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Abstract 

 A monoaza-15-crown-5 lariat ether derived from D-glucose (1) has been applied as 

chiral phase-transfer catalyst in the Michael addition of diethyl, dimethyl, diisopropyl and 

dibenzyl malonates to enones under mild conditions to afford the adducts in good to excellent 

enantioselectivities. In the reaction of diethyl malonate with substituted trans-chalcone, the 

adducts formed in enantioselectivities up to 89% ee. Among the reactions of substituted 

diethyl malonates, that of diethyl acetoxymalonate gave the best results (96% ee). The effect 

of the substituents of the chalcone was also investigated in reaction with diethyl 

acetoxymalonate. Among the chalcones substituted on the β side, the para-substituted 

compounds resulted in the highest enantioselectivities (88-97% ee). The substituents on the α-

side of chalcone caused a decrease in the enantioselectivity, as compared to the unsubstituted 

case. The adducts having furyl or thiophenyl substituents were formed with >99% ee. The 

glucose-based catalyst also proved to be effective in the cases of diisopropyl and dibenzyl 

acetoxymalonates (including ee-s up to 99% ee). The reactions of diethyl acetoxymalonate 

with cyclic enones gave the corresponding Michael adducts in enantioselectivities up to 83%. 
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The absolute configuration of one of the new Michael adducts was determined by CD 

spectroscopy. 

 

Keywords: asymmetric Michael reactions, enantioselectivity, phase-transfer catalysis, sugar-

based crown ethers  

 

1. Introduction 

 

The formation of carbon-carbon bonds by the Michael addition of the appropriate 

carboanionic reagents to α,β-unsaturated carbonyl compounds is one of the most useful 

methods of remote functionalization in organic synthesis. The conjugate addition of 

malonates to enones, for example to chalcones, is particularly well-studied. Compounds with 

the chalcone backbone were reported to possess a wide range of biological activity, such as 

nematicide, antifungal, antiallergenic, antimicrobial, anticancer, antimalarial, and antifeedant 

properties. Malonates are traditionally regarded as important materials for the synthesis of the 

key intermediates of numerous active substances, but rarely found as pharmacophores 

belonging to the target compounds.
1,2

 Experiments are under way for the preparation of novel 

drugs for the treatment of type 2 diabetes.
3,4 

Therefore, the catalytic asymmetric version of the 

Michael addition of dialkyl malonates to chalcones has been studied extensively in the 

presence of different catalysts in recent years. For example, La-BINOL complexes,
 5

 L-proline 

derivatives,
6
 chiral aminoalcohol-Al complexes,

7
 pyrrolidylalkyl ammonium hydroxides,

8
 

chiral ammonium salts,
9 

chiral ionic liquids,
10

 chiral N,N’-dioxide-Sc complexes,
11 

chiral bis-

sulfonamide-Sr complexes,
12

 chiral bisphosphazide-Li complexes,
13

 chiral SIPAD-Co 

complexes,
14

 DPEN/NAP-MgO,
15

 were investigated as catalysts and organocatalysts.
16 

A few 

asymmetric syntheses were described using cinchona alkaloid-type quaternary ammonium 

salts as chiral phase-transfer catalysts.
17

  

Many phase-transfer catalytic methods have been developed that are simple and 

environmentally friendly.
18

 The phase-transfer catalytic asymmetric syntheses represent an 

attractive approach, in which the enantioselectivity is generated by a chiral crown catalyst. 

Optically active crown ethers belonging to this group may incorporate a carbohydrate scaffold 

as the source of chirality. The attachment of a side arm with potential cation coordination sites 

to the crown ethers results in complexing agents called lariat ethers. Previously, chiral 

monoaza-15-crown-5 type lariat ethers incorporating an α-D-glucopyranoside unit and a side-

arm containing a heteroatom at the end were synthesized in our laboratory. These 
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macrocycles possess a special complexing ability due to the flexible N-substituent. The 

overall complexing ability is influenced by the steric and electronic properties of the side 

arm.
19

 The crown ether derived from D-glucose (1) proved to be an efficient catalyst in a few 

asymmetric reactions.
20

 In this paper, the addition of diethyl, diisopropyl, dibenzyl malonates 

and their α-substituted variants to various α,β-unsaturated ketones under simple phase-transfer 

catalytic conditions in the presence of lariat ether 1 is described. The effect of the substituents 

of the Michael acceptors and nucleophiles on the asymmetric induction was investigated.  

 

 

Figure 1. Lariat ether 1 incorporating a methyl-α-D-glucopyranoside unit used as a catalyst in 

the Michael reactions 

 

2. Results and discussion 

 

The methyl-α-D-glucopyranoside-based lariat ether 1 synthetized by us earlier
19

 was 

found to be an efficient enantioselective catalyst in the addition of diethyl malonate and α-

substituted diethyl malonates to trans-chalcones and cyclic enones.
 

In our experiments, the conjugate addition of diethyl malonates to trans-chalcones 2a-

m was carried out in a solid-liquid two phase system employing the starting materials in a 1:4 

mixture of THF and diethyl ether as the solvent, and using 15 mol% of crown ether 1, and 2 

equiv. of dry Na2CO3 as the solid phase at ambient temperature. The Michael adducts were 

obtained by preparative TLC, and the enantiomeric purity was measured by chiral HPLC.  

First, the reaction of diethyl malonate with substituted chalcones (2a-g) was studied. 

The experimental results are shown in Table 1. 

As it can be seen in Table 1, the reactions resulted in the corresponding Michael 

adducts (4a-g) after a reaction time of 10-14 days in variable yields of 50-81%. Catalyst 1 

induced only a modest enantiomeric excess (36%) in the reaction of chalcone (2a) with 

diethyl malonate (Table 1, entry 1). Interestingly, the enantioselectivity decreased or 

increased depending on the position of the substituent of chalcone. The lowest ee values were 

observed in the reaction of 2-OMe and 2-Cl substituted chalcones (Table 1, entries 2 and 5). 
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The 3-OMe and 3-Cl adducts were formed with 25% and 36% ee (Table 1, entries 3 and 6), 

while the highest optical purities (89% and 85% ee) were measured in the case of the para-

substituted compounds (Table 1, entries 4 and 7). It seems that independently of the electronic 

properties of the substituents, mainly steric effects influence the asymmetric induction. 

 

Table 1. Asymmetric addition of diethyl malonate (3a) to trans-chalcones (4a-g) in the 

presence of lariat ether 1 

 

 

Entry Chalcone R Time (day) 
Product and 

yield (%) 
a
 

ee (%)  

1 2a H 10 4a: 63 36 (S)
b
 

2 2b 2-OMe 12 4b: 50 24 

3 2c 3-OMe 11 4c: 81 25 

4 2d 4-OMe 14 4d: 56 89 

5 2e 2-Cl 12 4e: 66 27 

6 2f 3-Cl 12 4f: 53 36 

7 2g 4-Cl 14 4g: 65 85 

a
 Based on isolation by preparative TLC; 

b
 The absolute configuration was determined by comparison of the 

optical rotation value in the literature 
5f

 

 

Thereafter, we wished to investigate the effect of the substituents of diethyl malonate. 

A few α-substituted (R = NHAc, Me, allyl, OAc) diethyl malonates were reacted with 

chalcone (2a). In case of substituents R
 
= Et, Bu, Bn, Ph and NO2, chalcone 2a did not enter 

into reaction with the corresponding diethyl malonates. The results are shown in Table 2. 

As it can be seen from Table 2, the keto-diester products (4a, 5, 6, 7, 8a) could be 

obtained in moderate to good yields (55-72%). Product 7 was obtained in a modest yield of 

27%. Catalyst 1 induced only a modest enantiomeric excess in the reaction of chalcone 2a 

with diethyl malonate (3a), diethyl acetamidomalonate (3b), diethyl methylmalonate (3c), and 

diethyl allylmalonate (3d), when the ee values were 36%, 46%, 31% and 63%, respectively. 

Surprisingly, the ee was increased to 96%, when diethyl acetoxymalonate (3e) was used as the 

nucleophile (Table 2, entry 5).
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Table 2. Asymmetric addition of α-substituted diethyl malonates (3a-e) to trans-chalcone 

(2a) in the presence of lariat ether 1 

 

 

Entry Malonate R Time (day) 
Product and 

yield (%) 
a
 

ee (%)  

1 3a H 10 4a: 63 36 

2 3b NHAc 9 5: 55 46 

3 3c Me 7 6: 65 31 

4 3d CH-CH=CH2 9 7: 27 63 

5 3e OAc 7 8a: 72 96 

a
 Based on isolation by preparative TLC  

 

Table 3. Asymmetric addition of diethyl acetoxymalonate (3e) to trans-chalcones (8a-k) in 

the presence of lariat ether 1 

 

 

Entry Chalcone Ar Time (day) 
Product and 

yield (%) 
a
 

ee (%)  

1 2a C6H5 7 8a: 72 96 (S) 

2 2b 2-MeO-C6H4 9 8b: 40 39 

3 2c 3-MeO-C6H4 3 8c: 57 72 

4 2d 4-MeO-C6H4 3 8d: 73 97 

5 2e 2-Cl-C6H4 6 8e: 45 15 

6 2f 3-Cl-C6H4 3 8f: 61 81 

7 2g 4-Cl-C6H4 1.5 8g: 76 88 

8 2h 2-NO2-C6H4 3 8h: 60 72 

9 2i 3-NO2-C6H4 1.5 8i: 78 81 

10 2j 4-NO2-C6H4 1 8j: 73 89 

11 2k naphthalene-2-yl 3 8k: 42 52 
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12 2l thiophen-2-yl 2 8l: 72 33 

13 2m pyridin-3-yl 3 8m: 23 36 

a
 Based on isolation by preparative TLC  

In the following part of our work, the effect of the nature and position of the 

substituents of the chalcone (2b-j) on the enantioselectivity has been studied in reaction with 

diethyl acetoxymalonate (3e). A few preliminary results have already been published.
21

 

Besides that, we used enones containing naphthalene, thiophene and pyridine rings as the aryl 

substituents (Table 3). 

In the presence of lariat ether 1 derived from D-glucose, adducts 8a-j were obtained in  

moderate to good yields (40-78%) and in varying enantioselectivities (15-97% ee). The 

outcome was highly dependent on the nature of the substituents, and on their position in the 

phenyl ring. It can be seen that in the cases investigated, the substituents on the β side, with 

one exception, decreased the extent of the asymmetric induction as compared to the 

unsubstituted instance (8a). The methoxy-substituted adducts 8b, 8c and 8d were obtained in 

ee values of 39%, 72% and 97%, respectively (Table 3, entries 2-4). In the reaction of 2-Cl, 3-

Cl and 4-Cl-chalcones (2e-g) with malonate 3e, ee-s of 15%, 81% and 88%, respectively, 

were detected (Table 3, entries 5-7), while with the 2-, 3- and 4-nitro-chalcones (2h-j), ee 

values of 72%, 81% and 89%, respectively, were measured (Table 3, entries 8-10). It can be 

seen that the meta- and especially the ortho-substituents, that are closer to the reaction center, 

cause a significant decrease in the ee values (Table 3, entries 2-3, 5-6 and 8-9), while, within 

the above series, the maximum ee values were obtained with the para-substituted chalcones 

(Table 3, entries 4, 7 and 10). This tendency seems to be almost independent of the nature of 

the substituent, as electron-withdrawing and electron-donating groups have had a rather 

similar effect. The above phenomenon refers to the negative effect of steric hindrance if 

catalyst 1 is applied. Among the substituted chalcones, the 4-methoxy adduct (8d) was formed 

with the highest (97%) enantioselectivity.
 
