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Abstract. There are real life applications (e.g., requests of http ses-
sions in web browsing) with a finite number of events and correlated
inter-arrival times. Terminating point processes can be used to model
such behavior. Transient Markov arrival processes (TMAPs) are compu-
tationally appealing terminating point processes which are terminating
versions of Markov arrival processes.
In this work we propose algorithms for creating a TMAP based on empir-
ical measurement data and compare various (series/parallel, CPU/GPU)
implementations of the EM method for TMAP fitting.

1 Introduction

Stochastic models with background continuous time Markov chain (CTMC) are
widely used in stochastic modeling. Phase type (PH) distributions and Markov
arrival processes (MAP) exemplify the flexibility and the ease of application of
such models. In this work we cope with terminating stochastic processes [1].
Indeed, Phase type distributions are defined by a terminating (also referred to
as transient) background Markov chain, but it generates exactly one event. A
transient Markovian arrival process (TMAPs) is a point processes with a finite
number of possibly correlated inter event times which is governed by a termi-
nating background Markov chain [8]. Basic properties of TMAPs, such as the
distribution of the number of generated arrivals or the time until the last arrival,
are presented in [8], further properties and moments based characterization are
discussed in [6]. TMAPs can be used in a wide range of application fields from
traffic modeling of computer systems to risk analysis, including also population
dynamics in biological systems. For instance TMAPs are applied to women’s
lifetime modeling in several countries in [5].

In this work we consider the parameter estimation of TMAPs to experimental
data sets based on the EM method. The EM method has been used successfully
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for parameter estimation of several models with background Markov chains,
e.g., for PH distributions [3], for PH distributions with structural restriction
[10], for MAPs [4], for MAPs with structural restrictions [9, 7]. The experiences
from these previous research results indicate that the inherent redundancy of the
stochastic models with background Markov chains makes the parameter estima-
tion of the general models inefficient. In this work we avoid the implementation
of the EM based estimation of general TMAPs and immediately apply a sim-
ilar structural restriction as the one which turned out to be efficient in case
of PH distributions [10] and MAPs [9, 7]. The formulas of the EM method for
TMAP fitting show similarities with the ones for MAP fitting in [7], but there
are introcate details associated with the handling of background process termi-
nation which require a non-trivial reconsideration of the expectation and the
maximization steps of the method.

Apart of the algorithmic description of the EM method for TMAP fitting we
pay attention to efficient implementation for both traditional computing devices
(CPU) and graphics processing unit (GPU). Both platforms required various
implementation optimizations for efficient computing of the steps of the fitting
method. Together with the fitting results and the related computation times
we present the applied implementation optimization methods and the related
considerations.

The rest of the paper is organized as follows. The next section summarizes
the basic properties of TMAPs. Section 3 presents the theoretical foundation of
the EM method for TMAP fitting and the high level procedural description of
the method. Section 4 discusses several implementation versions for CPU as well
as for GPU-based computation. Numerical results are provided in Section 5 and
the paper is concluded in Section 6

2 Transient Markovian Arrival Processes

Transient Markovian Arrival Processes (TMAPs) are continuous time terminat-
ing point processes where the inter-arrival times depend on a background Markov
chain, hence they can be dependent.

TMAPs can be characterized by an initial probability vector, α, holding the
initial state distribution of the background Markov chain at time 0 (α1 = 1,
where 1 is the column vector of ones), and two matrices, D0 and D1. Matrix
D0 contains the rates of the internal transitions that are not accompanied by
an arrival, and matrix D1 consists of the rates of those transitions that generate
an arrival. However, contrary to non-terminating MAPs, the generator matrix
of the background Markov chain of TMAPs, D = D0 +D1, is transient, that
is D1 6= 0 and the non-negative vector d = −D1 describes the termination
rates of the background Markov chain. Based on practical considerations we
assume that the termination is an observed event (an arrival), which means that
a TMAP generates at least one arrival. (If only the “arrival events” are known,
which is commonly the case in practice, the TMAPs which do not generate
any arrival are not observed. Without knowing how many TMAPs terminated
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Fig. 1. The structure of the Markov chain representing the number of arrivals and the
state of the background process.

without generating any arrival event there is no information to estimate the
parameters of those invisible cases.) It also means that the TMAPs considered
here are special cases of the ones defined in [8], since we assume that d0 = 0 and
our vector d equals to vector d1 in [8]. The fact that the background Markov
chain is transient ensures that the number of events generated by the process
is finite. The Markov chain representing the number of arrivals and the state of
the background process is depicted in Figure 1.

