stable matchings can have different sizes and the problem of
finding a maximum size weakly stable matching is NP-hard (although some good approx-
imation results exist, e.g. in [18]). See more about this problem, and its solutions by IP
techniques in the recent paper of Kwanashie and Manlove [20].

Remark 2: In the absence of ties, we can get an applicant-optimal (resp. an applicant-
pessimal) stable solution by setting the objective function of the IP as the minimum (resp.
maximum) of the following term: ∑

(ai,cj)∈E

rij · xij

We remind the reader that these extreme solutions can be obtained with the two ver-
sions of Gale and Shapley’s deferred acceptance algorithm in linear time [15].

Remark 3: Bäıou and Balinski [4] proposed an alternative model to describe the
stable admission polytope, since the above simple integer program may admit fractional
solutions as extreme points. See also Sethuraman et al. [31] about the alternative model.
Fleiner [13] provided a different description for the stable admission polytope.

2 Stable score-limits

The use of score-limits (or cutoff scores) is very common in college admission systems.
The applicants have a score at each place to which they are applying and they are ranked
according to these scores by the colleges. The solution is announced in terms of score-
limits, each college (or a central coordinator) announces the score of the last admitted
student, and each student is then admitted to her most preferred place on her preference
list where she achieved the score-limit. See more about the Irish, Hungarian, Spanish and
Turkish applications in [9]. The score-limits can be seen as a kind of dual solution of a
matching, or prices in a competitive equilibrium. Azevedo and Leshno [3] analysed this
phenomenon in detail.

In this section we first develop a basic model for the classical College Admissions
problem by using score-limits. Then we discuss the case when ties can appear due to
students having the same score when applying to a place, as happens in Hungary. We
show how this extended setting can be described with a similar IP both with and without
the use of an objective function.

2.1 Stable score-limits with no ties

If we are given a stable matching for a College Admissions problem then we can define a
stable set of score-limits by keeping the following requirements. Each student must meet
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the score-limit of the college where she is admitted, and no student meets the score-limit of
a college that rejected her. These two requirements imply that every student is admitted
to the best place where she achieved the score-limit. Finally, to ensure that no student is
rejected if a quota was not filled we will require the score-limit of each unfilled college to
be minimal.

To describe this solution concept with an integer program, we introduce new variables
for the score-limits. Let tj be a nonnegative integer corresponding to the score-limit of
college cj , where 0 ≤ tj ≤ s̄ + 1. Note that the score-limit might need to be greater
than the maximum score in the Hungarian application if the number of applicants with
maximum score exceed the quota of a programme. The feasibility constraints (1) and (2)
remain the same, and we only need to link the score-limits to the matching and establish
the new stability conditions as follows.

tj ≤ (1− xij) · (s̄ + 1) + sij for each (ai, cj) ∈ E (5)

and

sij + 1 ≤ tj +

 ∑
k:rik≤rij

xik

 · (s̄ + 1) for each (ai, cj) ∈ E (6)

Here, (5) implies that if an applicant is admitted to a college then she achieved the
score-limit of that college. The other constraint, (6), ensures that if applicant ai is not
admitted to cj then either her score at cj is lower than the score-limit, tj , or she is admitted
to a college that she preferred.

Finally, we need to ensure that each college that could not fill its quota has a minimal
score-limit. We introduce an binary variable fj ∈ {0, 1} for each college cj which is equal
to zero if the college is not fully filled, by using the following constraint.

fj · uj ≤
∑

i:(ai,cj)∈E

xij for each cj ∈ C (7)

Then the following constraint ensures that if a college is unfilled then its score-limit is
zero.

tj ≤ fj(s̄ + 1) for each cj ∈ C (8)

We summarise the above statements in the following theorem.

Theorem 1 The stable matchings and the related stable sets of score-limits of a College
Admissions problem correspond to the solutions of the integer linear program consisting of
the feasibility conditions (1), (2), the stability conditions (5), (6) and conditions (7), (8).

Proof: A matching is feasible if and only if the corresponding solution satisfy the
feasibility constraints. Condition (5) implies that if an applicant is admitted to a college
then she achieved the score-limit of that college, and (6) implies that she has not achieved
the score-limit of any college that she prefers to her assignment. Therefore, these two
conditions are satisfied if and only if every applicant is admitted to the best place in her
list where she achieved the score-limit. Finally, (7) and (8) ensure that no college can have
positive score-limit, and therefore no college can reject any applicant, if its quota is not
filled.
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2.2 Stable score-limits with ties

The college admission problem with ties has been defined in [5] and studied in [9] and
[14]. Ties can appear, as the scores of the applicants might be equal at a college, and
these ties are never broken in the Hungarian application. Therefore a group of students
with the same score are either all accepted or all rejected. In the Hungarian application
the upper quotas are always satisfied, and the stability is defined with score-limits (cutoff
scores) as follows. For a set of score-limits, each applicant is admitted to the first place in
her list where she achieves the score-limit. This creates a natural mapping from the sets
of score-limits to matchings. A set of score-limits is feasible if no quota is violated in the
corresponding matching. A set of score-limits is stable if no score-limit can be lowered
at any college without causing the violation of its quota in the corresponding matching,
while keeping the other score-limits unchanged. When no ties occur then this definition
is equivalent to the original Gale-Shapley one. A stable set of score-limits always exists,
and may be found using a generalised Gale-Shapley algorithm. Moreover the applicant
proposing version leads to an applicant-optimal solution, where each of the score-limits
at each college is as small as possible, and a similar statement applies for the college
proposing-version (see [5], [9] and [14] for details).

Here we present an IP formulation to find an applicant-optimal set of score-limits with
respect to the Hungarian version, which is called H-stable set of score-limits in [9]. The
feasibility constraints (1) and (2) remain the same as in the previous model, and also the
two requirements regarding the score-limits, expressed in constraints (5), (6). However,
we cannot require the unfilled colleges to have minimal score-limits in this model, since
an unfilled seat might be created by a tie. We describe two possible solutions for this
problem. The first is the use a simple objective function as follows.

min
∑

j=1...m

tj (9)

The above objective function is necessary to ensure the stability condition, that is no
college can decrease its score limit without violating its quota, supposing that the other
score-limits remain the same. To summarise, we state and prove the correctness of the
integer program as follows.

Theorem 2 Feasibility conditions (1), (2) and stability conditions (5), (6) together with
the objective function (9) comprise an integer linear program such that the optimal solution
of this IP corresponds to the applicant-optimal stable set of score-limits.