Adduct 8k containing a naphthalene unit and 

products 8l and 8m with heteroaromatic ring were formed with 52%, 33% and 36% ee, 

respectively. All Michael adducts obtained in the above experiments have a positive optical 

rotation. 

Subsequently, we studied the effect of the substituents on the α-side of the chalcones 

(9a-i) on the enantioselectivity using diethyl acetoxymalonate (3e) as the reaction partner 

(Table 4, entries 1-10). 

 One can see from Table 4 that the yield of the Michael adducts 11 decreased in the 

following order of the substituents: NO2 (73-84%), Cl (50-67%) and MeO (35-50%). At the 
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same time, with one exception (11h), the adducts 11 were obtained in low to medium ee 

values. The 3-MeO-substituted compound 11h was formed in an ee of 96%. No regularity on 

the effect of the position of the ring substituents could be found. Using the nitro-chalcones, 

the 4-NO2 derivative 11c was obtained in the best ee (58%). The chloro-substituted adducts 

(11d-f) were formed in ee values of 26-33%, while the products with MeO-groups (11g-i) 

were prepared in ee values of 27%, 96%, and 59%. It can be seen that regarding the reaction 

of the chalcones substituted on the α-side, catalyst 1 generated the highest asymmetric 

induction (96%) in the addition to the 3-MeO-chalcone (9h). 

 

Table 4. Asymmetric addition of diethyl acetoxymalonate (3e) to trans-chalcones (2a, 9a-i, 

10a-d) in the presence of lariat ether 1 

 

 

Entry Chalcone Ar Time (day) 
Product and yield 

(%) 
a
 

ee (%)  

1 2a Ph 7 8a: 72 96 

2 9a 2-NO2-C6H4 5 11a: 73 2 

3 9b 3-NO2-C6H4 4 11b: 84 7 

4 9c 4-NO2-C6H4 4 11c: 77 58 

5 9d 2-Cl-C6H4 4 11d: 67 33 

6 9e 3-Cl-C6H4 3 11e: 59 31 

7 9f 4-Cl-C6H4 3 11f: 50 26 

8 9g 2-MeO-C6H4 9 11g: 35 27 

9 9h 3-MeO-C6H4 9 11h: 50 96 

10 9i 4-MeO-C6H4 8 11i: 42 59 

11 10a naphthalen-1-yl 3 12a: 78 28
b
 

12 10b naphthalen-2-yl 72 12b: 52 45
c
 

13 10c furan-2-yl 2 12c: 75 >99 

14 10d thiophen-2-yl 2 12d: 76 >99 

a
 Based on isolation by preparative TLC; 

b
  22D  -7.6; 

c
  22D  +41.7, in CHCl3, c 1;  

 

 

The asymmetric induction was modest (28% and 45% ee) for the 1-naphthyl and 2-

naphthyl compounds. All substituted Michael adducts displayed a positive optical rotation. 



 - 8 - 

The Michael reaction of the two naphthyl-enones (10a and 10b) with malonate 3e is of 

interest (Table 4, entries 11-12), as the adduct (12a) derived from 1-naphthyl enone 10a 

revealed a negative optical rotation, and hence the opposite enantiomer may have 

predominated in the mixture, than in the reaction of the 2-naphthyl enone (10b). Substitution 

of the naphthyl group by a heteroaryl moiety led to a drastic increase of the ee values. The 2-

furyl and 2-thiophenyl derivatives (12c and 12d) were obtained with >99% ee (Table 4, 

entries 13 and 14).  

Next, we synthesized the acetoxy derivatives of the dimethyl, diisopropyl and dibenzyl 

malonates (3f-h). These acetoxymalonates were reacted with chalcone and 4-

methoxychalcone. Results can be seen in Table 5. The reactions required relatively long 

times, and gave the adducts (13a-f) in variable yields (23-75%). The reaction of the dimethyl, 

diisopropyl and dibenzyl malonates (3f-h) with chalcone (2a) gave the Michael adduct 13a-f 

with 61%, 92% and 34% ee, respectively (Table 5, entries 1-3).  

 

Table 5. Asymmetric addition of acetoxymalonates (3f-h) to chalcones (2a, 2d) in the 

presence of catalyst 1 

 

 

Entry R
1
 R

2
 Time (day) Product and yield (%)

a
 ee (%) 

1 H Me 12 13a: 53 61 

2 H iPr 12 13b: 51 92 

3 H Bn 6 13c: 75 34 

4 OMe Me 9 13d: 46 17 

5 OMe iPr 12 13e: 23 35 

6 OMe Bn 8 13f: 59 >99 

a
 Based on isolation by preparative TLC 

 

Another tendency was found for the reactions with the 4-methoxychalcone (2d) (where an ee 

of 97% was measured with the diethyl acetoxymalonate (Table 3, entry 4)). The reactions 

with dimethyl acetoxymalonate (3f) and diisopropyl malonate (3g) led to moderate 17% and 
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35% ee, but, surprisingly, in the case of dibenzyl acetoxymalonate (3h), adduct 13f was 

formed in an ee of >99% (Table 5, entry 6). It is noteworthy that the best combinations were 

the chalcone (2a) and diisopropyl malonate (3g), and the 4-methoxychalcone (2d) and 

dibenzyl malonate (3h) giving the adducts in ee-s of 92% and 99%, respectively.  

The glucose-based catalyst 1 was also tested in the reaction of dialkyl and dibenzyl 

acetoxymalonates (3e-h) with cyclic enones. Earlier, different catalysts have been developed 

for the asymmetric conjugate addition of dialkyl malonates to cyclic enones. 
5e, 5c, 22

 To the 

best of our knowledge, α-substituted malonates were not the subject of this type of study. In 

our experiments, the addition of acetoxymalonates (3e-h) to cyclic enones was carried out 

under solid-liquid phase-transfer conditions as described above (Table 6).  

It can be seen that applying the catalysts 1 in the case of diethyl acetoxymalonate, 

using 2-cyclopenten-1-one (14a) or 2-cyclohexen-1-one (14b), the Michael adducts (15a and 

15b) were obtained in 67% and 41% yields, respectively, and in ee values of 46% and 80%, 

respectively (Table 6, entries 1 and 2). Interestingly in the case of dimethyl and diisopropyl 

acetoxymalonates (13f and 13g) no addition could be observed even after a longer reaction 

time. 

 

Table 6. Asymmetric addition of substituted malonates (3e-j) to cyclic enones (14a-b) in the 

presence of lariat ether 1 

 

 

Entry Enone R
1
 R

2
 

Time 

(day) 

Product and 

yield (%) 
a
 

ee (%) 

1 14a: n=0 Et OAc 7 15a: 67 46 

2 14b: n=1 Et OAc 6 15b: 41 80 

3 14b: n=1 Me OAc 12 no product - 

4 14b: n=1 iPr OAc 11 no product - 

5 14b: n=1 Bn H 12 15c: 58 83 

6 14b: n=1 iPr H 10 no product - 

a
 Based on isolation by preparative TLC  

 

From among the unsubstituted malonates, crown 1 generated asymmetric induction only in 

the addition of dibenzyl malonate (3i), adduct 15c was formed in an ee of 83% (Table 6, entry 

5). Applying diisopropyl malonate (3j), there was no reaction at all (Table 6, entry 6). 
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The sign of the optical rotation for all compounds was positive, and the absolute 

configurations of a few products will be proved in the future.  

The mechanism of this reaction is well-known for the homogeneous variation. The 

mechanism is expanded with one step in the phase-transfer reaction (Scheme 1). In the first 

step, the lariat ether transfers the sodium cation accompanied by the anion into the organic 

phase, where the CH acid compound is deprotonated by a naked carbonate anion, and a 

(crown-Na
+
)-activated nucleophile-anion complex is formed that is an optically active 

supramolecular associate. This chiral associate is the attacking agent; its structure determines 

the chiral environment, and consequently the degree of the asymmetric induction in the 

reaction with chalcone. This step involves the nucleophilic addition of the conjugated base on 

the double bond of the chalcone. Finally, the keto-diester derivative is formed by proton 

abstraction from the protonated carbonate anion. The nucleophilic attack to the chalcone is 

governed by electronic and steric factors determined by the substituents of the chalcone. This 

situation is supported by the above results. 

 

 

 

Scheme 1  

 

Stereostructure of 8a 

 

The absolute configuration of the title compound (8a) was determined by combined 

spectroscopic and theoretical investigations. The experimental UV absorption and circular 
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dichroism (CD) spectra, together with the theoretically calculated spectra are displayed in 

Figure 2. 

 

The theoretical calculations were carried out on model molecule 8x, in which the two 

ethyl groups of 8a were replaced by methyl units. Although, 8x has the same structure that 

13a, however, 8x is a theoretical pure enantiomer of 13a which could not been obtained 

experimentally (see Table 5, entry 1). This way, the very large number of the possible 

conformers 8a had been reduced. It could, however, be presumed that the shortening of the 

alkyl chains affected the spectra only to a small extent.  
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Figure 2. Experimental UV absorption (top) and CD (below) spectra of 8a and the 

theoretically calculated spectra of the model molecule 8x. 

 

First, a molecular mechanics conformational analysis was performed. 18 stable 

conformers were identified, the energies of which were at most 10 kJ/mol above the energy of 

the most stable conformer. The geometries of these conformers were further optimized by 

DFT calculations, and their accurate conformational energies were computed applying the 

direct random phase approximation (dRPA) approach. 

The DFT optimization of the 18 initial structures resulted only in two low-energy 

conformers. The reason behind this may be that presumably strong repulsion forces act among 

the bulky substituents on the adjacent chiral and quaternary carbon atoms, which restrict the 
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conformational flexibility. The structures of the two low energy conformers are shown in 

Figure 3. The relative energy of 8x-B is higher by 1.1 kJ/mol, corresponding to molar 

fractions 0.61 for 8x-A and 0.39 for 8x-B at room temperature. 

These two conformers were selected for the calculation of the spectra. Their excitation 

energies, the oscillator strengths and rotator strengths were computed at the time-dependent 

DFT (TD-DFT) level. The theoretical UV absorption and CD curves for the individual 

conformers were obtained as the superposition of Gaussian functions, with centers at the 

wavelengths of the computed transitions, and with heights proportional to the corresponding 

calculated oscillator (rotator) strengths. The theoretical UV absorption / CD spectra were 

obtained as the Boltzmann-weighted average of the spectra of the two conformers, shifted and 

normalized so that the wavelength and the intensity of the strongest UV/CD band were 

identical in the calculated and experimental spectra.  

 

 

Figure 3. DFT-optimized geometry for the stable conformers of 8x with the randomly 

selected (S) configuration. 

 

The similarity of the calculated UV absorption spectrum of 8x to the experimental 

spectrum of 8a proves that the theoretical method applied was adequate. The structures of the 

calculated CD spectrum of 8x and the measured spectrum of 8a are rather similar. The signs 

of the dominant bands in the two spectra are identical, and their positions are close to each 

other. Therefore, the theoretical calculations suggest that the absolute configuration of the 

enantiomer obtained in the asymmetric reaction is (S), like the configuration of the 

8x-A 8x-B 
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enantiomer considered in the calculations. It has to be noted, however, that a fully reliable 

result can not be expected for this molecule, since the CD spectra of the two low-lying 

conformers are completely different, and very accurate Boltzmann weights would be required 

to model the experimental spectra. Though the applied computational protocol is relatively 

accurate, an error of a few kJ/mol in the calculated conformational energies is possible, which 

may considerably influence the averaged spectrum. 