Matrix P = (−D0)−1D1 describes the state transition probabilities embed-
ded at arrival instants. P holds the state transition probabilities of a transient
discrete time Markov chain (DTMC) with termination vector p = 1−P1. Note
that P is sub-stochastic matrix (it has non-negative elements and P1 ≤ 1), and
(I − P )−1p = 1 holds.

In case of TMAPs not only the statistical quantities related to the inter-
arrival times are of interest, but also the ones related to the number of generated
arrivals.

The number of arrivals K is characterized by a discrete phase-type (DPH)
distribution with initial vector α and transition probability matrix P . Hence,
the mean number of arrivals is given by

E(K) =

∞∑
k=1

αkP k−1p = α(I − P )−2p = α(I − P )−11. (1)

If the inter-arrival times are denoted by X1,X2, . . . , then the joint density
function of the inter-arrival times is

f(x1, x2, . . . , xk) = lim
∆→0

1

∆
P (X1 ∈ (x1, x1 +∆), . . . ,Xk ∈ (xk, xk +∆))

= αeD0x1D1e
D0x2D1 · · · eD0xk(D11 + d).

(2)

If it exists, the nth moment of Xk+1 is

E
(
Xnk+1|Xk+1 <∞

)
=
E
(
Xnk+1I{Xk+1<∞}

)
P (Xk+1 <∞)

=
n!αP k(−D0)−n1

αP k
1

. (3)

The mean of the inter-arrival times E(X ) is not as easy to express as for

ordinary MAPs, it is obtained from E(X ) = E
(∑K

k=1 Xk
)
/E(K) , where the



numerator is derived as

E

( K∑
k=1

Xk

)
=

∞∑
κ=1

E

(
I{K=κ}

K∑
k=1

Xk

)
=

∞∑
κ=1

κ−1∑
i=0

αP iUP κ−1−ip

=

∞∑
i=0

∞∑
κ=0

αP iUP κp = α(I − P )−1U(I − P )−1p,

(4)

where U = (−D0)−1, and the denominator is given by (1). As a result the mean
inter-arrival time is

E(X ) =
E
(∑K

k=1 Xk
)

E(K)
=
α(I − P )−1U(I − P )−1p

α(I − P )−2p
=
α(I − P )−1U1

α(I − P )−11
. (5)

To discuss the correlation of the inter-arrival times we introduce the notation
X̂k = Xk | Xk <∞. Note that X̂1 = X1 due to the modeling assumption of at
least one arrival. By this notation from (3) we have

E
(
X̂nk+1

)
=
n!αP kUn

1

αP k
1

.

The expectation of the product of two subsequent inter-arrival times is

E
(
X1X̂k+1

)
=
E
(
X1Xk+1I{Xk+1<∞}

)
P (Xk+1 <∞)

=
α(−D0)−2D1P

k−1(−D0)−2(D11 + d)

α(−D0)−1D1P
k−1(−D0)−1(D11 + d)

=
αUP kU1

αP k
1

,

(6)

where we used that (−D0)−1D11 + d = 1, due to D01 +D11 + d = 0. Based
on the joint expectation the correlation is

Corr(X1, X̂k + 1) =
E
(
X1X̂k+1

)
− E(X1)E

(
X̂k+1

)
√
E(X 2

1 )− E2(X1)

√
E
(
X̂ 2
k+1

)
− E2

(
X̂k+1

) . (7)

3 An EM Algorithm for TMAPs

In this section an EM algorithm is presented to create a TMAP from mea-

surement data. The measurement data is given by samples X = (x
(`)
k , k =

1, . . . ,K`, ` = 1, . . . , L). We refer the set of dependent samples for a given ` as
the `th run, where the `th run is composed by K` samples. The aim of the EM
algorithm is to find Θ = (α,D0,D1) by which the likelihood of the observations,