Proof: The feasibility constraints ensure that any binary solution of the IP corresponds
to a feasible matching, where each applicant is admitted to at most one college and no
quota is violated at any college. Conditions (5) and (6) ensure that each applicant is
admitted to the first place in her preference list where she achieved the score-limit. In
particular, (5) implies that if ai is admitted to cj then she must have reached the score-
limit of cj , and (6) implies that if ai is not admitted to cj or any better college of her
preference (i.e. when the second term of the right hand side is zero) then ai could not
achieve the score-limit of cj . Finally, the objective function ensures that no college can
decrease its score-limit (without violating its quota). However, this objective function also
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implies that the solution of the IP must correspond to the applicant-optimal stable set of
score-limits, since for any other stable set of score-limits at least one college would have a
higher score-limit and neither could have lower, so the sum of the score-limits would not
be minimal.

When we want to describe all sets of stable score-limits (and not only the applicant-
optimal one) then we have to replace the objective function with some additional con-
ditions. We can do that by introducing some new variables, as described in the next
subsection.

2.3 Stable score-limits with ties and free objective function

First, we introduce a binary variable yj for each college cj that is equal to one when tj is
positive (i.e. when there are some applicants rejected from cj), and otherwise it is zero.

tj ≤ (s̄ + 1)yj for each cj ∈ C (10)

Then, for each application (ai, cj), we define a new binary variable, dij , that can be
equal to one if ai prefers cj compared to her actual match and ai would meet the admission
criteria at cj if the score-limit at cj was decreased by one, where m denotes the number
of colleges. ∑

rik≥rij

dik ≤ (1− xij)m for each (ai, cj) ∈ E (11)

tj − 1 ≤ (1− dij)s̄ + sij for each (ai, cj) ∈ E (12)

With the help of the new variables, we can now describe the stability condition of the
score-limits as follows.

(uj + 1)(1− yj) +
∑

i:(ai,cj)∈E

(xij + dij) ≥ uj + 1 for each cj ∈ C (13)

Theorem 3 Feasibility conditions (1), (2), stability conditions (5) and (6) and conditions
(10), (11), (12) for the new variables dij, together with a new stability condition (13)
comprise an integer linear program such that each feasible integer solution corresponds to
a stable set of score-limits.

Proof: Again, the feasibility conditions ensure that the corresponding matching is
feasible, if and only if the assignment of values to the variables in the IP is feasible.
Similarly to the previous model, (5) implies that if an applicant is admitted to a college
then she achieved the score-limit of that college, and (6) implies that each applicant is
admitted to the best available place in her list, if admitted somewhere. Now we will prove
that the remaining four sets of conditions are satisfied if and only if the set of score-limits
is stable, i.e. when no college can decrease its score-limit without violating its quota.
Suppose first that we have a stable set of score-limits. We assign values to all variables in
the IP model appropriately and we prove that the constraints are satisfied. So let tj be
the score-limit at college cj and we set yj to be one if tj is positive. Let dij be equal to
one for each applicant ai who would prefer to be matched to college cj than her current
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partner and who would also meet the score-limit at cj if it was decreased by one (i.e.
sij = tj − 1), and we set all the other dij variables to be zero. When doing so, we satisfy
conditions (11) and (12), since (11) is satisfied when no dik is equal to one if ai prefers
her current match cj to ck, and (12) is satisfied if ai meets the score-limit at cj if it is
decreased by one. The stability of the set of score-limits means that no college (with a
positive score-limit) can decrease its score-limit without violating its quota. This means
that if a college has a positive score-limit, so yj = 1, then if it decreased its score-limit
by one then the new students admitted were exactly those for whom the corresponding
variable dij is equal to one. The violation of the quota implies that (13) must be satisfied.
To prove the converse, let us suppose that have an assignment of values to the variables
in our IP model such that all the constraints in our IP model are satisfied. We will prove
that the set of score-limits as defined by variables tj is stable, that is, for each college cj
either its score-limit is zero or the decrease of its score-limit would cause a quota violation.
When tj is positive then yj must be zero, so

∑
i:(ai,cj)∈E(xij + dij) ≥ uj + 1. Since dij can

be one only if ai both desire and deserves cj when tj is decreased to tj − 1, this means
that the quota at cj would be indeed violated when the score-limit would be decreased by
one. (Note that yj does not necessarily have to be zero when tj is zero and dij does not
necessarily have to be one when ai both deserves and desires cj .)

Therefore now we can compute both the student-optimal and student-pessimal stable
score-limits, by setting the objective function as described in Remark 2. These extremal
solutions can be also computed efficiently by the two generalised versions of the Gale-
Shapley algorithm, as shown in [9].

We note that in [9] there was another stability definition, the so-called L-stability, that
is based on a more relaxed admission policy, namely when the last group of students with
the same score with whom the quota would be violated are always accepted. In this paper
we are focusing on the setting that is present in the Hungarian application, so we do not
deal with L-stability, but it would be possible to describe an IP model for that version as
well in a similar fashion.

3 Lower quotas

In this section we extend the classical College Admissions problem with the possibility of
having lower quotas set for the colleges. After developing an integer program for finding
a stable solution for this problem we describe the current heuristic used in Hungary and
we also provide some Lemmas that can speed up the solution of the IP. Finally we discuss
the possibility of having lower quotas for sets of colleges.

3.1 College Admissions problem with lower quotas

This problem has been defined in [7]. In addition to the College Admissions model, here
we have lower quotas as well. Let lj be the lower quota of college cj . In a feasible solution
a college can either be closed (in which case there is no student assigned to there), or
open, when the number of students admitted must be between its lower and upper quotas.
To describe this feasibility requirement, besides keeping (1), we modify (2) as follows. We
introduce a new binary variable, oj ∈ {0, 1} for each college cj , where oj = 1 corresponds
to the case when the college is open.
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oj · lj ≤
∑

i:(ai,cj)∈E

xij ≤ oj · uj for each cj ∈ C (14)

The above set of constraints together with (1) ensure the feasibility of the matching.
The stability of a solution requires the lack of traditional blocking pairs for open

colleges, and the lack of blocking groups for closed colleges. The latter means that there
cannot be at least as many unsatisfied students (unassigned or assigned to a less preferred
place) at a college as the lower quota of that college. The stability conditions can be
enforced with the following conditions. ∑

k:rik≤rij

xik

 · uj +
∑

h:(ah,cj)∈E,shj>sij

xhj ≥ oj · uj for each (ai, cj) ∈ E (15)

∑
i:(ai,cj)∈E

1−
∑

k:rik<rij

xik

 ≤ (1− oj) · (lj − 1) + oj · n for each cj ∈ C (16)

The first condition implies the usual stability for open colleges, whilst the second
condition implies the group-stability for closed colleges. Below we give a formal definition
for the College Admission problem with lower quotas and a proof of the above description
in the following Theorem.

Theorem 4 The feasibility conditions (1) and (14) together with the stability conditions
(15) and (16) form an integer program such that its solutions correspond to the stable
matchings of a college admissions problem with lower quotas.