 

3. Conclusions 

 

 The chiral monoaza-15-crown-5 type lariat ether incorporating an α-D-

glucopyranoside unit (1) was tested as an enantioselective catalyst in the Michael addition of 

diethyl, dimethyl, diisopropyl and dibenzyl malonates to enones, carried out under mild solid-

liquid phase-transfer conditions. We found that in the presence of this catalyst the substituents 

of the malonate and the chalcone had a significant impact on the yield and enantioselectivity. 

Among the reactions of substituted diethyl malonates, that of diethyl acetoxymalonate gave 

the best results (97% ee). The effect of the substituents of the chalcone was also investigated 

in reaction with diethyl acetoxymalonate. We found a correlation between the 

enantioselectivity and the position of the substituents of the chalcone. Among the chalcones 

substituted on the β side, the para-substituted compounds resulted in the corresponding 

Michael adducts with the highest enantioselectivity (88-97% ee). This phenomenon may refer 

to the role of steric effect on the asymmetric induction. The substituents on the α-side of 

chalcone caused a decrease in the enantioselectivity, as compared to the unsubstituted 

chalcone. The best enantioselectivities (>99%) were obtained in the case of the ketone 

derivatives containing heteroaromatic moiety. The addition of malonates and 

acetoxymalonates was also investigated with cyclic enones. The best result was achieved in 

the reaction of diethyl acetoxymalonate (80% ee) and dibenzyl malonate with 2-cyclohexen-

1-one (83% ee). We proposed a mechanism for the reaction of diethyl acetoxymalonate with 

chalcone under phase-transfer conditions. Absolute configuration of the new Michael adduct 

formed from diethyl acetoxymalonate with chalcone (8a) having positive optical rotation 

proved to be S on the basis of a joint CD spectral and theoretical study. 
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5. Experimental 

 

5.1. General 

 

Melting points were determined using a Büchi 510 apparatus and are uncorrected. The 

specific rotation was measured on a Perkin-Elmer 241 polarimeter at 22 °C. NMR spectra 

were obtained on a Bruker DRX-500 or Bruker-300 instrument in CDC13 with Me4Si as an 

internal standard. The exact mass measurements were performed using Q-TOF Premier mass 

spectrometer (Waters Corporation, 34 Maple St, Milford, MA, USA) in positive electrospray 

ionization mode. The UV absorption and CD spectra were measured in acetonitrile. The UV 

absorption spectra were recorded on an Agilent 8453 diode array spectrometer, the CD 

spectra on a JASCO-810 spectropolarimeter Analytical and preparative thin layer 

chromatography was performed on silica gel plates (60 GF-254, Merck), while column 

chromatography was carried out using 70-230 mesh silica gel (Merck). Chemicals were 

purchased from Aldrich Chem. Co.  

 

5.2. General procedure for preparation dialkyl acetoximalonates 

 

Dialkyl acetoxymalonates were synthesized by the method of Gortatowski and Armstrong.
23

 

Dialkyl malonate (10 mmol) was dissolved in glacial acetic acid (5 mL) and the solution was 

heated to 100 °C. Lead tetraacetate (4.43 g, 10 mmol) was added to the solution in small 

portions and the resulting mixture was stirred for 3 hours at 100 °C. After completion of the 

reaction the mixture was concentrated in vacuum. The resulting slurry was diluted with ether 

(20 mL) and filtered. The solid part was washed with ether (3 x 20 mL) then the combined 

organic phase was washed with saturated Na2CO3 solution (20 mL), dried and concentrated. 

Further purification was not necessary in case of dimethyl acetoxymalonate (3f) and 

diisopropyl acetoxymalonate (3g), while dibenzyl acetoxymalonate (3h) was purified by 

column chromatography (silica gel, CHCl3 as eluent). 

 

5.3.1. Dimethyl acetoxymalonate (3f) 
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Yield: 52% (0.99 g), colorless oil; 
1
H NMR (300 MHz, CDCl3), δ (ppm): 5.57 (s, 1H, CH), 

3.84 (s, 6H, 2 x OCH3), 2.23 (s, 3H, COCH3). 

 

5.3.2. Diisopropyl acetoxymalonate (3g) 

 

Yield: 86% (2.12 g), colorless oil; 
1
H NMR (300 MHz, CDCl3), δ (ppm): 5.45 (s, 1H, CH), 

5.13 (sep, J = 6.3 Hz, 2H, 2 x OCH(CH3)2), 2.22 (s, 3H, COCH3), 1.29 (t, J = 6.3 Hz, 12H, 4 

x CH3). 

 

5.3.3. Dibenzyl acetoxymalonate (3h) 

 

Yield: 34% (1.15 g), colorless oil; 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.76 (d, J = 7.2 Hz, 

2H, ArH), 7.55-7.47 (m, 1H, ArH), 7.41-7.34 (m, 2H, ArH), 7.20-7.08 (m, 5H, ArH), 5.15 

(dd, J = 26.4 Hz, J = 12.3 Hz, 2H, PhCH2), 4.89 (s, 2H, PhCH2), 4.36 (s, 1H, CH), 2.17 (s, 

3H, COCH3). 

 

5.4. General procedure for Michael additions  

 

Unsaturated compound (1.0 mmol), substituted malonate (1.5 mmol) and the crown ether 

(0.15 mmol) were dissolved in a mixture of anhydrous THF (0.6 mL) and Et2O (2.4 mL) and 

dry Na2CO3 (2.0 mmol) was added. The reaction mixture was stirred at room temperature. 

After completion of the reaction, the organic phase was concentrated in vacuo and the residue 

was taken up in CH2Cl2 (10 mL), and washed with cold 10% HCl (3 x 10 mL) and then with 

water (10 mL), dried (Na2CO3 and Na2SO4) and concentrated. The crude product was purified 

by preparative TLC using silica gel and hexane-EtOAc (5:1) as the eluent. The 

enantioselectivities were determined by chiral HPLC analysis in comparison with authentic 

racemic materials.  

 

5.5.1. Diethyl 2-(3-oxo-1,3-diphenylpropyl)malonate (4a) 

 

Yield: 63% (0.23 g), off-white solid; M.p 64-65 °C.  22D = +17.0 (c=1, CHCl3); 36% ee; 

major enantiomer tr = 16.2 min, minor enantiomer tr = 8.4 min (Chiralpack AD-H column, 
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80/20 hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.89 (dd, J = 

8.5 Hz, 1.5 Hz, 2H, ArH), 7.52 (td, J = 8.5 Hz, 1.5 Hz, 1H, ArH), 7.42 (t, J = 8.5 Hz, 2H, 

ArH), 7.29-7.21 (m, 4H, ArH), 7.19-7.14 (m, 1H, ArH), 4.25-4.14 (m, 2H, OCH2), 4.19 (d, J 

= 10 Hz, 1H, OCCHCO) 3.95 (q, J = 6 Hz, 2H, OCH2), 3.82 (d, J = 10 Hz, 1H, PhCH) 3.54 

(dd, J = 16.5 Hz, 4.5 Hz, 1H, COCH2), 3.46 (dd, J = 16.5 Hz, 9.5 Hz, 1H, COCH2), 1.24 (t, J 

= 6 Hz, 3H, CH2CH3), 1.01 (t, J = 6 Hz, 3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 

197.58, 168.31, 167.74, 140.42, 136.80, 133.07, 128.52, 128.44, 128.23, 128.11, 127.16, 

61.38, 61.66, 57.64, 42.60, 40.87, 14.05, 13.77. HRMS calcd for C22H24O5 368.1624. Found 

368.1629. 

 

5.5.2. Diethyl 2-(1-(2-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (4b) 

 

Yield: 50% (0.20 g), light yellow oil;  22D = +13 (c=1, CHCl3); 24% ee; major enantiomer tr 

= 7.6 min, minor enantiomer tr = 6.1 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.5 Hz, 2H, ArH), 7.51 (t, 

J = 7.5 Hz, 1H, ArH), 7.41 (t, J = 7.5 Hz, 2H, ArH), 7.17-7.12 (m, 2H, ArH), 6.82-6.77 (m, 

2H, ArH), 4.33 (dt, J = 9.5 Hz, 4Hz, 1H, ArCH), 4.24-4.13 (m, 3H, OCCHCO, OCH2), 3.92 

(q, J = 7 Hz, 2H, OCH2), 3.81 (s, 3H, OCH3), 3.63 (dd, J = 16.5 Hz, 9.5 Hz, 1H, COCH2), 

3.46 (dd, J = 16.5 Hz, 4 Hz, 1H, COCH2), 1.23 (t, J = 7 Hz, 3H, CH2CH3), 0.98 (t, J = 7 Hz, 

3H, CH2CH3). HRMS calcd for C23H26O6 398.1729. Found 398.1731. 

 

5.5.3. Diethyl 2-(1-(3-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (4c) 

 

Yield: 81% (0.32 g), white solid; M.p 64-66 °C;  22D = +18.6 (c=1, CHCl3); 25% ee; major 

enantiomer tr = 12.2 min, minor enantiomer tr = 9.9 min (Chiralpack AD-H column, 80/20 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.5 Hz, 

2H, ArH), 7.53 (t, J = 7.5 Hz, 1H, ArH), 7.42 (t, J = 7.5 Hz, 2H, ArH), 7.15 (t, J = 7.8 Hz, 

1H, ArH), 6.85 (d, J = 7.8 Hz, 1H, ArH), 6.80 (s, 1H, ArH), 6.71 (dd, J = 7.8 Hz, 1.2 Hz, 1H, 

ArH), 4.25-4.11 (m, 3H, ArCH, OCH2), 3.97 (q, J = 7.2 Hz, 2H, OCH2), 3.82 (d, J = 9.5 Hz, 

1H, OCCHCO), 3.74 (s, 3H, OCH3), 3.52 (dd, J = 16.8 Hz, 5.1 Hz, 1H, COCH2), 3.45 (dd, J 

= 16.8 Hz, 9 Hz, 1H, COCH2), 1.24 (t, J = 7.2 Hz, 3H, CH2CH3), 1.04 (t, J = 7.2 Hz, 3H, 

CH2CH3). HRMS calcd for C23H26O6 398.1729. Found 398.1728. 

 



 - 18 - 

5.5.4. Diethyl 2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (4d) 

 

Yield: 56% (0.22 g), white solid; M.p 65-67 °C;  22D = +17.1 (c=1, CHCl3); 89% ee; major 

enantiomer tr = 13.4 min, minor enantiomer tr = 20.7 min (Chiralpack AD-H column, 80/20 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.89 (d, J = 7.2 Hz, 

2H, ArH), 7.53 (t, J = 7.2 Hz, 1H, ArH), 7.42 (t, J = 7.2 Hz, 2H, ArH), 7.17 (d, J = 8.7 Hz, 

2H, ArH), 6.77 (d, J = 8.7 Hz, 2H, ArH), 4.26-4.08 (m, 3H, ArCH, OCH2), 3.96 (q, J = 7.2 

Hz, 2H, OCH2), 3.78 (d, J = 9.6 Hz, 1H, OCCHCO), 3.74 (s, 3H, OCH3), 3.51 (dd, J = 16.5 

Hz, 4.5 Hz, 1H, COCH2), 3.40 (dd, J = 16.5 Hz, 9.3 Hz, 1H, COCH2), 1.23 (t, J = 7.2 Hz, 3H, 

CH2CH3), 0.98 (t, J = 7.2 Hz, 3H, CH2CH3). HRMS calcd for C23H26O6 398.1729. Found 

398.1732. 