L(Θ|X) =

L∏
`=1

αeD0x
(`)
1 D1 · · · eD0x

(`)
K`d, (8)
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Fig. 2. The special TMAP structure used for fitting.

is maximized. Introducing the run-dependent forward likelihood (row) vectors
recursively as

a(`)[k] =

{
α, k = 0,

a(`)[k − 1]eD0x
(`)
k D1, k > 0,

(9)

for ` = 1, . . . , L and k = 0, . . . ,K`−1, and backward likelihood (column) vectors
as

b(`)[k] =

{
eD0x

(`)
k D1b

(`)[k + 1], k < K`,

d, k = K`,
(10)

for ` = 1, . . . , L and k = K`, . . . , 1, the likelihood can be obtained as

L(Θ|X) =

L∏
`=1

a(`)[k`] · b(`)[k` + 1], (11)

for every k` = 0, . . . ,K` − 1.
The forward and backward likelihood vectors play an important role in the

presented EM algorithm. However, computing the matrix exponential terms is
numerically demanding. To reduce the computational complexity we apply the
same structural restriction as in [10], [9] and [7], thus we introduce a special
TMAP structure composed of a number of Erlang distributed branches. When
a given branch is selected the inter-arrival time is Erlang distributed defined by
the parameters (rate and order) of the selected Erlang branch, and after each
arrival event a sub-stochastic transition probability matrix determines which Er-
lang branch to choose for the next inter-arrival given the branch generating the
current arrival (see Figure 2). Due to applied structural restriction the computa-
tions of matrix exponential terms, e.g. in (8), are replaced by the computations
of scalar exponential terms in the form of (12).

In the proposed special structure the inter-arrival times are generated by
one of the R Erlang branches. The order and the intensity parameters of the
branches are denoted by ri, λi, for i ∈ {1, . . . , R}, respectively. The density of
the inter-arrival times generated by branch i is

fi(x) =
(λix)ri−1

(ri − 1)!
λie
−λix. (12)



After branch i generates an arrival event, the next one will be generated
by branch j with probability πi,j . The matrix of size R × R holding these
branch switching probabilities is denoted by Π = [πi,j ]. Since TMAPs gen-
erate a finite number of events we have Π1 < 1. Observe that the TMAP
with the applied structural restriction is uniquely characterized by parameters
Θ = {αi, ri, λi, πi,j , for i, j ∈ {1, . . . , R}}.

By this special TMAP structure the forward and backward likelihood vectors
can be obtained without computing matrix exponentials, since

a
(`)
i [k] =

M∑
j=1

a
(`)
j [k − 1]fj(x

(`)
k )πj,i, (13)

b
(`)
j [k] =

M∑
i=1

fj(x
(`)
k )πj,ib

(`)
i [k + 1]. (14)

The EM algorithm assumes that the dataX available for fitting is incomplete,

and there is a hidden data Y . In our case, the hidden data y
(`)
k ∈ Y is and integer

number representing the Erlang branch that generated the kth inter-arrival time

of run `, thus x
(`)
k . If the hidden data was known, the logarithm of the likelihood

would be easy to express, as

logL(Θ|X,Y ) =

L∑
`=1

K∑̀
k=1

log
(
f
y
(`)
k

(x
(`)
k )
)
. (15)

Maximizing (15) with respect to λi gives

λ̂i =

∑L
`=1

∑K`

k=1 ri · I{y(`)k =i}∑L
`=1

∑K`

k=1 x
(`)
k I{y(`)k =i}

, (16)

where λ̂i, and the similar subsequent notations, denotes the optimum assuming
Y is known. From [2] we have

π̂i,j =

∑L
`=1

∑K`−1
k=1 I{y(`)k =i,y

(`)
k+1=j}∑L

`=1

∑K`

k=1 I{y(`)k =i}

. (17)

Note that the summation over k in the denominator runs up to K`, while the one
in the numerator runs up to K` − 1, thus matrix Π̂ is sub-stochastic, reflecting
the terminating behavior of TMAPs. The maximum likelihood estimation for
the initial vector is