Proof: A solution of the IP satisfies the feasibility conditions (1) and (14) if and only
if the corresponding matching is feasible, i.e., no student is admitted to more than one
college and the lower and upper quotas are respected in each open college. Regarding
stability, condition (15) is redundant if the college is closed and implies the pairwise
stability condition for any open college. Condition (16) is redundant for open colleges,
and enforces group-stability for any closed college. To show the latter we will demonstrate
that the right hand side of the constraint is lj − 1 for a closed college cj and on the left
hand side those applicants of cj are counted who are not admitted to any preferred place
according to their preferences, so these are the students who would be happy if cj would
be open and admit them.

3.2 Heuristics

The problem of finding a stable matching for the college admissions problem with lower
quotas is proven to be NP-hard [7]. In the Hungarian application, where lower quotas
can be set for any programme, the following heuristic is used with regard to this special
feature. First, the applicant-proposing Gale-Shapley algorithm produces a stable matching
where some lower quotas might be violated. The heuristic closes one programme, where
the ratio of the number of students admitted and lower quota is minimal, and then the
applicant-proposing Gale-Shapley algorithm continues by letting the rejected students
(whose assigned programme has just been cancelled) apply to their next choices. This
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heuristic runs in linear time in the number of applications, and it produces the applicant-
optimal stable matching for the remaining open colleges. However, as illustrated in [7],
this heuristic can easily produce unstable outcomes even when the problem is solvable.
With the IP technique, however, the IP model should guarantee to find a stable solution,
whenever it exists. The following lemmas can help in speeding up the solver.

Lemma 5 Let I be an instance of College Admission problem and I ′ be a reduced market
where a college is missing. Then the number of students admitted to any college in I ′ must
be at least as many as the number of students admitted in I. Moreover, when we compare
the student-optimal (resp. college-optimal) stable matchings in I and I ′ then each student
gets admitted to a college at least as good in I as they did in I ′.

Proof: By the Rural Hospitals theorem ([16], [25] and [27]) we know that in the
College Admissions problem each college admits the same number of students in every
stable matching. Suppose first that we consider the student-optimal stable matching in I.
When we remove a college then we can invoke the proposal-rejection sequence used in the
Gale-Shapley student proposing algorithm and obtain a new stable matching where each
college admits at least as many students as before and each student is admitted to the
same or a worse place (or nowhere). Suppose now that we consider the college-optimal
stable matching for I ′. When we add back the missing college and restart the college-
proposing Gale-Shapley process then we will obtain a new stable solution that is at least
as good for each student as the previous one.

Lemma 6 The colleges that reach their lower quotas in the stable solutions of a College
Admissions problem with no lower quotas must be open in every stable solution where lower
quotas are respected.

Proof: Let the original problem, where all the colleges are open, be denoted by I.
Suppose for a contradiction that a college cj reaches its lower quota for I, but there is a
stable solution where cj is closed. Let X denote the set of closed colleges in this solution,
where cj ∈ X, and let us denote the submarket where colleges in X are closed by IX . For
the market where every college in X but cj is closed, denoted by IX\j , cj must still reach
its lower quota by Lemma 5. Furthermore, when we consider the applicant-optimal stable
matching for IX\j , when we remove cj and conduct the applicant proposing deferral-
acceptance process of Gale-Shapley, as in the Hungarian application, in the resulting
stable matching for IX the students who were previously matched to cj are all worse off.
Therefore for any pairwise stable matching in IX these students would block the matching
with college cj , since they all prefer cj to their current match and they number at least as
many as the lower quota of cj .

Lemma 7 Suppose that X is the set of colleges that do not reach their lower quotas in
the stable solutions with no lower quotas. Given a college cj of X, if all the colleges in X
but cj are closed and cj still does not achieve its lower quota then cj must be closed in any
stable solution with lower quotas.

Proof: As we have seen in Lemma 6, no college outside X may be closed in any stable
solution, therefore for any stable solution a subset of X should be closed. Suppose for a
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contradiction that we have a stable matching with lower quotas where Y ⊂ X is the set of
closed colleges and cj /∈ Y , meaning that cj also reaches its lower quota in this matching.
Let Y ′ = X \ cj , our assumption is that cj does not reach its lower quota in the stable
matchings when the colleges in Y ′ are closed. Since Y ⊆ Y ′, Lemma implies that cj has
at least as many students admitted in the stable matchings for IY (the market when the
colleges in Y are closed) than for IY ′ , a contradiction.

Lemma 8 Suppose that applicant ai is assigned to college cj in the applicant-proposing
Gale-Shapley algorithm with no lower quotas. Let X denote the set of colleges that do not
achieve their lower quotas in this solution. If we close all the colleges in X and we get
that ai is still assigned to cj in the applicant-optimal solution of the reduced problem then
the existence of a stable solution for lower quotas implies the existence of a stable solution
where ai is assigned to cj. Thus we can fix this pair in the matching without losing the
solvability of the problem.

Proof: First note that cj /∈ X, as otherwise ai could not be assigned there when colleges
in X are closed. Therefore cj achieves its lower quotas in the stable solutions with no lower
quotas considered, so cj must be open in every stable solution in the original market I.
Suppose that there is a stable solution, where the set of closed colleges is Y ⊆ X. In the
market when the colleges in Y are closed, denoted by IY , the applicant-optimal stable
solution must assign ai to cj . This is because from Lemma 5 we know that ai’s optimal
stable partner in IY must be as good for her as in the original market, I, and at most as
good as in IX , but we assumed that her best stable partner is cj in both I and IX .

With the help of Lemmas 6 and 7 we can iteratively find some colleges which must
be open and perhaps also some that must be closed in any stable solution, thus reduce
the number of variants of our model, as follows. First we run the Gale-Shapley algorithm
without lower quotas, and then we set each college that reached its lower quota to be
open. Let us denote this set of colleges by X1. In the second step we check each college in
C \X1 whether it can be open in any stable solution, as described in Lemma 7. That is,
for each cj ∈ C \X1 we close all the colleges C \ (X1∪ cj), run the Gale-Shapley algorithm
and check whether cj reaches its lower quota. If not then we set cj to be closed. Let Y1
denote the set of colleges that were found to be necessary to close in the second step. If
Y1 is nonempty then we repeat the first step: we run again the Gale-Shapley algorithm
with no lower quotas and without colleges Y1. If, in addition to X1, some new colleges
also achieve their lower quotas in the reduced market then we add them to X1 and get a
larger set of colleges, X2, that must be open in every stable solutions. In the case where
X2 is larger than X1 then we will repeat the second step of our process with respect to
X2. Again, if we find any new college that must be closed then we increase the set Y1 to
Y2. We repeat this process until Xt = Xt+1 or Yt = Yt+1 for any t, and then we stop.