 

5.5.5. Diethyl 2-(1-(2-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (4e) 

 

Yield: 66% (0.27 g), yellow oil;  22D = + 14.1 (c=1, CHCl3); 27% ee;, major enantiomer tr = 

13.8 min, minor enantiomer tr = 6.7 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.95 (d, J = 7.2 Hz, 2H, ArH), 7.55 (t, 

J = 7.2 Hz, 1H, ArH), 7.44 (t, J = 7.2 Hz, 2H, ArH), 7.38-7.30 (m, 2H, ArH), 7.21-7.09 (m, 

2H, ArH), 4.72-4.62 (m, 1H, ArCH), 4.27-4.09 (m, 2H, OCH2), 4.10 (d, J = 8.7 Hz, 1H, 

OCCHCO), 4.05 (q, J = 6.9 Hz, 2H, OCH2), 3.72 (dd, J = 16.8 Hz, 8.7 Hz, 1H, COCH2), 3.46 

(dd, J = 16.8 Hz, 5.1 Hz, 1H, COCH2), 1.22 (t, J = 6.9 Hz, 3H, CH2CH3), 1.10 (t, J = 6.9 Hz, 

3H, CH2CH3). HRMS calcd for C22H23ClO5 402.1234. Found 402.1237. 

 

5.5.6. Diethyl 2-(1-(3-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (4f) 

 

Yield: 53% (0.21 g), yellow oil;  22D = +15.2 (c=1, CHCl3); 36% ee; major enantiomer tr = 

10.3 min, minor enantiomer tr = 8.5 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (dd, J = 7.5 Hz, 1.5 Hz, 2H, 

ArH), 7.54 (tt, J = 7.5 Hz, 1.5 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.27 (s, 1H, ArH), 

7.20-4.14 (m, 3H, ArH), 4.25-4.13 (m, 3H, ArCH, OCH2), 4.00 (q, J = 7 Hz, 2H, OCH2), 3.79 

(d, J = 9.5 Hz, 1H, OCCHCO), 3.54 (dd, J = 17 Hz, 4.5 Hz, 1H, COCH2), 3.45 (dd, J = 17 

Hz, 9.5 Hz, 1H, COCH2), 1.24 (t, J = 7 Hz, 3H, CH2CH3), 1.05 (t, J = 7 Hz, 3H, CH2CH3). 

HRMS calcd for C22H23ClO5 402.1234. Found 402.1233. 
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5.5.7. Diethyl 2-(1-(4-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (4g) 

 

Yield: 65% (0.26 g), yellow oil;  22D = +11.9 (c=1, CHCl3); 85% ee;, major enantiomer tr = 

9.6 min, minor enantiomer tr = 5.0 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C).
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.89 (d, J = 7.2 Hz, 2H, ArH), 7.54 (t, 

J = 7.2 Hz, 1H, ArH), 7.43 (t, J = 7.2 Hz, 2H, ArH), 7.22 (d, J = 7.2 Hz, 4H, ArH), 4.26-4.10 

(m, 3H, ArCH, OCH2), 3.98 (q, J = 6.9 Hz, 2H, OCH2), 3.78 (d, J = 9.6 Hz, 1H, OCCHCO), 

3.53 (dd, J = 16.8 Hz, 4.5 Hz, 1H, COCH2), 3.43 (dd, J = 16.8 Hz, 9.3 Hz, 1H, COCH2), 1.25 

(t, J = 6.9 Hz, 3H, CH2CH3), 1.05 (t, J = 6.9 Hz, 3H, CH2CH3). HRMS calcd for 

C22H23ClO5 402.1234. Found 402.1240. 

 

5.5.8. Diethyl 2-acetamido-2-(3-oxo-1,3-diphenylpropyl)malonate (5) 

 

Yield: 55% (0.23 g), light yellow powder; M.p. 84-86 °C;  22D = + 6.7 (c=1, CHCl3); 46% ee; 

major enantiomer tr = 11.8 min, minor enantiomer tr = 15.3 min (Chiralpack AS-H column, 

90/10 hexane/iPrOH, 0.8 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.92 (d, J = 

7.8 Hz, 2H, ArH), 7.52-7.46 (m, 1H, ArH), 7.40 (t, J = 7.5 Hz, 2H, ArH), 7.25-7.15 (m, 5H, 

ArH), 6.66 (br s, 1H, NH), 4.52 (dd, J = 10.8 Hz, 1.8 Hz, 1H, PhCH), 4.34-4.00 (m, 5H, 2 x 

OCH2, COCH2), 3.39 (dd, J = 17.4 Hz, 10.8 Hz, 1H, COCH2), 2.16 (s, 3H, COCH3), 1.26 (t, J 

= 6.9 Hz, 3H, CH2CH3), 1.23 (t, J = 6.9 Hz, 3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ 

(ppm): 197.97, 169.58, 167.70, 166.58, 138.23, 136.97, 132.76, 128.83, 128.42, 128.33, 

128.18, 127.67, 68.86, 63.06, 62.29, 46.30, 40.96, 23.40, 14.02, 13.87. HRMS calcd for 

C24H27NO6 425.1838. Found 425.1840. 

 

5.5.9. Diethyl 2-methyl-2-(3-oxo-1,3-diphenylpropyl)malonate (6) 

 

Yield: 65% (0.25 g), white powder; M.p. 88-91 °C;  22D = + 19.9 (c=1, CHCl3); 31% ee;  

major enantiomer tr = 19.0 min, minor enantiomer tr = 15.4 min (Chiralpack AD-H column, 

90/10 hexane/iPrOH, 0.8 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.91 (d, J = 

7.8 Hz, 2H, ArH), 7.54-7.45 (m, 1H, ArH), 7.41 (t, J = 7.5 Hz, 2H, ArH), 7.24-7.12 (m, 5H, 

ArH), 4.19-4.02 (m, 5H, 2 x OCH2, PhCH), 3.81-3.68 (m, 1H, COCH2), 3.64-3.51 (m, 1H, 

COCH2), 1.41 (s, 3H, CCH3), 1.28 (t, J = 6.9 Hz, 3H, CH2CH3), 1.19 (t, J = 6.9 Hz, 3H, 
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CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 197.80, 171.60, 171.37, 139.12, 137.05, 

132.83, 129.38, 128.46, 128.11, 128.06, 127.22, 61.45, 61.38, 57.92, 45.47, 41.31, 19.48, 

14.04, 13.95. HRMS calcd for C23H26NO5 382.1780. Found 382.1777. 

 

5.5.10. Diethyl 2-allyl-2-(3-oxo-1,3-diphenylpropyl)malonate (7) 

 

Yield: 27% (0.12 g), yellow oil;  22D = +18.5 (c=1, CHCl3); 63% ee; major enantiomer tr = 6.6 

min, minor enantiomer tr = 11.1 min (Chiralpack AS-H column, 80/20 hexane/iPrOH, 0.8 

mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.8 Hz, 2H, ArH), 7.51 (t, 

J = 7.2 Hz, 1H, ArH), 7.40 (t, J = 7.2 Hz, 2H, ArH), 7.25-7.15 (m, 5H, ArH), 5.90-5.72 (m, 

1H, CH=CH2), 5.12-5.05 (m, 2H, CH=CH2), 4.36-4.24 (m, 2H, OCH2), 4.22-4.12 (m, 3H, 

OCH2, PhCH), 3.79 (dd, J = 17.4 Hz, 10.5 Hz, 1H, COCH2), 3.64 (dd, J = 17.4 Hz, 2.4 Hz, 

1H, COCH2), 2.56 (dd, J = 14.1 Hz, 6.6 Hz, 1H, CH2CH=CH2), 2.35 (dd, J = 14.1 Hz, 7.8 Hz, 

1H, CH2CH=CH2), 1.33 (t, J = 7.1 Hz, 3H, CH2CH3), 1.24 (t, J = 7.1 Hz, 3H, CH2CH3). 
13

C 

NMR (75 MHz, CDCl3), δ (ppm): 197.78, 168.62, 168.47, 138.71, 137.08, 134.02, 132.80, 

129.16, 128.56, 128.19, 128.11, 127.34, 117.36, 61.67, 61.48, 55.93, 45.56, 41.27, 32.48, 

14.01, 13.92. HRMS calcd for C25H28O5 408.1937. Found 408.1932. 

 

5.5.11. Diethyl 2-acetoxy-2-(3-oxo-1,3-diphenylpropyl)malonate (8a) 

 

Yield: 72% (0.31 g), yellow oil;  22D = + 15.6 (c=1, CHCl3); 96% ee; major enantiomer tr = 

9.9 min, minor enantiomer tr = 13.2 min (Chiralpack AS-H column, 90/10 hexane/iPrOH, 0.8 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.5 Hz, 2H, ArH), 7.53 (t, 

J = 7.5 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.35 (d, J = 7.5 Hz, 2H, ArH), 7.26-7.20 

(m, 3H, ArH), 4.37 (dd, J = 8.5 Hz, 4 Hz, 1H, PhCH), 4.24-4.16 (m, 2H, OCH2), 4.02-3.89 

(m, 2H, OCH2), 3.67 (dd, J = 16 Hz, 4 Hz, 1H, COCH2), 3.59 (dd, J = 17.5 Hz, 8.5 Hz, 1H, 

COCH2), 2.23 (s, 3H, COCH3), 1.23 (t, J = 7 Hz, 3H, CH2CH3), 1.06 (t, J = 7 Hz, 3H, 

CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 196.75, 169.50, 165.95, 165.34, 138.35, 

136.76, 133.13, 129.47, 128.56, 128.10, 128.01, 127.65, 84.38, 62.45, 62.03, 45.49, 39.87, 

20.76, 13.82, 13.68. HRMS calcd for C24H26O7 426.1679. Found 426.1680. 

 

5.5.12. Diethyl 2-acetoxy-2-(1-(2-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (8b) 
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Yield: 40% (0.18 g), yellow oil;  22D = + 22.1 (c=1, CHCl3); 39% ee; major enantiomer tr = 

11.6 min, minor enantiomer tr = 9.1 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.88 (d, J = 7.5 Hz, 2H, ArH), 7.52 (t, 

J = 7.5 Hz, 1H, ArH), 7.41 (t, J = 7.5 Hz, 2H, ArH), 7.35 (dd, J = 7.5 Hz, 1.5 Hz, 1H, ArH), 

7.17 (td, J = 7.5 Hz, 1 Hz, 1H, ArH), 6.86 (t, J = 7.5 Hz, 1H, ArH), 6.78 (d, J = 8.5 Hz, 1H, 

ArH), 4.97 (dd, J = 9 Hz, J = 4.5 Hz, 1H, ArCH), 4.27-4.20 (m, 2H, OCH2), 4.03-3.91 (m, 

2H, OCH2), 3.74 (s, 3H, PhOCH3), 3.71 (dd, J = 17 Hz, 4.5 Hz, 1H, COCH2), 3.52 (dd, J = 

17 Hz, J = 9 Hz, 1H, COCH2), 2.19 (s, 3H, COCH3), 1.25 (t, J = 7 Hz, 3H, CH2CH3), 1.03 (t, 

J = 7 Hz, 3H, CH2CH3). HRMS calcd for C25H28O8 456.1784. Found 456.1790. 