α̂i =
1

L

L∑
`=1

I{y(`)1 =i}. (18)



The hidden data is, however, unknown. The marginal distribution of the

hidden data y
(`)
k can be derived from the forward and backward likelihood vectors

leading to

q
(`)
i [k] = P (y

(`)
k = i|X,Θ) =

P (y
(`)
k = i,X|Θ)

P (X|Θ)

=

(
a
(`)
i [k − 1] · b(`)i [k]

)∏
m6=` a

(m)[0] · b(m)[1]∏L
m=1 a

(m)[0] · b(m)[1]

=
a
(`)
i [k − 1] · b(`)i [k]

α · b(`)[1]
, k = 1, . . . ,K`,

(19)

where we used a(`)[0] = α.
To characterize the joint distribution of the branches generating two consec-

utive inter-arrival times we also need the probabilities

q
(`)
i,j [k] = P (y

(`)
k = i, y

(`)
k+1 = j|X,Θ) =

P (y
(`)
k = i, y

(`)
k+1 = j,X|Θ)

P (X|Θ)

=
a
(`)
i [k − 1] · fi(x(`)k ) · πi,j · b(`)j [k + 1]

α · b(`)[1]
.

(20)

The calculation of q
(`)
i [k] and q

(`)
i,j [k] form the E-step of the algorithm.

In the M-step new estimates for Θ are obtained based on the distributions
of the hidden data. For λi from (16) and (19) we get

λi =

∑L
`=1

∑K`

k=1 ri · q
(`)
i [k]∑L

`=1

∑K`

k=1 x
(`)
k q

(`)
i [k]

=

∑L
`=1

∑K`
k=1 ria

(`)
i [k−1]b(`)i [k]

α·b(`)[1]∑L
`=1

∑K`
k=1 x

(`)
k a

(`)
i [k−1]b(`)i [k]

α·b(`)[1]

. (21)

Similarly, the new estimates for the branch switching probabilities are obtained
from (17) and (20) as

πi,j =

∑L
`=1

∑K`−1
k=1 q

(`)
i,j [k]∑L

`=1

∑K`

k=1 q
(`)
i [k]

=

∑L
`=1

∑K`−1

k=1 a
(`)
i [k−1]fi(x(`)

k )πi,jb
(`)
j [k+1]

α·b(`)[1]∑L
`=1

∑K`
k=1 a

(`)
i [k−1]b(`)i [k]

α·b(`)[1]

. (22)

Finally, probabilities αi are derived from (18) and (19), yielding

αi =
1

L

L∑
`=1

q
(`)
i [1] =

1

L

L∑
`=1

αib
(`)
i [1]

α · b(`)[1]
. (23)

4 Details of the Numerical Algorithm

The EM algorithm presented in Section 3 is not straight forward to implement in
an efficient way. While the special structure proposed for fitting does reduce the



Algorithm 1 Pseudo-code of the proposed EM algorithm

1: procedure EM-Fit(x
(`)
k , λi, πi,j , αi, ri)

2: LogLi← −∞
3: for iter = 1 to maxIter do
4: Compute and store conditional densities fi(x

(`)
k ) by (12)

5: for ` = 1 to L do
6: for k = 1 to K` do
7: Compute and store forward likelihood vectors a(`)[k] by (13)
8: end for
9: Compute and store backward likelihood vector b(`)[K`] by (10)

10: for k = K` − 1 down to l do
11: Compute and store backward likelihood vector b(`)[k] by (14)
12: end for
13: end for
14: oLogLi← LogLi
15: LogLi←

∑L
`=1 α · b

(`)[1]
16: if iter > 1 and (LogLi− LogLi) < ln (1 + ε) then
17: return (λi, πi,j , αi)
18: end if
19: Compute new estimates for λi by (21)
20: Compute new estimate for πi,j by (22)
21: Compute new estimate for αi by (23)
22: end for
23: return (λi, πi,j , αi)
24: end procedure

computational demand of the procedure significantly, the naive implementation
(shown in Figure 1) still contains many numerical pitfalls.