3.3 Lower quotas for sets of colleges

We note that in the Hungarian application the lower quotas are set for pairs of programmes
(actually for the same programme, just with separate quotas for state-financed and self-
financed students). If the lower quota for a set of colleges is not met then all the colleges
have to be closed. This motivates the extended model where the lower quotas can be
applied for sets of colleges. In this case we need only to introduce a new binary variable
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op for each set of colleges Cp with common lower quota lp that we associate with the other
binary variables of individual colleges as follows.

op · np ≤
∑

j:cj∈Cp

oj ≤ op · np for each Cp (17)

where np is the number of colleges in Cp. We will then set the feasibility conditions
(14) for the sets of colleges with common lower quotas as follows.

op · lp ≤
∑

i:(ai,cj)∈E

xij for each cj ∈ C (18)

To define stability in this setting is not easy though. In section 6 we discuss some
complications and potential solutions by relaxing group-stability.

4 Common quotas

This problem has also been defined in [7]. For each set of colleges Cp ⊆ C the coordinator
of the admission scheme may set a common upper quota, up, meaning that the total
number of students admitted to colleges in Cp cannot exceed this quota. Therefore, the
set of feasibility constraints, (1) and (2), has to be extended with some new constraints
enforcing the common quotas, as follows.∑

(ai,cj)∈E,cj∈Cp

xij ≤ up for each Cp ⊆ C (19)

Regarding stability, first of all we have to suppose that any two colleges, cj and ck,
that belong to a set of colleges Cp with a common quota must rank their applicants in the
same way. In particular, in the Hungarian application any student ai has the same score at
such colleges (i.e. programmes in Hungary) with common quota, so sij = sik holds. (In a
more general model, we should have a specific scoring for each set of colleges with common
quota, which is in agreement with the individual scorings of the colleges belonging to this
set. For instance, we could have a score spij for each application associated to a set of
colleges Cp with a common quota such that sij > slj implies spij > splj).

In this setting stability means that if a student ai is not admitted to a college cj or to
any better college of her preference then either cj must have filled its quota with better
students or there is a set of colleges Cp, such that cj ∈ Cp and all the up places in Cp have
been filled with better students than ai. Biró et al. [7] showed that if the sets of colleges
with common upper quotas is nested, i.e., when Cp ∩ Cq 6= ∅ implies either Cp ⊂ Cq

or Cp ⊃ Cq, then a stable matching always exists. Moreover, a stable matching can be
found efficiently by the generalised Gale-Shapley algorithm and there are applicant and
college-optimal solutions. However, if the set system is not nested then a stable solution
may not exist and the problem of finding a stable matching is NP-hard. Interestingly, the
Hungarian application involved nested set systems until 2007 when a legislative change
modified the structure of the underlying model and made the set system non-nested, with
the possibility of having no stable solution and also making the problem computationally
hard.
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Here, we show that we can express this stability condition with the use of score-limits,
in a similar fashion to the method we described in section 2. However, here we need to
assume that there are no ties. We set a score-limit tp for each set of colleges Cp with
common quotas, which is less than or equal to the score of the weakest admitted student
if the common quota is filled, and 0 if the common quota is unfilled in the matching.
When describing the model in this way, stability implies that if a student ai is admitted
to college cj then sij ≥ tj and also sij ≥ tp for any set of colleges Cp with common quota
where Cp includes cj . Furthermore, if ai is not admitted to cj or to any better college
of her preference then it must be the case that either sij < tj or sij < tp for some set of
colleges Cp with common quota where Cp contains cj . These conditions can be formalised
with the following set of conditions, where qj denotes the number of sets of colleges with
common quotas involving college cj , {cj} also being one of them.

tp ≤ (1− xij) · (s̄ + 1) + sij for each (ai, cj) ∈ E and cj ∈ Cp (20)

and

sij + 1 ≤ tp +

 ∑
k:rik≤rij

xik + ypi

 · (s̄ + 1) for each (ai, cj) ∈ E and cj ∈ Cp (21)

with ∑
p:cj∈Cp

ypi ≤ qj − 1 for each (ai, cj) ∈ E (22)

where ypi ∈ {0, 1} is a binary variable. These conditions are needed to establish the
links between a matching and the corresponding score-limits. However, for stability we
also have to ensure that the score-limits are minimal. In case of strict preferences (i.e.,
when no two students have the same score at colleges belonging to a set of colleges with
a common quota), we can ensure the minimality of the score-limits with the following
conditions.

Again, we introduce an binary variable fp for each set of colleges Cp which is equal to
zero if the common quota of these colleges is unfilled, by using the following constraints.

fp · up ≤
∑

i:(ai,cj)∈E,cj∈Cp

xij for each Cp ⊆ C (23)

Then we ensure that if a college or a set of colleges with a common quota is unfilled
then its score-limit is zero.

tp ≤ fp(s̄ + 1) for each Cp ⊆ C (24)

We describe and prove the correctness of the IP model in the following Theorem.

Theorem 9 Feasibility conditions (1), (2) and (19), with the stability conditions (20),
(21) and (22), together with (23) and (24) describe an integer program such that its so-
lutions correspond to stable matching for the College Admissions problem with common
quotas.
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Proof: To see the correctness, we have to note first that the matching is feasible if and
only if the feasibility constraints (1), (2) and (19) are satisfied, and conditions (23) and
(24) are satisfied if and only if the score-limit of any unfilled college or set of colleges is
zero.

Now, suppose first that we have a stable solution and we show that all the stability
conditions can be satisfied by setting the variables appropriately. When a common quota
Cp is filled we set tp to be equal to the last admitted applicant at any college included in
Cp. This ensures that the first set of conditions (20) is satisfied. Let ypi = 0 if ai does
not meet tp at any college cj ∈ Cp where she applied to, and ypi = 1 otherwise, with the

exception of set {cj}, where we set yji = 0 if i is admitted to cj or to a better place.
The stability of the matching then implies (22). Finally, let us consider an application
(ai, cj) where cj ∈ Cp. If ai is admitted to cj or to a better college then the corresponding
constraint (21) is satisfied, irrespective of the value ypi . Otherwise, suppose that ai is not
admitted to cj or to any better place. If ai does not meet the score-limit tp then (21) is
satisfied, obviously, and it is also satisfied when she meets tp, since ypi = 1 in that case.

Conversely, suppose that we have a solution for the IP model, and we will show that
this ensures the stability of the corresponding matching. If (ai, cj) is in the matching then
constraints (20) imply that ai achieves the score-limit of cj and also the score-limit of every
set of colleges with common quota containing cj . Finally, suppose that ai is not admitted
to cj or to any better college of her preference. Since one of the additional variables of
form yli must be zero, say ypi , the corresponding constraint (21) implies that the set of
colleges Cp containing cj has a score-limit tp greater than sij . So the matching is indeed
stable.