 

5.5.13. Diethyl 2-acetoxy-2-(1-(3-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (8c) 

 

Yield: 57% (0.26 g), yellow oil;  22D = +15.9 (c=1, CHCl3); 72% ee; major enantiomer tr = 

23.1 min, minor enantiomer tr = 17.5 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.5 Hz, 2H, ArH), 7.54 (t, 

J = 7.5 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.14 (t, J = 8 Hz, 1H, ArH), 6.96-6.90 

(m, 2H, ArH), 6.75 (dd, J = 8 Hz, 2.5 Hz, 1H, ArH), 4.35 (dd, J = 9 Hz, 4 Hz, 1H, ArCH), 

4.25-4.15 (m, 2H, OCH2), 4.05-3.94 (m, 2H, OCH2), 3.76 (s, 3H, ArOCH3), 3.71 (dd, J = 18 

Hz, 4 Hz, 1H, COCH2), 3.56 (dd, J = 18 Hz, 9 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.23 

(t, J = 7 Hz, 3H, CH2CH3), 1.09 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for 

C25H28O8 456.1784. Found 456.1788. 

 

5.5.14. Diethyl 2-acetoxy-2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (8d) 

 

Yield: 73% (0.33 g), light yellow oil;  22D = + 17.9 (c=1, CHCl3); 97% ee; major enantiomer 

tr = 24.9 min, minor enantiomer tr = 22.8 min (Chiralpack AD-H column, 90/10 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.89 (dd, J = 7.5 Hz, 

1 Hz, 2H, ArH), 7.53 (t, J = 7.5 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.26 (d, J = 8.5 

Hz, 2H, ArH), 6.77 (d, J = 8.5 Hz, 2H, ArH), 4.31 (dd, J = 8.5 Hz, J = 4 Hz, 1H, ArCH), 

4.24-4.15 (m, 2H, OCH2), 4.06-3.92 (m, 2H, OCH2), 3.75 (s, 3H, ArOCH3), 3.71 (dd, J = 18 

Hz, 4 Hz, 1H, COCH2), 3.56 (dd, J = 18 Hz, J = 9 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 

1.23 (t, J = 7 Hz, 3H, CH2CH3), 1.10 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for 

C25H28O8 456.1784. Found 456.1785. 



 - 22 - 

 

5.5.15. Diethyl 2-acetoxy-2-(1-(2-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (8e) 

 

Yield: 45% (0.21 g), yellow oil;  22D = +14.6 (c=1, CHCl3); 15% ee; major enantiomer tr = 6.2 

min, minor enantiomer tr = 7.7 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.5 Hz, 2H, ArH), 7.54 (t, 

J = 7.5 Hz, 1H, ArH), 7.47 (dd, J = 7.5 Hz, 1.5 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 

7.34 (dd, J = 7.5 Hz, 1.5 Hz, 1H, ArH), 7.20-7.12 (m, 2H, ArH), 5.05 (dd, J = 9 Hz, 4 Hz, 1H, 

ArCH), 4.29-4.21 (m, 2H, OCH2), 4.10-3.94 (m, 2H, OCH2), 3.69 (dd, J = 17.5 Hz, 4 Hz, 1H, 

COCH2), 3.59 (dd, J = 17.5 Hz, 9 Hz, 1H, COCH2), 2.24 (s, 3H, COCH3), 1.26 (t, J = 7 Hz, 

3H, CH2CH3), 1.09 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for C24H25ClO7 460.1289. Found 

460.1295. 

 

5.5.16. Diethyl 2-acetoxy-2-(1-(3-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (8f) 

 

Yield: 61% (0.28 g), yellow oil;  22D = +14.9 (c=1, CHCl3); 81% ee; major enantiomer tr = 

4.16 min, minor enantiomer tr = 11.30 min (Chiralpack AS-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.91 (d, J = 7.5 Hz, 2H, ArH), 7.55 (t, 

J = 7.5 Hz, 1H, ArH), 7.44 (t, J = 7.5 Hz, 2H, ArH), 7.37-7.35 (m, 1H, ArH), 7.26-7.24 (m, 

1H, ArH), 7.21-7.17 (m, 2H, ArH), 4.35 (dd, J = 8.5 Hz, 4 Hz, 1H, ArCH), 4.24-4.16 (m, 2H, 

OCH2), 4.07-3.94 (m, 2H, OCH2), 3.76 (dd, J = 18 Hz, 4 Hz, 1H, COCH2), 3.56 (dd, J = 18 

Hz, 8.5 Hz, 1H, COCH2), 2.24 (s, 3H, COCH3), 1.23 (t, J = 7 Hz, 3H, CH2CH3), 1.11 (t, J = 7 

Hz, 3H, CH2CH3). HRMS calcd for C24H25ClO7 460.1289. Found 460.1293. 

 

5.5.17. Diethyl 2-acetoxy-2-(1-(4-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (8g) 

 

Yield: 76% (0.35 g), yellow oil;  22D = + 13.6 (c=1, CHCl3); 88% ee; major enantiomer tr = 

13.7 min, minor enantiomer tr = 11.9 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.89 (d, J = 7.5 Hz, 2H, ArH), 7.55 (t, 

J = 7.5 Hz, 1H, ArH), 7.44 (t, J = 7.5 Hz, 2H, ArH), 7.29 (d, J = 8.5 Hz, 2H, ArH), 7.22 (d, J 

= 8.5 Hz, 2H, ArH), 4.34 (dd, J = 9 Hz, J = 4 Hz, 1H, ArCH), 4.24-4.17 (m, 2H, OCH2), 4.06-

3.92 (m, 2H, OCH2), 3.73 (dd, J = 17.7 Hz, 4.5 Hz, 1H, COCH2), 3.56 (dd, J = 18 Hz, 9 Hz, 
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1H, COCH2), 2.23 (s, 3H, COCH3), 1.24 (t, J = 7 Hz, 3H, CH2CH3), 1.10 (t, J = 7 Hz, 3H, 

CH2CH3). HRMS calcd for C24H25ClO7 460.1289. Found 460.1294. 

 

5.5.18. Diethyl 2-acetoxy-2-(1-(2-nitrophenyl)-3-oxo-3-phenylpropyl)malonate (8h) 

 

Yield 60% (0.28 g), brown powder; M.p. 124-126 °C;  22D  +14.7 (c=1, CHCl3); 72% ee; 

major enantiomer tr = 13.8 min, minor enantiomer tr = 15.7 min (Chiralpack AD-H column, 

90/10 hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (d, J = 

12.5 Hz, 2H, ArH), 7.79 (d, J = 8 Hz, 1H, ArH), 7.60-7.54 (m, 2H, ArH), 7.49 (t, J = 8 Hz, 

1H, ArH), 7.44 (t, J = 8 Hz, 2H, ArH), 7.37 (t, J = 8 Hz, 1H, ArH), 5.18 (dd, J = 9.5 Hz, 4 Hz, 

1H, ArCH) 4.19 (q, J = 7 Hz, 2H, OCH2), 4.15-4.01 (m, 2H, OCH2), 3.78 (dd, J = 18 Hz, 9.5 

Hz, 1H, COCH2), 3.61 (dd, J = 18 Hz, 4 Hz, 1H, COCH2), 2.21 (s, 3H, COCH3), 1.21 (t, J = 7 

Hz, 3H, CH2CH3), 1.15 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for C24H25NO9 471.1529. 

Found 471.1533. 

 

5.5.19. Diethyl 2-acetoxy-2-(1-(3-nitrophenyl)-3-oxo-3-phenylpropyl)malonate (8i) 

 

Yield: 78% (0.37 g), orange oil;  22D = + 20.1 (c=1, CHCl3); 81% ee; major enantiomer tr = 

25.0 min, minor enantiomer tr = 21.1 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 8.30 (s, 1H, ArH), 8.10 (d, J = 8 Hz, 

1H, ArH), 7.91 (d, J = 7 Hz, 2H, ArH), 7.71 (d, J = 7.5 Hz, 1H, ArH), 7.57 (t, J = 7.5 Hz, 1H, 

ArH), 7.45 (td, J = 8 Hz, 2 Hz, 3H, ArH), 4.49 (dd, J = 9.2 Hz, 4 Hz, 1H, ArCH), 4.27-4.20 

(m, 2H, OCH2), 4.08-3.95 (m, 2H, OCH2), 3.81 (dd, J = 18.2 Hz, 4 Hz, 1H, COCH2), 3.64 

(dd, J = 18.2 Hz, 9 Hz, 1H, COCH2), 2.25 (s, 3H, COCH3), 1.26 (t, J = 7 Hz, 3H, CH2CH3), 

1.12 (t, J = 7 Hz, 3H CH2CH3). HRMS calcd for C24H25NO9 471.1529. Found 471.1531. 

 

5.5.20. Diethyl 2-acetoxy-2-(1-(4-nitrophenyl)-3-oxo-3-phenylpropyl)malonate (8j) 

 

Yield: 73% (0.35 g), yellowish-brown powder; M.p. 93-96 °C;  22D = + 13.8 (c=1, CHCl3); 

89% ee; major enantiomer tr = 54.1 min, minor enantiomer tr = 40.5 min (Chiralpack AD-H 

column, 90/10 hexane/iPrOH, 0.8 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 

8.27 (d, J = 9 Hz, 2H, ArH), 8.04 (d, J = 9 Hz, 2H, ArH), 7.35-7.21 (m, 5H, ArH), 4.36 (dd, J 

= 8.2 Hz, 5 Hz, 1H, ArCH), 4.25-4.18 (m, 2H, OCH2), 4.02-3.87 (m, 3H, COCH2, OCH2), 
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3.55 (dd, J = 18 Hz, 8.5 Hz, 1H, COCH2), 2.24 (s, 3H, COCH3), 1.25 (t, J = 7 Hz, 3H, 

CH2CH3), 1.07 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for C24H25NO9 471.1529. Found 

471.1527. 

 

5.5.21. Diethyl 2-acetoxy-2-(1-(naphthalen-2-yl)-3-oxo-3-phenylpropyl)malonate (8k) 

 

Yield: 42% (0.20 g), yellow oil;  22D = + 32.4 (c=1, CHCl3); 52% ee; major enantiomer tr = 

24.9 min, minor enantiomer tr = 22.8 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.90 (dd, J = 8.5 Hz, 1.5 Hz, 2H, 

ArH), 7.89-7.73 (m, 4H, ArH), 7.55-7.50 (m, 2H, ArH), 7.45-7.39 (m, 4H, ArH), 4.56 (dd, J = 

8.5 Hz, 4.5 Hz, 1H, ArCH), 4.26-4.16 (m, 2H, OCH2), 3.96-3.87 (m, 2H, OCH2), 3.84 (dd, J 

= 18 Hz, 4 Hz, 1H, COCH2), 3.71 (dd, J = 18 Hz, 8.5 Hz, 1H, COCH2), 2.25 (s, 3H, COCH3), 

1.22 (t, J = 7 Hz, 3H, CH2CH3), 0.98 (t, J = 7 Hz, 3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), 

δ (ppm): 196.70, 169.56, 165.99, 165.30, 146.20, 137.22, 133.69, 132.14, 133.14, 128.61, 

128.19, 127.86, 127.61, 127.55, 125.80, 125.67, 125.04, 124.08, 84.36, 62.44, 62.08, 45.53, 

40.17, 20.76, 13.85, 13.62. HRMS calcd for C28H28O7 476.1835. Found 476.1840. 

