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Abstract 

Although kinetically inert cationic Co(III)TMPyP5+ (H2TMPyP4+ = 5,10,15,20-

tetrakis(methylpyridinium-4-yl)porphyrin) was considered earlier to be very weakly emissive, 

both the spectrum and the lifetime of its fluorescence could be determined. Besides, this 

complex proved to be favorable for outer-sphere photoinduced reduction of the metal center in 

the presence of triethanolamine (TEOA) as electron donor quenching the triplet excited state of 

this metalloporphyrin. The corresponding cobalt(II) porphyrin formed in this way was also 

photoactive; it forwarded an electron to a suitable acceptor (e.g., methylviologen) upon 

irradiation, regenerating the starting complex. Hence, this system may be a candidate for 

hydrogen generation from water by utilization of visible light.  
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Metalloporphyrins play important roles in nature, due to their special spectral, coordination 

and redox features. Their advantageous photoinduced properties can also be exploited in 

various photocatalytic procedures [1]. Water-soluble derivatives can be utilized in 

environmentally benign systems not containing organic solvents. Kinetically inert in-plain 

metalloporphyrins, in which the metal center coplanarly fits into the cavity of the ligand, may 

offer promising possibilities for realization of photocatalytic systems based on outer-sphere 

electron transfer [2]. The so-called hyper-porphyrins can be especially interesting in this 

respect, due to their distorted structure, which may increase the (photo)redox reactivity of 

these complexes. From water-soluble metalloporphyrins of this type, photoredox reactions of 

manganese(III) complexes were thoroughly studied [1, 3, 4], while scarce attention was paid 

to the corresponding cobalt(III) porphyrins in this respect.  

Photocatalytic oxidation of the sulfide content of a wastewater to sulfate was studied with 

Co(III)TMPyP5+, Mn(III)TMPyP5+, and Fe(III)TMPyP5+ (H2TMPyP4+ = 5,10,15,20-

tetrakis(1-methylpyridinium-4-yl)porphyrin) [5]. Upon irradiation in the range of the Soret-

bands, the cobalt(III) complex proved to be the most efficient, but the results have not been 

interpreted. This metalloporphyrin can also connect to the chain of DNA and oxidatively split 

it in the presence of suitable electron acceptors [6]. Since cationic manganese(III) porphyrins 

proved to be efficient photocatalysts in the presence of appropriate electron donors (such as 

EDTA and TEOA) and methylviologen as electron acceptor [1, 3, 7], cationic cobalt(III) 

porphyrins, the other characteristic representatives of water-soluble hyper-porphyrins, are also 

worth investigating in this respect. Hence, in this work, some photophysical and 

photochemical properties of Co(III)TMPyP5+ were studied, also confirming its photocatalytic 

behavior, which may be utilized in water-splitting by solar radiation. 

The compounds used for our experiments were of reagent grade. Water purified in a 

Millipore/Milli-Q system was applied as solvent. Stock solutions of Co(III)TMPyP5+ were 

prepared by in situ generation by the reaction between the corresponding free base and 

cobalt(II) sulfate (in 4× excess at the porphyrin concentration of 3×10-4 M) under aerated 

conditions. Since the reaction is rather slow at r.t. (at least one week), it was accelerated by 

addition of HgCl2 in a very low concentration (10-6 M). Catalytic effect of Hg(II) with a large 

ionic radius (102 pm [8]) is based on the formation of an out-of-plane intermediate Hg(II)-

porphyrin [9]. In this species, due to the distortion, two diagonal pyrrolic nitrogens become 

more accessible to another metal ion, even with smaller ionic radius, on the other side of the 

porphyrin ligand [10]. The behavior of the final product (Co(III) porphyrin) was not affected 

by the presence of Hg(II) in the samples prepared by 50-100 times dilution from the stock 

solution. Borate buffer was applied to adjust pH to 8.3.  

Absorption and emission spectra were recorded by using a Specord S-600 diode array 

spectrophotometer and a Fluoromax-4 (Horiba JobinYvon) spectrofluorimeter, respectively. 

The latter equipment supplemented with a time-correlated single-photon counting accessory 

was applied for determination of fluorescence lifetimes too. Ru(bpy)3Cl2 [11] was utilized as 

a reference for determination of the fluorescence quantum yields. Transient absorption 

measurements were carried out on a laser kinetic equipment describe elsewhere [12]. 