Finally we note that if we have ties then we shall use an objective function that
minimises the sum of the score-limits or an extended model, similar to the ones described
in section 2.

5 Paired applications

In the Hungarian application students can apply for pairs of programmes in case of teach-
ers’ studies, e.g. when they want to become a teacher in both maths and physics. In this
setting of a College Admission problem with paired applications stability means that if a
student is not admitted to a pair of colleges, or to any better college (or pair of colleges)
in her list then either of these colleges must have filled its quota with better applicants.
In terms of score-limits, either of these colleges must have a score-limit that this student
has not achieved.

This problem is similar to the well-known Hospitals/Residents problem with Cou-
ples, where residents apply to pairs of positions (see a survey [10]). However, there are
some slight differences. Here a student may have both simple and paired applications
in her list, thus she can behave both as a single applicant and as a couple at the same
time. A paired application in the college admission problem involves two distinct pro-
grammes, whilst a couple may apply for a pair of positions at the same hospital in a
resident allocation program. So neither of these problems is more general than the other.
Nevertheless both problems are NP-hard, since the NP-hardness proof of Ronn [24] for
the Hospitals/Residents problem with couples was concerned with a special case where
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each hospital has one place only, and this is also a special case of the College Admissions
problem with paired applications.

Now, we describe the IP model for college admissions with paired application. We
introduce new, artificial colleges CP , that are pairs of compatible colleges. Let cjk ∈ CP

be one compatible pair of colleges, where the binary variable of an application from student
ai to this pair of colleges is denoted by xi(jk), and the rank of this application in ai’s list is

denoted by ri(jk). For a more convenient notation, let e ∈ ES denote a simple application,

and e ∈ EP denote a paired application, where the set of all applications is E = ES ∪EP .
With a slight abuse of notation, let ai ∈ e mean that application e is coming from applicant
ai, and cj ∈ e or c(jk) ∈ e mean that the application is going to college cj or pair of colleges
c(jk), respectively.

The feasibility constraints can now be modified in the following way.∑
e:ai∈e∈E

xe ≤ 1 for each ai ∈ A (25)

∑
e:cj∈e∈ES

xe +
∑

k=1...m

∑
e:c(jk)∈e∈EP

xe ≤ uj for each cj ∈ C (26)

The stability conditions are expressed with score-limits. There is no change for simple
applications.

tj ≤ (1− xij) · (s̄ + 1) + sij for each (ai, cj) ∈ ES (27)

and

sij + 1 ≤ tj +

 ∑
e:ai∈e,re≤rij

xe

 · (s̄ + 1) for each (ai, cj) ∈ ES (28)

For paired applications, the following conditions must hold.

tj ≤
(
1− xi(jk)

)
· (s̄ + 1) + sij for each (ai, c(jk)) ∈ EP (29)

tk ≤
(
1− xi(jk)

)
· (s̄ + 1) + sik for each (ai, c(jk)) ∈ EP (30)

and

sij + 1 ≤ tj +

 ∑
e:ai∈e,re≤ri(jk)

xe + y
(jk)
i

 · (s̄ + 1) for each (ai, c(jk)) ∈ EP (31)

sij + 1 ≤ tk +

 ∑
e:ai∈e,re≤ri(jk)

xe + (1− y
(jk)
i )

 · (s̄ + 1) for each (ai, c(jk)) ∈ EP (32)

Here, the first two conditions, (29) and (30), ensure that the score limit is met for
each of the colleges where an applicant is admitted with a paired application. The second
two conditions, (31) and (32), imply that if a student ai is not admitted to a pair of
colleges c(jk) or to any better place(s) then it must be the case that she did not achieve

the score-limit at one of these colleges. Here again, y
(jk)
i ∈ {0, 1} is a binary variable.
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Finally, similarly to conditions (23) and (24), we have to ensure that only the filled
colleges can have positive score-limits. First we modify (23) as follows.

fj · uj ≤
∑

e:cj∈e∈ES

xe +
∑

k=1...m

∑
e:c(jk)∈e∈EP

xe for each cj ∈ C (33)

Then, as we did in (24), we ensure that if a college or a set of colleges with a common
quota is unfilled then its score-limit is zero.

tj ≤ fj(s̄ + 1) for each cj ∈ C (34)

Theorem 10 The College Admissions problem with paired applications can be described
with the solutions of the IP consisting of conditions (25) to (34).

Proof: Conditions (25) and (26) are satisfied if and only if the corresponding matching
is feasible. Regarding the stability constraints, if we consider a single application then (27)
ensures that the applicant has reached the score-limit of the college where she has been
admitted, and (28) implies that a rejection must have taken place because the applicant
has not reached the score-limit of that college. Similarly, for a paired application (29) and
(30) are satisfied if and only if the applicant has achieved the score-limits of both colleges
where she has been admitted in a paired application. Conditions (31) and (32) ensure
that if a paired application is rejected, it must be the case that the applicant has not
reached the score-limit of either of the colleges in her paired application. To summarise,
each applicant is admitted to the best college or pair of colleges on her list where she
has achieved the score-limit(s). Finally, conditions (33) and (34) imply that only those
colleges which are filled may reject applications.

6 Combining the models into a single IP

In the four previous sections we have developed IP models to deal with each of the four
special features which are present in the Hungarian application. However, all of these
special features are present in the application simultaneously, and so to provide a solution
for real data we need to create a combined model which incorporates all of the constraints.
But this task is not easy, since not only do the constraints have to be adjusted, but some-
times the stability definitions may also contradict each other. Since paired applications
can be seen as a special case of common quotas, as we described in the previous section,
we focus on the different combinations of ties, lower and common quotas.

6.1 Stable score-limits with ties and lower quotas

The feasibility of the matching is characterised by constraints (1) and (14). For stability,
we will use (5) to ensure that a student is only admitted if she achieved the score-limit.
We need (16) again for group-stability. Here we need a combination of (6) and (15) to
enforce stability for open colleges, as follows.

sij + 1 ≤ tj +

 ∑
k:rik≤rij

xik + 1− oj

 · (s̄ + 1) for each (ai, cj) ∈ E (35)
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Finally, either we need to minimise the sum of score-limits with the objective function
or to use conditions (10), (11), (12) and (13) to ensure that the decrease of any positive
score-limit in the solution would cause the violation of a quota.

6.2 Stable score-limits with ties and common quotas

As mentioned in section 4, our IP model for common quotas is based on score-limits, so it
is not too difficult to reconcile these two features. The issue that we must resolve is that
we cannot require the unfilled colleges or sets of colleges to have a zero score-limit here, as
this might have resulted from the rejection of a group of applicants with the same score.
So instead of using (23) and (24), either we have to minimise the sum of the score-limits
with the objective function to enforce stability, or we shall develop a model similar to the
one described in subsection 2.3 for sets of colleges with common quotas.