 

5.5.22. Diethyl 2-acetoxy-2-(3-oxo-3-phenyl-1-(thiophen-2-yl)propyl)malonate (8l) 

 

Yield: 72% (0.31 g), yellow oil;  22D = + 13.7 (c=1, CHCl3); 33% ee; major enantiomer tr = 

6.6 min, minor enantiomer tr = 8.0 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.91 (d, J = 7.5 Hz, 2H, ArH), 7.54 (t, 

J = 7.5 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.15 (d, J = 5 Hz, 1H, ArH), 6.96 (d, J = 

3.5 Hz, 1H, ArH), 6.85 (dd, J = 5 Hz, 3.5 Hz, 1H, ArH), 4.76 (dd, J = 8.5 Hz, 4.5 Hz, 1H, 

ArCH), 4.25-4.00 (m, 4H, 2 x OCH2), 3.69 (dd, J = 18 Hz, 4.5 Hz, 1H, COCH2), 3.56 (dd, J = 

18 Hz, 8.5 Hz, 1H, COCH2), 2.24 (s, 3H, COCH3), 1.22 (t, J = 7 Hz, 3H, CH2CH3), 1.15 (t, J 

= 7 Hz, 3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 196.30, 169.34, 165.28, 165.26, 

140.39, 136.59, 133.23, 128.60, 128.05, 127.40, 126.06, 125.35, 84.07, 62.53, 62.27, 41.35, 

41.12, 20.77, 13.79, 13.78. HRMS calcd for C22H24O7S 432.1243. Found 432.1248. 

 

5.5.23. Diethyl 2-acetoxy-2-(3-oxo-3-phenyl-1-(pyridin-3-yl)propyl)malonate (8m) 
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Yield: 23% (0.10 g), dark orange oil;  22D = + 16.1 (c = 1, CHCl3); ee 36%; major enantiomer 

tr = 13.6 min, minor enantiomer tr = 9.8 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 

2 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 8.62 (d, J = 1.2 Hz, 1H, ArH), 8.46 

(dd, J = 4.8 Hz, 1.2 Hz, 1H, ArH), 7.89 (d, J = 7.5 Hz, 2H, ArH), 7.70 (dt, J = 7.5 Hz, 1.2 Hz, 

1H, ArH), 7.56 (t, J = 7.5 Hz, 1H, ArH), 7.44 (d, J = 7.5 Hz, 2H, ArH), 7.20 (dd, J = 7.8 Hz, 

4.8 Hz, 1H, ArH), 4.39 (dd, J = 8.7 Hz, 4.2 Hz, 1H, ArCH), 4.28-4.16 (m, 2H, OCH2), 4.08-

3.92 (m, 2H, OCH2), 3.79 (dd, J = 18 Hz, 4.2 Hz, 1H, COCH2), 3.59 (dd, J = 18 Hz, 8.7 Hz, 

1H, COCH2), 2.24 (s, 3H, COCH3), 1.24 (t, J = 7.2 Hz, 3H, CH2CH3), 1.09 (t, J = 7.2 Hz, 3H, 

CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 196.16, 169.26, 165.62, 165.13, 150.80, 

148.88, 136.86, 136.42, 134.13, 133.41, 128.67, 127.99, 123.07, 83.98, 62.69, 62.33, 43.34, 

39.43, 20.71, 13.82, 13.74. HRMS calcd for C23H25NO7 427.1631. Found 427.1637. 

 

5.5.24. Diethyl 2-acetoxy-2-(3-(2-nitrophenyl)-3-oxo-1-phenylpropyl)malonate (11a) 

 

Yield: 73% (0.32 g), light orange oil;  22D = +0.1 (c=1, CHCl3); ee 2% ee; major enantiomer 

tr = 25.7 min, minor enantiomer tr = 11.9 min (Chiralpack AD-H column, 90/10 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3): δ (ppm): 8.05 (dd, J = 8.5 Hz, 

1Hz, 1H, ArH), 7.59 (td, J = 7.5 Hz, 1Hz, 1H, ArH), 7.54 (td, J = 7.5 Hz, 1.5 Hz, 1H, ArH), 

7.34-7.30 (m, 2H, ArH), 7.28-7.24 (m, 3H, ArH), 7.02 (dd, J = 7.5 Hz, 1Hz, 1H, ArH), 4.30-

4.24 (m, 3H, OCH2, COCH2), 4.01-3.89 (m, 2H, OCH2), 3.69 (dd, J = 18 Hz, 4 Hz, 1H, 

COCH2), 3.41 (dd, J = 18 Hz, 8.5 Hz, 1H, COCH2), 2.19 (s, 3H, COCH3), 1.31 (t, J = 7.5 Hz, 

3H, CH2CH3), 1.06 (t, J = 7.5 Hz, 3H, CH2CH3). HRMS calcd for C24H25NO9 471.1529. 

Found 471.1528. 

 

5.5.25. Diethyl 2-acetoxy-2-(3-(3-nitrophenyl)-3-oxo-1-phenylpropyl)malonate (11b) 

 

Yield: 84% (0.38 g), orange oil;  22D = +2.8 (c=1, CHCl3); 7% ee; major enantiomer tr = 19.5 

min, minor enantiomer tr = 17.6 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 8.71 (t, J = 2 Hz, 1H, ArH), 8.39 (d, J 

= 8 Hz, 1H, ArH), 8.23 (dt, J = 8 Hz, 1 Hz, 1H, ArH), 7.65 (t, J = 8 Hz, 1H, ArH), 7.38-7.34 

(m, 2H, ArH), 7.28-7.19 (m, 3H, ArH), 4.38 (dd, J = 8 Hz, 4.5 Hz, 1H, ArCH), 4.26-4.17 (m, 

2H, OCH2), 4.04-3.89 (m, 2H, OCH2), 3.90 (dd, J = 18 Hz, 4.5 Hz, 1H, COCH2), 3.56 (dd, J 
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= 18 Hz, 8 Hz, 1H, COCH2), 2.26 (s, 3H, COCH3), 1.26 (t, J = 6.5 Hz, 3H, CH2CH3), 1.06 (t, 

J = 6.5 Hz, 3H, CH2CH3). HRMS calcd for C24H25NO9 471.1529. Found 471.1531. 

 

5.5.26. Diethyl 2-acetoxy-2-(3-(4-nitrophenyl)-3-oxo-1-phenylpropyl)malonate (11c) 

 

Yield: 77% (0.35 g), yellow solid. M.p 97-99 °C.  22D = +1.3 (c=1, CHCl3); 58% ee; major 

enantiomer tr = 21.4 min, minor enantiomer tr = 19.3 min (Chiralpack AD-H column, 90/10 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 8.27 (d, J = 9 Hz, 

2H, ArH), 8.04 (d, J = 9 Hz, 2H, ArH), 7.36-7.32 (m, 2H, ArH), 7.28-7.21 (m, 3H, ArH), 4.35 

(dd, J = 8 Hz, 4.5 Hz, 1H, ArCH), 4.25-4.17 (m, 2H, OCH2), 4.03-3.90 (m, 2H, OCH2), 3.90 

(dd, J = 18 Hz, 4.5 Hz, 1H, COCH2), 3.55 (dd, J = 18 Hz, 8.5 Hz, 1H, COCH2), 2.24 (s, 3H, 

COCH3), 1.25 (t, J = 6 Hz, 3H, CH2CH3), 1.07 (t, J = 6 Hz, 3H, CH2CH3). HRMS calcd for 

C24H25NO9 471.1529. Found 471.1534. 

 

5.5.27. Diethyl 2-acetoxy-2-(3-(2-chlorophenyl)-3-oxo-1-phenylpropyl)malonate (11d) 

 

Yield: 67% (0.31 g), yellow oil;  22D = +12 (c=1, CHCl3); ee 33% ee; major enantiomer tr = 

15.9 min, minor enantiomer tr = 7.7 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.37-7.32 (m, 2H, ArH), 7.30-7.27 

(m, 2H, ArH), 7.25-7.20 (m, 4H, ArH), 7.16 (dd, J = 8.5 Hz, 1.5 Hz, 2H, ArH), 4.28-4.22 (m, 

3H, OCH2, ArCH), 4.00-3.89 (m, 2H, OCH2), 3.72 (dd, J = 18 Hz, 4.5 Hz, 1H, COCH2), 3.56 

(dd, J = 18 Hz, 9 Hz, 1H, COCH2), 2.20 (s, 3H, COCH3), 1.29 (t, J = 7 Hz, 3H, CH2CH3), 

1.05 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for C24H25ClO7 460.1289. Found 460.1285. 

 

5.5.28. Diethyl 2-acetoxy-2-(3-(3-chlorophenyl)-3-oxo-1-phenylpropyl)malonate (11e) 

 

Yield: 59% (0.27 g), yellow oil.  22D = +13 (c=1, CHCl3); ee 31%, major enantiomer tr = 8.3 

min, minor enantiomer tr = 11.0 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3): δ (ppm): 7.85 (t, J = 2 Hz, 1H, ArH), 7.78 (dt, 

J = 7.5 Hz, 1 Hz, 1H, ArH), 7.51 (d, J = 8 Hz, 1H, ArH), 7.38 (d, J = 8 Hz, 1H, ArH), 7.36-

7.33 (m, 2H, ArH), 7.25-7.19 (m, 3H, ArH), 4.34 (dd, J = 8 Hz, 4.5 Hz, 1H, ArCH), 4.24-4.16 

(m, 2H, OCH2), 3.98-3.89 (m, 2H, OCH2), 3.77 (dd, J = 18 Hz, 4.5 Hz, 1H, COCH2), 3.53 
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(dd, J = 18 Hz, 8 Hz, 1H, COCH2), 2.24 (s, 3H, COCH3), 1.24 (t, J = 7 Hz, 3H, CH2CH3), 

1.06 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for C24H25ClO7 460.1289. Found 460.1293. 

 

5.5.29. Diethyl 2-acetoxy-2-(3-(4-chlorophenyl)-3-oxo-1-phenylpropyl)malonate (11f) 

 

Yield: 50% (0.23 g), yellow solid; M.p. 70-72 °C;  22D = +3.9 (c=1, CHCl3); 26% ee; major 

enantiomer tr = 15.8 min, minor enantiomer tr = 9.2 min (Chiralpack AD-H column, 90/10 

hexane/iPrOH, 2 mL/min, 20 °C).
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.84 (d, J = 8.4 Hz, 

2H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 7.36-7.30 (m, 2H, ArH), 7.28-7.19 (m, 3H, ArH), 

4.34 (dd, J = 8.1 Hz, 4.2 Hz, 1H, ArCH), 4.25-4.14 (m, 2H, OCH2), 4.04-3.88 (m, 2H, 

OCH2), 3.76 (dd, J = 17.7 Hz, 4.2 Hz, 1H, COCH2), 3.52 (dd, J = 17.7 Hz, 8.1 Hz, 1H, 

COCH2), 2.23 (s, 3H, COCH3), 1.23 (t, J = 6.9 Hz, 3H, CH2CH3), 1.06 (t, J = 6.9 Hz, 3H, 

CH2CH3). HRMS calcd for C24H25ClO7 460.1289. Found 460.1291. 

 

5.5.30. Diethyl 2-acetoxy-2-(3-(2-methoxyphenyl)-3-oxo-1-phenylpropyl)malonate (11g) 

 

Yield: 35% (0.26 g), light yellow oil;  22D = +11.9 (c=1, CHCl3); 27% ee;, major enantiomer 

tr = 19.2 min, minor enantiomer tr = 22.0 min (Chiralpack AD-H column, 80/20 

hexane/iPrOH, 0.8 mL/min, 10 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.44-7.35 (m, 2H, 

ArH), 7.31-7.25 (m, 2H, ArH), 7.24-7.17 (m, 3H, ArH), 6.95-6.86 (m, 2H, ArH), 4.27 (dd, J = 

9 Hz, 6 Hz, 1H, ArCH), 4.22 (q, J = 7.2 Hz, 2H, OCH2), 4.01-3.98 (m, 2H, OCH2), 3.87 (s, 

3H, OCH3), 3.70-3.64 (m, 2H, COCH2), 2.20 (s, 3H, COCH3), 1.26 (t, J = 7.2 Hz, 3H, 

CH2CH3), 1.05 (t, J = 7.2 Hz, 3H, CH2CH3). HRMS calcd for C25H28O8 456.1787. Found 

456.1792. 