Photochemical experiments were carried out with 3.5-cm3 argon-saturated solutions in 1-cm 

cells at r.t., continuously homogenized by magnetic stirring. For illumination a LED light of 

415-465-nm emission with a 440-nm maximum intensity was utilized. Incident light intensity 

was determined by ferrioxalate actinometry [13]. 

The Co(III) ion of 55 pm ionic radius [8] is small enough to fit into the cavity of the 

porphyrin ligands, forming unambiguously in-plane complexes [14]. The metalloporphyrins 

of the significantly larger Co(II) ion (rion = 75 pm) display spectral properties and 

photochemical behavior deviating from those of the Co(III) complexes. Absorption spectra of 

porphyrins, both free bases and metalloporphyrins, are featured by two characteristic types of 
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bands. The very intense Soret- or B-bands assigned to the S0S2 transitions can be found in 

the shorter-wavelength range (380-470-nm), while the Q-bands with one order of magnitude 

lower molar absorbances, assigned to the S0S1 transitions, appear in the longer-wavelength 

range (500-700-nm). The Soret-band of the normal (in-plane) metalloporphyrins generally 

display characteristic blue-shift compared to that of the corresponding free base [14, 15]. 

However, deviating from the general tendency, in the case of the in-plane porphyrin 

complexes of Mn(III) and Co(III), this band is red-shifted [16]. This phenomenon is well 

demonstrated by the Soret-bands of H2TMPyP4+ and Co(III)TMPyP5+
 at 421 and 434 nm, 

respectively [17]. Such metalloporphyrins, the spectra of which cannot be interpreted by the 4 

MO theory of Gouterman, are classified as hyper-porphyrins [18]. This unusual phenomenon 

can be explained by the very strong interaction between the  orbital of the porphyrin ring and 

the d orbital of the metal center [3]. Additionally, a structural distortion can also strengthen 

this effect; the radius of the low-spin Co3+ ion is so small (55 pm) that the porphyrin ring 

contracts, resulting in a ruffled distortion [19]. The Soret-band of the corresponding cobalt(II) 

porphyrin (at 429 nm [20]) is also red-shifted compared to that of the free base, however, it is 

blue-shifted in the relation of the (more distorted) cobalt(III) hyper-porphyrin. This 

phenomenon can be accounted for the larger radius of the Co2+ ion, similarly to the case of 

manganese (II/III) complexes studied earlier [1, 14]. 

 

Fig. 1. Emission spectra of Co(III)TMPyP5+ (solid line) and H2TMPyP4+  (dashed line) 

obtained by excitation at the Soret-bands (c = 5×10-6 M). 

The fluorescence bands in the 550-800-nm range of the emission spectra of porphyrins, 

both free bases and metalloporphyrins, can be assigned as S1S0 transitions (the individual 

bands correspond to the (0, 0), (0,1) and (0,2) transitions with respect to vibrational states) 

[14]. The fluorescence bands of metalloporphyrins (of any type) are blue-shifted and less 

intense, compared to those of the corresponding free-base porphyrin. This phenomenon is also 

manifested in the emission spectra of Co(III)TMPyP5+ and the corresponding free base (Fig. 

1). The bands assigned to the (0,2) transition are not perceptible in this case. Generally, the 

highly distorted porphyrin complexes with diamagnetic metal center do not display 

appreciable fluorescence at room temperature [18]. Accordingly, earlier, Mn(III) and Co(III) 

porphyrins were not found to be fluorescent at all [17]. However, due to our rather sensitive 

equipment, the emission of this cobalt(III) porphyrin could be measured with an appropriate 

resolution. In accordance with the expectations, the fluorescence bands of the complex 

(obtained upon Soret-band excitation) are blue-shifted compared to those of the free base, 

especially in the case of the longer-wavelength band. Notably, the same spectrum was 

obtained at Q-band excitation (at 548 nm), too, indicating that it is the result of the same 

transition (S1S0).  

The intensity of the emission of the cobalt(III) porphyrin is one order of magnitude lower 

than that of the free base. The radiation quantum yields measured at Soret-band excitation 

confirm this observation. fl for Co(III)TMPyP5+ is only 1.3710-3 , while for H2TMPyP4+ fl 
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was determined to be 0.0295 in aqueous solution [21] and 0.059 in methanol [22]. The much 

weaker fluorescence of the Co(III) complex may be accounted for the in-plane position of the 

open-shell metal center, resulting in an electronic effect (strong interaction between the 

orbitals of the ligand and the metal), and the ruffled distortion as a steric effect.  