6.3 The difficulty in reconciling lower and common quotas

The feasibility of the matching is now characterised by constraints (1), (14) and (19). For
stability, we need (20) to ensure that a student is only admitted if she achieved the score-
limit of the assigned college and also the score-limit for each set of colleges with a common
quota that contains this college. For open colleges, the pairwise stability condition can be
enforced with the following modification of (21):

sij + 1 ≤ tp +

 ∑
k:rik≤rij

xik + ypi + 1− oj

 · (s̄+ 1) for each (ai, cj) ∈ E and cj ∈ Cp (36)

together with (22).
However, defining group-stability is problematic here. Even if there is a closed college

with more unsatisfied students than its lower quota the admission of these students could
lead to the violation of a common upper quota. If this happens then the blocking should
not be allowed. So combining the constraints for lower and common quotas is challenging.
Therefore one might consider the possibility of abandoning the group-stability constraints
related to lower quotas. However, in this case, a possible solution would be to close all the
colleges. This unsatisfactory scenario could be avoided by setting the objective function
such that the number of students admitted becomes the first priority and the minimisation
of the total score limits is the second priority.

6.4 Stable score-limits with ties, lower and common quotas

As we have described, the concept of stable stable score-limits for the College Admissions
problem with ties can be reconciled with both lower and common quotas, however the latter
two are difficult to combine. Therefore in the practical application the organisers should
decide what stability conditions they want to satisfy in the first place. One possibility is to
drop the group-stability conditions with regard to lower quotas and to use an appropriate
objective function to ensure that the solution is not biased. In order to set the right
conditions one should do simulations with a real data to see how the model, and the
objective function in particular, may influence the resulting solution.
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However, as we will see in the coming section, our simulations show that for large
markets we were able to resolve only one of the special features, the problem of lower
quotas. Therefore the complete solution of a combined model seems unlikely with IP
techniques for large problems as the one in Hungarian college admission scheme.

7 Computer simulations

In this section we present numerical results on generated samples and on real data from
the Hungarian higher education matching scheme. In the simulations we used the GLPK
open source solver (4.55 version), which is a large-scale solver for linear programming,
integer linear programming and mixed integer linear programming problems. We kept the
default parameter settings for integer and mixed integer problems. The solver was running
on a desktop computer with a 2.33 GHz Intel Pentium processor and 6 GB RAM.

In our simulations we focused on the three special features, separately, that are present
in the Hungarian application in 2008. But first we tested the solver for the IP formulation
of the classical Gale-Shapley model on generated and real data. Then we evaluated the
applicability of our IP formulation with score-limits, which are crucial in the Hungarian
application when computing stable solutions in case of ties. In the third part we consider
lower quotas only, and finally we tested IP formulation for common quotas. As we will
describe in detail in this section, we found that the only special feature that we could solve
with IP technique for the real data was the feature of lower quotas.

7.1 Basic IP formulations and score-limits

Our first remark is that problems typically had a large number of binary variables, in
which case the branch-and-bound algorithm can take extremely long time. Because of
this reason we found that our IP formulations with score-limits cannot be solved for large
data, even in the simplest case, as we will present in this subsection. Note that for this
classical setting we can actually relax the integrality condition for the score-limits, that
we did in the simulations, yet, this has not helped to improve the performance of this
approach for large instances.

In the first part we used generated samples for estimating the running time. We had
n applicants and m programmes, each applicant choosing five programmes uniformly at
random without replacement. Thus there are about n

k first place applications at each
programme. We fixed the quota at n

2k , so every quota is expected to be full. Table 1
contains running times for some relatively small n and m.

This experiment illustrates that the usage of score-limits is not recommended for large
scale applications. Note that the score-limit formulations lead to mixed integer linear
problems, while the basic IP formulation described in (1), (2) and (3) or (4) is a pure
binary problem, which may be solved for larger problems. Indeed, this is what we found
in our experiments. Table 2 contains the running time and other details of the simulation
with basic IP formulation for generated samples.

It is worth mentioning that the solver generates various cuts (constraints that cut non-
integer points from the set of feasible solutions) for the binary problem. These cuts are
usually very effective. Sometimes the running time for LP relaxation (without cuts) are
larger than the running time for the binary problem.
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n m size (Kb) memory used (Mb) run time (sec)

20 10 13 0.4 0.2
40 10 26 2.6 4.0
60 10 39 16.6 81.3
80 10 52 136.5 1443.8

Table 1: Results for score-limit problems show the time required, memory used and size
needed, where the number of applicants, n increases from 20 to 80, and the number of
programmes, m, is fixed to 10.

n m size (Kb) memory used (Mb) run time (sec)

100 10 135 1.2 0.0
500 20 1679 11.5 0.3
2500 30 27883 169.1 28.9
7500 40 190547 1106.7 588.7
12500 40 537863 n.a. n.a.

Table 2: Results for the classical admission problem on generated samples show the time
required, memory used and size needed, where the number of applicants, n increases from
100 to 12500, and the number of programmes, m increases from 10 to 40.

The results in Table 2 show the applicability of basic IP problem for large problems.
We note that we could not solve the problem in the last row with our computer due to
insufficient memory, but it is not too difficult to increase the problem size that can be
solved with more powerful computers.

The generated samples are somewhat extreme, as in the real data there is a correlation
amongst the preferences of the applicants: there are prestigious programmes and there are
less prestigious ones. In Table 3 we present the results of our simulations of the basic IP
problem on real data. We took a sample of the real data in the following way, we chose
a programme-group (i.e. programmes in economics) and considered the applications only
for these programmes. We found that large numbers of applicants and applications can
be handled in this case. The bottleneck for the solvability is the running time, so the set
of tractable cases cannot be extended significantly.

# applicants #programmes # applications size (Kb) memory (Mb) run time (sec)

13066 392 21671 26757 103.8 17.9
16652 757 27531 31170 123.0 677.3

Table 3: Results for classical admission problems for a filtered data of the Hungarian
applications. The table shows the time required, memory used and size needed for two
instances, the first with 13066 applicants and 392 programmes, and the second with 16652
applicants and 757 programmes.
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n m size (Kb) memory (Mb) run time (sec)

100 10 174 4.8 24.3
100 20 130 10.6 189.3
500 10 3179 65.3 17201.5

Table 4: Results for randomly generated problems with lower quotas show the time re-
quired, memory used and size needed, where the number of applicants, n varies between
100 and 500, and the number of programmes, m varies between 10 and 20.

# applicants #programmes # applications size (Kb) memory (Mb) run time (sec)

13066 392 (342;33;17) 29063 26757 114.5 11.1
16652 626 (535;53;38) 27531 34111 136.7 62.8
19764 797 (687;71;39) 32363 41347 n.a. n.a.