Our aim is to develop an implementation that enables the practical applica-
tion of the algorithm, thus

– the execution time must be reasonable with large data sets (containing mil-
lions of samples),

– the implementation must be insensitive to the order of magnitude of the
input data,

– the implementation should exploit the parallel processing capabilities of
modern hardware.

These items are addressed in the subsections below.

4.1 Initial guess for α, λi and Π

We use the following randomly generated initial parameters. α is a random
probability vector (composed of R uniform pseudo-random numbers in (0, 1)
divided by the sum of the R numbers). The mean run length of the data set

is computed as K̄ =
∑L
`=1K`/L, and based on that each row of matrix Π

is a random probability vector multiplied by 1 − 1/K̄ (that is, initially the



exit probability is the same, 1/K̄, in each Erlang branch). The initial values

for λi are computed based on the mean inter-arrival time T̄ =
∑L

`=1

∑K`
k=1 x

(`)
k∑L

`=1K`
,

and it is λi = ri/T̄ . Let xmax = max`,k x
(`)
k and λmax = maxi λi. In order to

avoid underflow during the computation of e−x
(`)
k λi in (12) we re-scale this initial

guess according to the representation limits of the single precision floating point
numbers with 8 + 16 bits, where one of the 8 bits of the mantissa indicates the
sign. That is 22

7 ∼ e88 is the representation limit. Accordingly, if xmaxλmax > 60
then we re-scale the initial intensity values to λi = 60λi

xmaxλmax
, where 60 is a

heuristic choice to be far enough from the representation limit (which is 88).

4.2 Improving numerical stability of the forward and backward
likelihood vectors computation

Computing vectors a(`)[k] and b(`)[k] by applying recursions (13) and (14) di-
rectly can lead to numerical overflow. To overcome this difficulty we express
these vectors in the normal form

a
(`)
i [k] = ȧ

(`)
i [k] · 2ä

(`)[k],

b
(`)
i [k] = ḃ

(`)
i [k] · 2b̈

(`)[k],
(24)

where ä(`)[k] and b̈(`)[k] are integer numbers and the values ȧ
(`)
i [k], ḃ

(`)
i [k] are

such that 0.5 ≤ ȧ(`)[k]1 < 1 and 0.5 ≤ 1
T ḃ(`)[k] < 1. For a given vector a

(`)
i [k],

ȧ
(`)
i [k] and ä(`)[k] can be obtained from

ȧ
(`)
i [k] =

a
(`)
i [k]

2dlog2(a(`)[k]1)e , ä(`)[k] =
⌈
log2(a(`)[k]1)

⌉
. (25)

To avoid the calculation of a
(`)
i [k] (that can under- or overflow), it is possible

to modify the recursion (13) to work with ȧ
(`)
i [k] and ä(`)[k] directly, leading to

ã
(`)
i [k] =

M∑
j=0

ȧ
(`)
i [k − 1]fj

(
x
(`)
k

)
πj,i,

ȧ
(`)
i [k] =

ã
(`)
i [k]

2dlog2(ã
(`)[k]1)e , ä(`)[k] = ä(`)[k − 1] +

⌈
log2(ã(`)[k]1)

⌉
.

(26)

Hence, in the first step ã
(`)
i [k] is computed, from which in the second step the

normalized quantity is derived and the exponent is incremented by the appro-

priate magnitude. To obtain the normal form of ȧ
(`)
i [0] and ä(`)[0], we can apply

(25). The treatment of the normal form of the backward likelihood vectors ḃ
(`)
i [k]

follow the same pattern.