The fluorescence decay of the first excited singlet state of this Co(III) porphyrin could be 

described by a biexponential function. This observation fully agreed with that regarding the 

emission lifetime of the corresponding free base [22]. In that case the 1 and2 values were 

4.17 ns (0.43) and 10.05 ns (0.57) (the amplitudes, i.e., the pre-exponential ratios are given in 

parentheses) in aqueous system. The corresponding data for Co(III)TMPyP5+ are 0.75 ns 

(0.42) and 1.83 ns (0.58), in accordance with the much lower fluorescence quantum yield of 

the complex, indicating an inner quenching effect of the metal center, due to the above 

mentioned reasons. 

 

Fig. 2. Spectral change in the system initially containing 8.3×10-6 M Co(III)TMPyP5+, 5×10-4 

M TEOA and 2×10-3 M MV2+ during the irradiation at 0 s (a), 50 s (b), 100 s (c), 150 s (d), 

200 s (e) and 300 s (f) (ir = 440 nm, l = 1 cm). 

Similarly to cationic manganese(III) porphyrins [1, 7], Co(III)TMPyP5+ has also been 

proved to be suitable for realization of a photoredox catalytic cycle in the presence of TEOA 

and MV2+ as electron donor and acceptor, respectively. As Fig. 2 indicates, at appropriate 

concentrations, photocatalytic generation of MV●+ can be achieved with this photocatalyst for 

a relatively long period of irradiation. 

The first step in the catalytic process is the photoinduced reduction of the cobalt(III) 

complex with TEOA (Eq. 1), indicated by the change in the position and intensity of the Soret 

band. Then the corresponding cobalt(II) porphyrin formed is photochemically oxidized with 

MV2+ (Eq. 2) as shown by the appearance of the characteristic bands of MV●+ at 398 and 605 

nm [23].  

Co(III)TMPyP5+ + TEOA + hv  Co(II)TMPyP4+ + TEOAox   (1) 

Co(II)TMPyP4+ + MV2+ + hv  Co(III)TMPyP5+ + MV●+    (2) 

As Fig. 2 shows, practically the whole amount of the starting cobalt(III) complex was 

converted to the corresponding Co(II) species in the initial period of irradiation. The latter 

(reduced form) persisted till the end of the 240-min illumination. Besides, the catalyst proved 

to be relatively stable; less than 15% was degraded during this period. The nearly 100% 

conversion of the cobalt(III) catalyst before MV●+ appeared suggested that ground-state 

reduced form (Co(II)TMPyP4+) does not react with MV2+. This assumption was confirmed by 

an independent experiment, where MV2+ was added to the system (in the dark, under 

anaerobic conditions) only after the photoreductive generation of the cobalt(II) species. No 
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formation of MV●+ was observed. This is not surprising because the ground-state anionic 

cobalt(II) porphyrin, Co(II)TSPP4- (H2TPPS4- = 5,10,15,20-tetrakis(4-

sulfonatophenyl)porphyrin), which is more reductive due to the negative charge, does not 

react either with MV2+ [24]. Hence, excitation of the reduced catalyst (Co(II)TMPyP4+) is also 

needed for the electron transfer toward the methylviologen, as indicated in Eq. 2. The overall 

quantum yield for the formation of MV●+ was determined from the initial rate of the 

accumulation of this radical. Its value ( = 0.026) may be acceptable for application of this 

system for hydrogen generation from water, using a suitable co-catalyst. 

Since the singlet excited state of Co(III)TMPyP5+ is too short-lived (<1.9 ns) to be 

efficiently quenched by TEOA, its triplet state is expected to play role in the first redox step 

(Eq. 1). Accordingly, a long-lived ( = 102 s) transient was detected upon excitation at 540 

nm (Fig. 3), which can be assigned to the triplet state of this cobalt(III) porphyrin. It was 

efficiently quenched with TEOA (kq = 4.7×106 M-1s-1), confirming our suggestion. A similar 

situation is reasonable for the reaction between MV2+ and the excited state of the 

Co(II)TMPyP4+ complex formed. 

 

Fig. 3. Transient absorption decay at 470 nm after a 540-nm laser pulse. Inset: the spectrum of 

the transient absorption right after the pulse. 

These results well demonstrate that Co(III)TMPyP4+ is a potential photosensitizer for solar 

energy utilization by water-splitting, besides it displays a characteristic fluorescence despite 

being a diamagnetic metalloporphyrin.  
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