 

5.5.31. Diethyl 2-acetoxy-2-(3-(3-methoxyphenyl)-3-oxo-1-phenylpropyl)malonate (11h) 

 

Yield: 50% (0.23 g), light yellow oil;  22D = +7.0 (c=1, CHCl3); 96% ee; major enantiomer tr 

= 7.3 min, minor enantiomer tr = 6.0 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.50 (d, J = 7.8 Hz, 1H, ArH), 7.39 

(m, 1H, ArH), 7.36 (m, 1H, ArH), 7.35-7.31 (m, 2H, ArH), 7.26-7.19 (m, 3H, ArH), 7.08 (dd, 

J = 7.8 Hz, 1.8 Hz, 1H, ArH), 4.35 (dd, J = 8.4 Hz, 4.2 Hz, 1H, ArCH), 4.26-4.14 (m, 2H, 

OCH2), 4.05-3.89 (m, 2H, OCH2), 3.82 (s, 3H, OCH3), 3.73 (dd, J = 18 Hz, 4.2 Hz, 1H, 
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COCH2), 3.58 (dd, J = 18 Hz, 8.4 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.23 (t, J = 7.2 Hz, 

3H, CH2CH3), 1.06 (t, J = 7.2 Hz, 3H, CH2CH3). HRMS calcd for C25H28O8 456.1787. Found 

456.1790. 

 

5.5.32. Diethyl 2-acetoxy-2-(3-(4-methoxyphenyl)-3-oxo-1-phenylpropyl)malonate (11i) 

 

Yield: 42% (0.19 g), light yellow oil;  22D = +16.8 (c=1, CHCl3); 59% ee, major enantiomer tr 

= 18.3 min, minor enantiomer tr = 9.6 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.89 (d, J = 8.5 Hz, 2H, ArH), 7.35 

(d, J = 7.5 Hz, 2H, ArH), 7.24 (t, J = 7.5 Hz, 2H, ArH), 7.19 (t, J = 7.5 Hz, 1H, ArH), 6.89 (d, 

J = 8.5 Hz, 2H, ArH), 4.35 (dd, J = 8.5 Hz, 4 Hz, 1H, ArCH), 4.24-4.14 (m, 2H, OCH2), 4.01-

3.89 (m, 2H, OCH2), 3.85 (s, 3H, OCH3), 3.67 (dd, J = 17.5 Hz, 4 Hz, 1H, COCH2), 3.58 (dd, 

J = 17.5 Hz, J = 8.5 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.22 (t, J = 7 Hz, 3H, CH2CH3), 

1.06 (t, J = 7 Hz, 3H, CH2CH3). HRMS calcd for C25H28O8 456.1787. Found 456.1790. 

 

5.5.33. Diethyl 2-acetoxy-2-(3-(naphthalen-1-yl)-3-oxo-1-phenylpropyl)malonate (12a) 

 

Yield: 78% (0.36 g), orange oil;  22D = -7.6 (c=1, CHCl3); 28% ee; major enantiomer tr = 14.0 

min, minor enantiomer tr = 9.9 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 8.07 (d, J = 8.5 Hz, 1H, ArH), 7.94 

(d, J = 8.5 Hz, 1H, ArH), 7.82 (dd, J = 8.5 Hz, 1 Hz, 1H, ArH), 7.77 (d, J = 7.5 Hz, 1 Hz, 1H, 

ArH), 7.49-7.40 (m, 3H, ArH), 7.33 (d, J = 7.5 Hz, 2 Hz, 2H, ArH), 7.25-7.20 (m, 3H, ArH), 

4.38 (dd, J = 9 Hz, 4.5 Hz, 1H, ArCH), 4.30-4.21 (m, 2H, OCH2), 4.01-3.89 (m, 2H, OCH2), 

3.85 (dd, J = 17.5 Hz, 4.5 Hz, 1H, COCH2), 3.63 (dd, J = 17.5 Hz, 9 Hz, 1H, COCH2), 2.22 

(s, 3H, COCH3), 1.28 (t, J = 7 Hz, 3H, CH2CH3), 1.05 (t, J = 7 Hz, 3H, CH2CH3). 
13

C NMR 

(75 MHz, CDCl3), δ (ppm): 201.28, 169.49, 166.03, 165.32, 138.02, 136.11, 133.82, 132.41, 

129.90, 129.59, 128.24, 128.16, 127.73, 127.64, 126.94, 126.38, 125.50, 124.28, 84.31, 62.52, 

62.02, 46.00, 43.50, 20.74, 13.90, 13.67. HRMS calcd for C28H28O7 476.1835. Found 

476.1833. 

 

5.5.34. Diethyl 2-acetoxy-2-(3-(naphthalen-2-yl)-3-oxo-1-phenylpropyl)malonate (12b) 
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Yield: 52% (0.24 g), yellow oil;  22D = +41.7 (c=1, CHCl3); 45% ee; major enantiomer tr = 

21.8 min, minor enantiomer tr = 13.4 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 8.44 (s, 1H, ArH), 7.96 (d, J = 8 Hz, 

1H, ArH), 7.94 (dd, J = 8.5 Hz, 1.5 Hz, 1H, ArH), 7.85 (d, J = 8.5 Hz, 2H, ArH), 7.59 (td, J = 

8 Hz, 1 Hz, 1H, ArH), 7.55 (td, J = 8 Hz, 1 Hz, 1H, ArH), 7.41-7.37 (m, 2H), 7.26-7.23 (m, 

2H, ArH), 7.22-7.20 (m, 1H, ArH), 4.43 (dd, J = 8.5 Hz, 4 Hz, 1H, ArCH), 4.26-4.15 (m, 2H, 

OCH2), 4.03-3.91 (m, 2H, OCH2), 3.88 (dd, J = 18 Hz, 4 Hz, 1H, COCH2), 3.74 (dd, J = 18 

Hz, 8.5 Hz, 1H, COCH2), 2.26 (s, 3H, COCH3), 1.24 (t, J = 7 Hz, 3H, CH2CH3), 1.07 (t, J = 7 

Hz, 3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 196.68, 169.52, 165.99, 165.38, 

138.35, 135.59, 134.08, 132.45, 129.64, 129.56, 129.50, 128.48, 128.42, 128.12, 127.75, 

127.67, 126.78, 123.79, 84.43, 62.46, 62.05, 45.65, 39.90, 20.79, 13.84, 13.69. HRMS calcd 

for C28H28O7 476.1835. Found 476.1841. 

 

5.5.35. Diethyl 2-acetoxy-2-(3-(furan-2-yl)-3-oxo-1-phenylpropyl)malonate (12c) 

 

Yield: 75% (0.31 g), light yellow oil;  22D = +10.5 (c=1, CHCl3); >99% ee; major enantiomer 

tr = 8.0 min, minor enantiomer tr = 6.1 min (Chiralpack AS-H column, 90/10 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.53 (d, J = 1 Hz, 1H, ArH), 7.33 (d, 

J = 7 Hz, 2H, ArH), 7.25-7.19 (m, 3H, ArH), 7.13 (dd, J = 3.5 Hz, 1 Hz, 1H, ArH), 6.48 (dd, 

J = 3.5 Hz, 2 Hz, 1H, ArH), 4.30 (dd, J = 8.5 Hz, 5 Hz, 1H, ArCH), 4.27-4.16 (m, 2H, OCH2), 

4.01-3.87 (m, 2H, OCH2), 3.55 (dd, J = 17.5 Hz, 5 Hz, 1H, COCH2), 3.51 (dd, J = 17.5 Hz, 

8.5 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.25 (t, J = 7 Hz, 3H, CH2CH3), 1.05 (t, J = 7 Hz, 

3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 185.92, 169.45, 165.85, 165.25, 152.52, 

146.24, 137.97, 129.47, 128.09, 127.70, 117.02, 112.23, 84.33, 62.46, 62.01, 45.24, 39.62, 

20.73, 13.82, 13.65. HRMS calcd for C22H24O6 416.1471. Found 416.1472. 

 

5.5.36. Diethyl 2-acetoxy-2-(3-oxo-1-phenyl-3-(thiophen-2-yl)propyl)malonate (12d) 

 

Yield: 76% (0.33 g), light yellow oil;  22D = +13.1 (c=1, CHCl3); >99% ee; major enantiomer 

tr = 8.9 min, minor enantiomer tr = 7.6 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 

2 mL/min, 20 °C). 
1
H NMR (500 MHz, CDCl3), δ (ppm): 7.73 (d, J = 3.5 Hz, 1H, ArH), 7.59 

(d, J = 5 Hz, 1H, ArH), 7.34 (d, J = 6 Hz, 2H, ArH), 7.26-7.19 (m, 3H, ArH), 7.10 (dd, J = 5 

Hz, 3.5 Hz, 1H, ArH), 4.32 (dd, J = 8.5 Hz, 4 Hz, 1H, ArCH), 4.26-4.15 (m, 2H, OCH2), 
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4.02-3.88 (m, 2H, OCH2), 3.66 (dd, J = 17.5 Hz, 4 Hz, 1H, COCH2), 3.54 (dd, J = 17.5 Hz, 

8.5 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.24 (t, J = 7 Hz, 3H, CH2CH3), 1.06 (t, J = 7 Hz, 

3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 189.59, 169.44, 165.86, 165.26, 143.90, 

138.00, 133.65, 131.89, 129.43, 128.13, 128.03, 127.72, 84.32, 62.48, 62.04, 45.65, 40.50, 

20.73, 13.81, 13.66. HRMS calcd for C22H24O7S 432.1243. Found 432.1244. 

 

5.5.37. Dimethyl 2-acetoxy-2-(3-oxo-1,3-diphenylpropyl)malonate (13a) 

 

Yield: 53% (0.20 g), yellowish-brown oil;  22D = + 16.2 (c=1, CHCl3); 61% ee; major 

enantiomer tr = 25.0 min, minor enantiomer tr = 22.4 min (Chiralpack AD-H column, 90/10 

hexane/iPrOH, 2 mL/min, 10 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.90 (d, J = 7.2 Hz, 

2H, ArH), 7.54 (t, J = 7.2 Hz, 1H, ArH), 7.43 (t, J = 7.2 Hz, 2H, ArH), 7.36-7.30 (m, 2H, 

ArH), 7.29-7.20 (m, 3H, ArH), 4.37 (dd, J = 7.8 Hz, 4.8 Hz, 1H, PhCH), 3.77 (dd, J = 18 Hz, 

3.9 Hz, 1H, COCH2), 3.72 (s, 3H, COOCH3), 3.56 (dd, J = 18 Hz, 8.1 Hz, 1H, COCH2), 3.52 

(s, 3H, COOCH3), 2.23 (s, 3H, COCH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 196.64, 

169.60, 166.38, 165.85, 138.16, 136.71, 133.16, 129.32, 128.57, 128.20, 128.02, 127.77, 

84.36, 53.16, 52.77, 45.58, 39.66, 20.74. HRMS calcd for C22H22O7 398.1366. Found 

398.1372. 