The parameter estimation formulas using the normal form of the forward
and backward likelihood vectors are

λi =

∑L
`=1

1
αḃ(`)[1]

∑K`

k=1 riȧ
(`)
i [k − 1]ḃ

(`)
i [k]2ä

(`)[k−1]+b̈(`)[k]−b̈(`)[1]∑L
`=1

1
αḃ(`)[1]

∑K`

k=1 x
(`)
k ȧ

(`)
i [k − 1]ḃ

(`)
i [k]2ä(`)[k−1]+b̈(`)[k]−b̈(`)[1]

, (27)

πi,j =

L∑̀
=1

1
αḃ(`)[1]

K∑̀
k=1

ȧ
(`)
i [k − 1]fi

(
x
(`)
k

)
πi,j ḃ

(`)
i [k + 1]2ä

(`)[k−1]+b̈(`)[k+1]−b̈(`)[1]

∑L
`=1

1
αḃ(`)[1]

∑K`

k=1 ȧ
(`)
i [k − 1]ḃ

(`)
i [k]2ä(`)[k−1]+b̈(`)[k]−b̈(`)[1]

,

(28)

αi =
1

L

L∑
`=1

αiḃ
(`)
i [1]

αḃ(`)[1]
. (29)

Observe that the exponent of 2 depends only on the difference of ä(`)[k] and
b̈(`)[k] for consecutive k values according to (26), thus the multiplication and the
division with large numbers has been avoided.

Finally, the log-likelihood of the whole trace data can be computed as

L(Θ|X) = log

(
L∏
`=1

αb(`)[1]

)
=

L∑
`=1

log
(
αḃ(`)[1]

)
+ b̈(`)[1] log (2) . (30)

4.3 Serial implementations

For accuracy and performance comparison we have implemented three versions of
the algorithm shown in Figure 1 (with the discussed modifications for numerical
stability) :

– Java implementation using double precision floating point numbers,
– C++ implementation using double precision floating point numbers,
– C++ implementation using single precision floating point numbers.

4.4 Parallel implementation

We have adapted the presented algorithm to be executed on GPUs (graphics
processing units) by using CUDA library. GPUs are cheap in the sense of com-
puting power, however, their computing cores are much simpler compared to
the ones of CPU. Therefore to fully utilize the hardware low level technical de-
tails have to be considered such as the thread grouping, the multi-level memory
hierarchy, reducing the number of conditional jumps, memory operations, etc.

The entry part of the algorithm (shown in Figure 2) is executed on the host
environment (i.e. processed by CPU) from which the so called kernels (shown in
Figures 3, 4) are invoked to be executed on GPU device. Upon kernel launching
the number of threads in block, the number of blocks in grid and amount of
shared memory (in bytes) to be allocated for every block has to be specified.



After kernel launch host process waits until all the threads are processed by the
kernel, and then resumes.

The Kernel-a, shown in Figure 3, computes the normalized likelihood vec-
tors ȧ(`)[k], ḃ(`)[k] and their respective exponents ä(`)[k], b̈(`)[k]. The number of
threads in block and grid size can be chosen freely, so that to utilize the specific
capabilities of the GPU. However, the threads should be assigned with similar
amount of work in order not to waste computing resources.

The Kernel-b, shown in Figure 4, computes new parameter estimates
Θ = (λi, πi,j , αi). Synchronization between threads is necessary before com-
puting the actual parameter estimate after numerator and denominator values
are computed. Since thread synchronization is possible only within a block, the
number of blocks is determined by the number of πi,j estimates, thus R2. Thread
count in block can by chosen freely.

Note that work load for the kernels are different. The data runs are allocated
to threads in grid for Kernel-a. While for Kernel-b all the runs are allocated
among threads for every block.

Even run allocation to threads is a complex problem. A simple greedy solution
is to assign runs in descending order (of number of inter-arrival time samples) to
the thread, which has been assigned with the smallest number of inter-arrivals.

Global GPU memory accessing operations are slower compared to shared
memory. It is a common practice to load frequently used data from global mem-
ory into shared one and after calculations write results back into global memory.
In our case parameter estimates as well as structure parameters are uploaded in
shared memory.

Additionally previously computed likelihood vector values are cached for
computing the next ones. Also Erlang branch densities are computed and stored
in shared memory just before to be used in subsequent calculations.

Shared memory can be used for communication, since it is visible for all
the threads within block. In Kernel-b threads perform summation across the
assigned runs and the intermediate results are written to shared memory to be
loaded by one designated thread to compute the final estimate value.