Table 5: Results for admission problems with lower quotas for a filtered data of the
Hungarian applications. The table show the time required, memory used and size needed
of the solver, where the number of applicants increases from 13066 to 19764, and the
number of programmes increases from 392 to 941.

7.2 Lower quotas

We continue the investigation with lower quotas. In the generated sample we change the
upper limit to 3n

k and we set the lower quota to 2n
k for each programme. It is not hard

to see that Lemma 6, Lemma 7 and Lemma 8 are unlikely to help in this case, because
neither of the programmes is expected to reach its lower quota, as each programme is
assigned to around n

k applicants. Further, if we close all undecided programmes expect
one then every programme achieves its lower quota with very high probability, since each
programme receives 5n

k applications on average. Table 4 presents the numerical results.
The results presented in Table 4 suggest that the number of undecided programmes

must be very limited if we would like to solve the IP problem. Here, undecided means
that we are not able to make a decision about the closure of this programmes based on
the efficient filtering process described in section 3. Regarding the Hungarian admission
data the situation is a bit more favourable. Programmes with numerous applications
usually get more applicants than their lower limits, and the undecided programmes are
relatively small programmes where the lower limits and the number of applications are
low. Therefore Lemma 6, Lemma 7 and Lemma 8 can help efficiently to reduce the size
of the problem. In Table 5 we present results for subsets of the Hungarian data. At
the beginning we used Lemma 6 only and we closed the programmes which have fewer
applicants than its lower quota. Note that at the ‘programme’ column we recorded the
number of open, initially undecided and surely closed programmes in parentheses, i.e.,
392 (342;33;17) means that there were 392 programmes where 342 achieved their lower
quotas, 33 were initially undecided and 17 were immediately closed because the number
of its applications was smaller than its lower quota. As we can see, the presence of lower
quotas can even speed up the solution.

Furthermore, if we apply Lemma 8 then we can solve large real instances. When
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we considered all the state-financed programmes with 252188 applications, after applying
Lemma 8 there remain only 1542 applications. We could filter out some more applications,
namely the applications for programmes where the score limit was surely higher than
the applicant had and also all the applications for surely closed programmes. After this
filtering there remained only 1306 applications. Regarding the 543 total programmes, 375
are surely open, 21 are undecided and 147 are surely closed. The solution for this reduced
data could be obtained in 0.1 sec. According to the result obtained, 14 programmes will
start from the 21 undecided programmes.

Therefore, we conclude that the special feature of lower quotas is tractable in practice,
even though it makes the problem NP-complete. With the help of some useful Lemmas
we can reduce the number of undecided programmes significantly and then we can solve
the remaining problem quickly with our IP formulation.

7.3 Common quotas

The structure of common quotas in the Hungarian higher education matching scheme
is as follows (more details can be found in [7] and [6]). The students can study at the
programmes under two different contracts, state-financed and self-financed. There are
nationwide common quotas in each subject (such as computer science) with regard to
the state-financed student, e.g. the government may decide to sponsor the study of 3000
students in computer science in Hungary. In addition, there are faculty quotas for each
programme for the number of students studying under any contract, e.g. Budapest Univer-
sity of Technology and Economics (BME) may have a common quota of 500 for computer
science students, involving both state-financed and self-financed students. The score of
a student is the same at any computer science programme, so the same ranking can be
used when comparing the students that apply for a state-financed seat in a subject, but
the score of this student can differ in a different subject, e.g. for economics (in particular,
for computer science her secondary school grade in physics will count whilst for economics
they consider her grade from history instead).

As we have shown in our earlier paper [7], the existence of a stable solution is not
guaranteed and the problem of finding a stable solution is NP-complete, even in the above
realistic setting in Hungary. However, we can use a specialised IP formalisation here. In
particular, for our simulation we decided not to use score-limit based IPs, since it turned
out to be infeasible to solve for larger markets, as we described at the beginning of this
section. Thus we created a new set of IP constraints, that we specify below.

Let C refer to the set of programmes in this context. For a programme cj ∈ C, we
denote the state-financed form by c̃j and the self-financed form by cj . As we noted, in the
Hungarian application there are no separate quotas for these two forms4, just an overall
upper quota uj for the total number of students assigned to programme cj . Furthermore,
there is also a nationwide quota for the state-financed students in this subject, that we
denote with the relationship c̃j ∈ Cp, where Cp is a set of state-financed seats in some
subject with a common upper quota up. We partition the set of applications E according
to their forms, ES will denote the applications for state-financed seats and EP denotes

4Actually until 2007 there were indeed separate quotas for the number of students in these two forms,
and because of that the basic structure of the problem was different, the set system of common quotas was
nested, which implied that a stable solution could be found efficiently, see details in [7].
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the applications for self-financed seats. So with a slight abuse of notation we write that
(ai, cj) ∈ ES if ai applies to c̃j and we write that (ai, cj) ∈ EP if ai applies to cj

Regarding the feasibility conditions, besides keeping (1), we adjust and replace (2) and
(19) with the following conditions.∑

i:(ai,cj)∈E

xij ≤ uj for each cj ∈ C (37)

∑
i:(ai,cj)∈ES ,c̃j∈Cp

xij ≤ up for each Cp (38)

The stability conditions are modified as follows. With regard to the applications for
self-financed seats, we use the classical stability constraints (3) written up for the faculty
quotas, namely ∑

k:rik≤rij

xik

 · uj +
∑

h:(ah,cj)∈E,shj>sij

xhj ≥ uj for each (ai, cj) ∈ EP . (39)

The stability constraints with regard to the applications for state-financed seats need
to be written up in more complicated way, as we do not know in advance whether the
faculty or the nationwide quota will be binding and thus explain the rejection of some
applications of this sort. For each programme cj , we introduce a binary variable yj that will
be zero if the faculty quota will be binding and explain the rejection of some applications.
Furthermore, we also introduce a binary variable ypj , where c̃j ∈ Cp and Cp is a nationwide
common quota applied for the state-financed students in a particular subject. When the
rejection of an application for a state-financed seat at programme cj is explained by the
national common quota then ypj will be zero. We write up these constraints formally for
all applications for state-financed seats.

 ∑
k:rik≤rij

xik

 · uj +
∑

h:(ah,cj)∈E,shj>sij

xhj ≥ (1− yj)uj for each (ai, cj) ∈ ES (40)

 ∑
k:rik≤rij

xik

 ·up +
∑

h:(ah,cl)∈ES ,c̃l∈Cp,shl>sij

xhl ≥ (1−ypj )up for each (ai, cj) ∈ ES , cj ∈ Cp

(41)

yj + ypj ≤ 1 for each c̃j ∈ Cp (42)

To see the correctness of our formulation, we will use a similar argument as in the proof
of Theorem 9, that we describe briefly hereby. The rejections of state-financed applications
at a programme must be explained by either the fulfillment of the faculty quota by better
candidates applying under any kind of contract or the fulfillment of the corresponding
nationwide quota with better students applying for state-financed seats. Given a stable
matching, we need to set the variables yj and ypj to be zero depending on which quota is
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binding for the state-financed application at programme cj . In the other direction, if we
have a feasible binary solution for the above IP then we must set at least one of these two
variables, yj or ypj , to be zero. Then the corresponding constraints, either (41) or (42) will
be binding, implying that the rejection of that application for a state-financed seat was
appropriate, so the corresponding matching is indeed stable.