 

5.5.38. Diisopropyl 2-acetoxy-2-(3-oxo-1,3-diphenylpropyl)malonate (13b) 

 

Yield: 51% (0.23 g), yellowish-brown oil;  22D = + 15.7 (c=1, CHCl3); 92% ee; major 

enantiomer tr = 2.6 min, minor enantiomer tr = 4.9 min (Chiralpack AS-H column, 80/20 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.88 (d, J = 7.2 Hz, 

2H, ArH), 7.52 (t, J = 7.2 Hz, 1H, ArH), 7.41 (t, J = 7.2 Hz, 2H, ArH), 7.37 (d, J = 7.8 Hz, 

2H, ArH), 7.25-7.15 (m, 3H, ArH), 5.05 (sep, J = 6.3 Hz, 1H, CHCH3), 4.82 (sep, J = 6.3 Hz, 

1H, CHCH3), 4.34 (dd, J = 9 Hz, 3.9 Hz, 1H, PhCH), 3.75 (dd, J = 18 Hz, 3.9 Hz, 1H, 

COCH2), 3.60 (dd, J = 18 Hz, 9 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.26 (d, J = 6.3 Hz, 

3H, CHCH3), 1.23 (d, J = 6.3 Hz, 3H, CHCH3), 1.04 (d, J = 6.3 Hz, 6H, 2 x CHCH3). 
13

C 

NMR (75 MHz, CDCl3), δ (ppm): 196.93, 169.40, 165.60, 164.88, 138.56, 136.89, 133.10, 

129.68, 128.57, 128.10, 128.04, 127.57, 84.50, 70.52, 70.12, 45.38, 40.28, 21.61, 21.51, 

21.38, 21.24, 20.83. HRMS calcd for C26H30O7 454.1992. Found 454.1999. 
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5.5.39. Dibenzyl 2-acetoxy-2-(3-oxo-1,3-diphenylpropyl)malonate (13c) 

 

Yield: 75% (0.33 g), yellowish-brown oil;  22D = + 16.9 (c=1, CHCl3); 34% ee; major 

enantiomer tr = 11.5 min, minor enantiomer tr = 14.4 min (Chiralpack AD-H column, 80/20 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.76 (d, J = 7.2 Hz, 

2H, ArH), 7.51 (t, J = 7.2 Hz, 1H, ArH), 7.37 (t, J = 7.2 Hz, 2H, ArH), 7.30-7.21 (m, 10H, 

ArH), 7.20-7.08 (m, 5H, ArH), 5.15 (q, J = 12.6 Hz, 2H, OCH2Ph), 4.89 (s, 2H, OCH2Ph), 

4.36 (t, J = 6.3 Hz, 1H, PhCH), 3.55 (d, J = 6.3 Hz, 2H, COCH2), 2.17 (s, 3H, COCH3). 
13

C 

NMR (75 MHz, CDCl3), δ (ppm): 196.50, 169.63, 165.69, 165.28, 137.91, 136.70, 134.83, 

134.76, 133.12, 129.48, 128.57, 128.52, 128.48, 128.43, 128.33, 128.21, 128.03, 127.76, 

84.52, 77.50, 77.08, 76.66, 68.24, 67.98, 45.71, 39.57, 20.74. HRMS calcd for 

C34H30O7 550.1992. Found 550.1997. 

 

5.5.40. Dimethyl 2-acetoxy-2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate 

(13d) 

 

Yield: 46% (0.19 g), yellow gum;  22D = + 20.1 (c = 1, CHCl3); 17% ee; major enantiomer tr 

= 10.7 min, minor enantiomer tr = 8.6 min (Chiralpack AD-H column, 90/10 hexane/iPrOH, 2 

mL/min, 10 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.90 (dd, J = 7.2 Hz, 2H, ArH), 7.54 

(t, J = 7.2 Hz, 1H, ArH), 7.43 (t, J = 7.2 Hz, 2H, ArH), 7.25 (d, J = 8.7 Hz, 2H, ArH), 6.78 (d, 

J = 8.5 Hz, 2H, ArH), 4.31 (dd, J = 8.1 Hz, 4.5 Hz, 1H, PhCH), 3.73 (dd, J = 18 Hz, 4.5 Hz, 

1H, COCH2), 3.75 (s, 3H, COOCH3), 3.72 (s, 3H, ArOCH3), 3.51 (dd, J = 18 Hz, 8.1 Hz, 1H, 

COCH2), 3.55 (s, 3H, COOCH3), 2.23 (s, 3H, COCH3). HRMS calcd for C23H24O8 428.1471. 

Found 428.1476. 

 

5.5.41. Diisopropyl 2-acetoxy-2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate 

(13e) 

 

Yield: 23% (0.11 g), yellow oil;  22D = + 18.6 (c=1, CHCl3); 35% ee; major enantiomer tr = 

9.6 min, minor enantiomer tr = 13.4 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 10 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm):7.88 (dd, J = 7.2 Hz, 2H, ArH), 7.53 

(t, J = 7.2 Hz, 1H, ArH), 7.42 (t, J = 7.2 Hz, 2H, ArH), 7.28 (d, J = 8.7 Hz, 2H, ArH), 6.75 (d, 
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J = 8.7 Hz, 2H, ArH), 5.08 (sep, J = 6.3 Hz, 1H, CHCH3), 4.84 (sep, J = 6.3 Hz, 1H, CHCH3), 

4.29 (dd, J = 9 Hz, 3.9 Hz, 1H, PhCH), 3.73 (s, 3H, ArOCH3), 3.71 (dd, J = 18 Hz, 3.9 Hz, 

1H, COCH2), 3.57 (dd, J = 18 Hz, 9 Hz, 1H, COCH2), 2.23 (s, 3H, COCH3), 1.27 (d, J = 6.3 

Hz, 3H, CHCH3), 1.24 (d, J = 6.3 Hz, 3H, CHCH3), 1.08 (d, J = 6.3 Hz, 3H, CHCH3), 1.06 (d, 

J = 6.3 Hz, 3H, CHCH3). HRMS calcd for C27H32O8 484.2097. Found 484.2104. 

 

5.5.42. Dibenzyl 2-acetoxy-2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (13f) 

 

Yield: 59% (0.24 g), yellow oil;  22D = + 18.1 (c=1, CHCl3); > 99% ee; major enantiomer tr = 

27.1 min, minor enantiomer could not been detected (Chiralpack AD-H column, 80/20 

hexane/iPrOH, 2 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.75 (d, J = 7.2 Hz, 

2H, ArH), 7.51 (t, J = 7.2 Hz, 1H, ArH), 7.37 (t, J = 7.2 Hz, 2H, ArH), 7.31-7.22 (m, 8H, 

ArH), 7.18-7.10 (m, 4H, ArH), 6.68 (d, J = 8.7 Hz, 2H, ArH), 5.15 (q, J = 12 Hz, 2H, 

OCH2Ph), 4.92 (dd, J = 15.6 Hz, 12 Hz, 2H, OCH2Ph), 4.30 (t, J = 6.6 Hz, 1H, PhCH), 3.72 

(s, 3H, ArOCH3), 3.50 (d, J = 6.6 Hz, 2H, COCH2), 2.17 (s, 3H, COCH3). HRMS calcd for 

C35H32O8 580.2097. Found 580.2100. 

 

5.5.43. Diethyl 2-acetoxy-2-(3-oxocyclopentyl)malonate (15a) 

 

Yield: 67% (0.20 g), light yellow oil;  22D = + 0.5 (c=1, CHCl3); 46% ee; major enantiomer tr 

= 9.2 min, minor enantiomer tr = 8.2 min (Chiralpack AS-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 4.35-4.20 (m, 4H, 2 x OCH2), 3.12-

2.98 (m, 1H, CCH), 2.47-1.90 (m, 6H, CH2CH2COCH2), 2.18 (s, 3H, COCH3), 1.31 (t, J = 7.2 

Hz, 3H, CH2CH3), 1.29 (t, J = 7.2 Hz, 3H, CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ (ppm): 

217.66, 208.98, 169.45, 165.45, 83.70, 62.35, 62.33, 43.75, 42.32, 40.95, 25.82, 24.24, 20.52, 

14.01. HRMS calcd for C14H20O7 300.1209. Found 300.1212. 

 

5.5.44. Diethyl 2-acetoxy-2-(3-oxocyclohexyl)malonate (15b) 

 

Yield: 41% (0.14 g), light yellow oil;  22D = + 3.9 (c=1, CHCl3); 80% ee; major enantiomer tr 

= 4.1 min, minor enantiomer tr = 3.6 min (Chiralpack AD-H column, 80/20 hexane/iPrOH, 2 

mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 4.27 (q, J = 7.2 Hz, 2H, OCH2), 4.26 
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(q, J = 7.2 Hz, 2H, OCH2), 2.65-2.50 (m, 1H, CCH), 2.45-2.35 (m, 3H, CH2COCH2CH, 

CH2COCH2CH,), 2.32-2.20 (m, 1H, CH2COCH2CH), 2.18 (s, 3H, COCH3), 2.15-2.05 (m, 

1H, CHCH2CH2CH2CO), 2.00-1.89 (m, 1H, CHCH2CH2CH2CO), 1.66-1.55 (m, 2H, 

CHCH2CH2CH2CO), 1.30 (t, J = 7.2 Hz, 6H, 2 x CH2CH3). 
13

C NMR (75 MHz, CDCl3), δ 

(ppm): 217.66, 208.98, 169.45, 165.45, 83.71, 62.35, 62.33, 43.75, 42.32, 40.95, 25.82, 24.24, 

20.52, 14.01. HRMS calcd for C15H22O7 314.1366. Found 314.1364. 

 

5.5.45. Dibenzyl 2-(3-oxocyclohexyl)malonate (15c) 

 

Yield: 58% (0.22 g), white solid; Mp.67-68 °C;  22D = + 8.1 (c = 1, CHCl3); 83% ee; major 

enantiomer tr = 16.6 min, minor enantiomer tr = 13.3 min (Chiralpack AD-H column, 80/20 

hexane/iPrOH, 1 mL/min, 20 °C). 
1
H NMR (300 MHz, CDCl3), δ (ppm): 7.37-7.23 (m, 10H, 

ArH), 5.15 (s, 2H, PhCH2), 5.14 (s, 2H, PhCH2), 2.65-2.50 (m, 1H, CCH), 3.41 (d, J = 6.9 Hz, 

1H, OOCCHCH), 2.64-2.49 (m, 1H, OOCCHCH), 2.48-2.32 (m, 2H, CH2COCH2CH), 2.30-

2.13 (m, 2H, CH2COCH2CH), 2.08-1.96 (m, 1H, CHCH2CH2CH2CO), 1.95-1.85 (m, 1H, 

CHCH2CH2CH2CO), 1.73-1.38 (m, 2H, CHCH2CH2CH2CO). HRMS calcd for 

C23H24O5 314.1366. Found 314.1364. 

  

5.6. Quantum chemical calculations 

 

The molecular mechanical conformation analysis was carried out using the MMFF
24

 

force field and the Marvin
25

 program. The DFT and TD-DFT
26,27 

calculations were 

performed using the PBE0
28

 functional and the 6-311++G** basis set with the 

Gaussian 09 package
29

. The DFT calculations were performed using the polarized 

continuum model
30

 with acetonitrile as the solvent. Rotator strengths were calculated 

in the velocity gauge. Accurate conformational energies were obtained invoking the 

direct random phase approximation (dRPA)
31

 and the aug-cc-pVTZ basis set using the 

MRCC suite of quantum chemistry programs.
32

 The dRPA calculations used PBE0 

orbitals. 
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