5 Numerical Experiments

We start the section with a general note on the applied special structure. In spite
of the natural expectation that the result of the fitting (in terms of likelihood)
with the special structure is worse than the one with the general TMAP class
of the same size, however, similar to related results in the literature [9, 7] our
numerical experience is just the opposite. The general TMAP class is redundant
[6], and the EM algorithm goes back and forth between different representations
of almost equivalent TMAPs. Our special TMAP class has much less parame-
ters, and the benefit of optimizing according to less parameters dominates the
drawback coming from reduced flexibility of the special structure.

Hereafter we compare the behavior of the four implementations (three serial
ones (Java(double), C++(double), C++(single)) and the one for GPU) of the



Algorithm 2 Pseudo-code of the proposed EM algorithm (CUDA)

1: procedure EM-Fit-CUDA(x
(`)
k , λi, πi,j , αi, ri, {run allocation to threads})

2: Allocate device memory.
3: Copy data from host to device memory.
4: LogLi← −∞
5: for iter = 1 to maxIter do
6: Invoke Kernel-a for computing likelihood vectors and run likelihoods.
7: oLogLi← LogLi
8: Copy run likelihoods from device to host memory.
9: Compute trace data log-likelihood LogLi.

10: if iter > 1 and (LogLi− LogLi) < ln (1 + ε) then
11: Copy parameter estimates from device to host memory.
12: return (λi, πi,j , αi)
13: end if
14: Invoke Kernel-b for computing new parameter estimates.
15: end for
16: Copy parameter estimates from device to host memory.
17: Deallocate device memory.
18: return (λi, πi,j , αi)
19: end procedure

presented EM algorithm. All numerical experiments were made on an average
PC with an Intel Core 2 CPU clocked at 2112 MHz with 32KB L1 cache and
4096KB L2 cache, and an ASUS GeForce GTX 560 Ti graphics card with a GPU
clocked at 900 MHz having 1 GB of RAM and 384 CUDA cores. For the GPU
implementation the first kernel is launched with 64 blocks of 32 threads each,
the second one is launched with 9 (R2) blocks of 192 threads each.

Two data sets are considered, in the first one there are 1000000 runs and
8824586 inter-arrival times in total, and in the second one there are 2000000
runs and 14503248 inter-arrival times in total.

Based on the experiences in [7] we adopt three Erlang branches (R = 3) with
1, 2 and 3 states (r1 = 1, r2 = 2, r3 = 3). For fair comparison we have run 30
iterations of the EM algorithm in all cases (after which the algorithm seemed
to converge) and the compared results are always initiated with the same initial
guesses. The run times and log-likelihoods are compared in Table 1.

With 1 million samples With 2 million samples
Implementation Log-likelihood Execution time Log-likelihood Execution time

Java (double) −3.65998 · 107 14m 22s −5.73999 · 107 22m 15s
C++ (double) −3.65998 · 107 06m 21s −5.73999 · 107 10m 28s
C++ (single) −3.65902 · 107 06m 44s −5.73752 · 107 11m 04s

CUDA (single) −3.65997 · 107 46s −5.73997 · 107 01m 13s
Table 1. Execution times and log likelihoods of different implementations
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Fig. 3. Log-likelihood of 1000000 sample trace data obtained by C++(double) proce-
dure.
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Fig. 4. Log-likelihood of 2000000 sample trace data obtained by C++(double) proce-
dure.

Time necessary to allocate/deallocate arrays is not included in run time,
because of different C++ and Java memory management policies. However the
time for data allocation/deallocation on GPU device is included. The trace data
sample distribution among threads is done in advance, thus not included in run
time.

After every iteration log-likelihood was computed using double precision
floating point variables. Java (double) and C++(double) implementations gave
identical log-likelihoods and are shown in Figures 3, 4. Log-likelihoods obtained
by running C++(single) are relatively similar to ones acquired using C++ (dou-
ble) implementation. Therefore, it is more convenient to plot the difference of
log-likelihood obtained from C++(single) minus C++(double). The same applies
for results obtained by CUDA (single) implementation.