It can help (i.e. the running time decreases a bit) if we introduce some more constraints.
Variable yj can be 1 only if the relevant nationwide quota, Cp is full, where the latter is
indicated with a binary variable Yp. We can enforce this statement with the following
constraints.

yj ≤ Yp for each c̃j ∈ Cp

and ∑
(ai,cj)∈ES ,c̃j∈Cp

xij ≥ Ypup.

Similarly, ypj can be 1 only if the appropriate programme quota is full:∑
i:(ai,cj)∈E

xij ≥ ypjuj for each c̃j ∈ Cp

In our first experiment we generated a market with 100 applicants and 2 programmes,
where each programme accepts both state-financed and self-financed applicants, and a
common quota is set for all state-financed applicants. All applicants list all the 4 possible
contracts in their preference lists in a random order. Each programme has a common
quota of 30 and there is a common quota of 25 for state-financed applicants. The running
time for this market was 827 sec. which is remarkably high considering the size of the
example.

However, the running time becomes tolerable if the nationwide quota for state-financed
applicants is relatively small or relatively large with respect to the common quotas of
programmes. In the first the nationwide quota will bound for the state-financed contracts
in all programmes. In the second case the national quota will be non-binding and the
common quotas of the programmes will be full. In Table 6 we present the summary of
our simulations. Here m denotes the number of programmes and each programme has a
common quota of n

2k that applies to both the state-financed and self-financed contracts.
Each applicant chooses five contracts randomly from the 2k possibilities. In the simulation
first we set the nationwide quota to be n, so it will not bound. Note that these results
could be obtained without using the model of common quotas but in this way we have
a notion about the boundary of the solvability. The size of text files describing the IP
increased considerably due to the stability constraints for the nationwide quota.

Now we describe a heuristic solution that enabled us to obtain a stable solution for the
above setting. We can determine the score limits for the programmes when we suppose
that the nationwide quota is non-binding. Next we set the nationwide quota to be 95%
of the state-financed applications. Then we set the quotas of the programmes so high
that none of them will be full. We re-solve the problem, and we get a score-limit for
the nationwide quota. We continue with the following search process: if the score-limit
for a programme is higher than the score-limit for the nationwide quota then we suppose
that the programme quota will be binding. If the score-limit for the nationwide quota is

24



n m state financed size (Kb) memory used (Mb) run time (sec)

500 10 142 10239 75.5 4.5
1500 15 382 90813 640.9 1326.2
2500 15 n.a. 255196 n.a. n.a.

Table 6: Results for admission problems with common quotas show the time required,
memory used and size needed, where the number of applicants is equal to the nationwide
quota and it increases from 500 to 2500, while the number of programmes varies between
10 and 15.

higher then we suppose that this quota will bound. If we guess incorrectly then we get an
infeasible problem. As we see in Table 6, we get the results relatively quickly (even more
quickly if the problem is unfeasible), so we can have another try by changing the set of
programmes for which the programme quota is binding (a change is appropriate where the
the two score-limits are close to each other). In this heuristic way we could get a result
for the common quota model, where the running times are similar to the running times
described in Table 6.

However, the above method does not work if there are more nationwide quotas. We
generated a sample with two nationwide quotas and observed the following issues. It
can happen that an applicant’s first choice is a self-financed seat in the first subject with
nationwide quota where he has a relatively low score (for him the nationwide quota is
irrelevant, since he applies for a self-financed place). In the first step of our heuristic the
nationwide quota is set high enough that it will not bind. Our applicant is rejected due to
the programme quota. The applicant’s second choice is a state-financed seat belonging to
the other nationwide quota, where he has a relatively high score, so he will be accepted.
In the next step of our heuristic we set the programme quota very large, and we set the
nationwide quota to its real value to obtain score limits for the nationwide quota. But
in this market our applicant will be accepted to his first choice so the score limit for the
second nationwide quota decreases. In our simulation with this heuristic we found that
the score limits for nationwide quotas were lower than the minimum of the score limits
for the programmes that we obtained in the previous step.

Finally, we tested the solvability of our IP formulations for two nationwide programmes,
without using heuristics. In the generated instance we had 100 applicants choosing from
20 programmes. The first 10 programmes belong to the first nationwide quota and the
remaining belong to the other one. The applicants have different scores in the two sub-
jects, so they can be ranked differently with regard to the two nationwide quotas. All
the programmes have state-financed and self-financed forms (as before, nationwide quotas
restrict the number of state-financed applicants only). Each applicant chooses five op-
tions randomly from the 40 possibilities. Each programme quota is set to be 4 and each
nationwide quota is 20. It is worth mentioning again that this problem setting is still
NP-complete, as shown in [7]. As we can see from Table 7, we managed to obtain a stable
solution, but the running time was rather large (about 10 hours).
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n m state financed size (Kb) memory used (Mb) run time (sec)

100 2x10 20;20 291 323.7 39560.1

Table 7: Results for admission problems with common quotas show the time required,
memory used and size needed, where the number of applicants is 100, the number of
programmes is 20 with two nationwide quotas, each containing 10 programmes.

Conclusion

As we described in the previous section, the combination of the four special features result
in interesting challenges in two ways. First, we need to define appropriate stability criteria
when both lower and upper quotas are present. Second, we need to combine the separate
integer programmes into a single programme that would result in a suitable solution for
the real application.

It would be also important to know whether these IP formulations may be solved within
a realistic timescale for such a large scale application as the Hungarian higher education
matching schemes, with around 100000 applicants. We have conducted such simulations
with IP formulations for the problems of score-limits with possible ties, lower quotas and
common quotas. From these experiments we concluded that the case of lower quotas is
tractable in practice, but the other two approaches turned to be infeasible to solve for
such large-scale problems. Therefore it seems to be very challenging to tackle the entire
problem with one complex IP formulation.

However, one could always try to solve our special college admissions problems with
other approaches, e.g. with different integer programming formulations, or with constraint
programming methods. Finally, it is worth mentioning that our models may be useful in
other applications as well, such as controlled school choice (see e.g. [2]), resident allocation
with distributional constraints (see e.g. [19]), or for finding stable solutions with additional
restrictions, such as matchings with no Pareto-improving swaps [17].
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