6 Conclusions

An EM procedure to estimate special structure TMAP parameters was devel-
oped and four of its implementations were tested by fitting reasonable large data
sets. The C++ implementations of the fitting procedure indicated that both the
single and the double precision floating points versions are stable, and converged



to similar limits. Due to the fact that the log-likelihood vectors of independent
runs can be computed independently parallel implementation on GPU can speed
up the procedure significantly. Log-likelihoods obtained by using CUDA imple-
mentation are close to ones obtained computing with serial implementation on
CPU.
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Algorithm 3 Pseudo-code of the Kernel-a

1: procedure Kernel-a(x
(`)
k , λi, πi,j , αi, ri, {run allocation to threads})

2: Identify index ti of thread within the block.
3: Identify index si of thread within all the threads in grid.
4: Reference shared memory.
5: if ti = 0 then
6: Copy estimates for λi, πi,j and αi from global memory to shared memory.
7: Compute absorbtion probabilities πi = 1 −

∑R
j=1 πi,j and store them in

shared memory.
8: end if
9: Synchronize threads within block.

10: for every ` assigned to si thread do
11: for j = 1 to R do

12: Compute densities fj
(
x
(`)
1

)
, fj

(
x
(`)
K`

)
by (12) and store them in shared

memory.
13: end for
14: for i = 1 to R do
15: Compute likelihoods ã

(`)
i [1], b̃

(`)
i [K`] according to (26) and store them in

shared memory.
16: end for
17: Compute exponents ä(`)[1], b̈(`)[K`] according to (26) and write them to

global memory (also keep values in registers for later use).
18: for i = 1 to R do
19: Compute normalized likelihoods ȧ

(`)
i [1], ḃ

(`)
i [K`] according to (26), cache

them in shared memory and write to global memory.
20: end for
21: for k = 2 to K` − 1 do
22: for j = 1 to R do

23: Compute densities fj
(
x
(`)
k

)
, fj

(
x
(`)
K`−k

)
and store them in shared

memory.
24: end for
25: for i = 1 to R do
26: Compute likelihoods ã

(`)
i [k], b̃

(`)
i [K` − k] according to (26) and store

them in shared memory.
27: end for
28: Compute exponents ä(`)[k], b̈(`)[K`−k] according to (26) and write them

to global memory (also keep values in registers for later use).
29: for i = 1 to R do
30: Compute normalized likelihoods ȧ

(`)
i [k], ḃ

(`)
i [K`−k] according to (26),

cache them in shared memory and write to global memory.
31: end for
32: end for
33: Compute `th run likelihood and write to global memory.
34: Compute `th run log-likelihood and sum up to register.
35: end for
36: Write sum of sample log-likelihoods into shared memory.
37: Synchronize threads within block.
38: Sum up all the run log-likelihoods within block and write to global memory.
39: end procedure



Algorithm 4 Pseudo-code of Kernel-b

1: procedure Kernel-b(x
(`)
k , λi, πi,j , αi, ri, {run allocation to threads})

2: Identify index (i, j) of the block within grid.
3: Identify index si of thread within the current block.
4: Reference shared memory.
5: for every ` assigned to si thread do
6: Read `th run’s likelihood value from global memory and store in register.
7: Compute part of (28) denominator for (`) and sum up in shared memory.
8: if K` > 1 then
9: Compute part of (28) numerator for (`) and sum up in shared memory.

10: end if
11: end for
12: Synchronize threads within block.
13: if si = 1 then
14: Read summed up values for denominator and numerator, compute new es-

timate πi,j by (28) and store in global memory.
15: end if
16: Synchronize threads within block.
17: if j = 1 then
18: for every ` assigned to si thread do
19: Compute part of (27) numerator and denominator for (`) and sum up

in shared memory.
20: end for
21: end if
22: Synchronize threads within block.
23: if si = 1 then
24: Read summed up values for denominator and numerator, compute new es-

timate λi by (27) and store in global memory.
25: end if
26: Synchronize threads within block.
27: if j = 1 then
28: for every ` assigned to si thread do
29: Compute part of (29) numerator for (`) and sum up in shared memory.
30: end for
31: end if
32: Synchronize threads within block.
33: if si = 1 then
34: Read summed up values for numerator, compute new estimate αi by (29)

and store in global memory.
35: end if
36: end procedure


