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Abstract 

 Blends were prepared from poly(lactic acid) (PLA) and thermoplastic starch (TPS) 

to study component interactions, structure and properties. Starch was plasticized with 

glycerol at two levels, at 36 and 47 wt%. The results unambiguously showed that the 

interaction of the two components is weak. The investigation of the possible partitioning 

of glycerol in the two phases indicated that most of the plasticizer is located in the TPS 

phase. Thermodynamic modeling predicted some dissolution of PLA in TPS which was 

assisted by the presence of the plasticizer, but TPS did not dissolve in PLA at all. No 

tangible proof was found for the formation of a glycerol rich phase in TPS, the relaxation 

transition assigned to this phase was rather explained with the movement of smaller 

structural units of starch molecules. Weak interfacial adhesion does not allow stress 

transfer through the interface resulting in poor strength and small deformation.  

 

Keywords: thermoplastic starch, molecular modeling, thermodynamics, 

 

1. Introduction 

 In recent years the importance of biopolymers increases continuously and further 

growth is forecasted in their use in the future. However, besides the obvious environmental 

advantages of these materials, they have some deficiencies as well, like inferior properties 

compared to commodity polymers, poor processability, water sensitivity, etc. To overcome 

these drawbacks biopolymers are frequently modified, often by blending. The mixing of 

poly(lactic acid) (PLA) and thermoplastic starch would combine the advantages of the two 

polymers by maintaining complete biodegradability and resulting in a relatively cheap 

material [1-5]. However, the two polymers are immiscible, heterogeneous blends form 

upon their mixing, and the statements about the compatibility of TPS and aliphatic 
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polyesters are often contradictory. Avérous and Fringant [6, 7] found dissimilar 

compatibility in various starch/aliphatic polyester blends. In a further study Martin and 

Avérous [8] claimed low level of compatibility in PLA/TPS blends, but in another part of 

the same paper they state that changes in Tg indicate some interaction between TPS and 

PLA. The degree of compatibility claimed varies in a wide range depending on blend 

components and the authors of the paper. Ma et al. [9, 10], for example, found complete 

immiscibility in PLA/TPS blends when the plasticizer was glycerol, while good 

compatibility, when formamide was used. However, the statements on compatibility or 

miscibility are almost invariably qualitative in nature and based on the observation of SEM 

micrographs, changes in Tg or mechanical properties, but rarely on thermodynamic 

considerations. Poor compatibility of the components is also indicated by attempts to 

improve interactions by preparing hybrid blends[11] , adding amphiphilic molecules [12] 

or a coupling agent [13]. 

 Another interesting question that is never discussed or even mentioned in relation 

with TPS blends is the role of the plasticizer. Although many papers have been published 

on TPS plasticized with the most diverse compounds, on their efficiency and on the 

structure formed, TPS is treated as a single, homogeneous material in blends, in spite of 

the fact that TPS plasticized with glycerol was claimed to phase separate above a certain 

plasticizer content [6, 7, 14-17]. The distribution of a third material, e.g. the aliphatic 

polyester, in a two phase polymer, TPS, can be quite complicated, several structures may 

form and must be considered. Moreover, the plasticizer is a small molecular weight 

substance which is quite mobile at the temperature of processing, but also under ambient 

conditions. Although originally it is located in starch, it may diffuse into the other polymer 

during processing and partition between the two polymer components. Although Ma et al. 

[9, 10] claimed improvement in compatibility upon the use of formamide compared to 
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glycerol, they did not explain the effect or its mechanism either. In view of these questions, 

the goal of this work was to estimate interactions in PLA/TPS blends by thermomechanical 

analysis [18-20] and thermodynamic modeling, study the role and partitioning of the 

glycerol plasticizer in the components and determine the structure and properties of the 

blends in a wide composition range. 

 

2. Experimental 

2.1. Materials 

 The PLA used was obtained from NatureWorks (USA). The selected grade (Ingeo 

4032D, Mn = 88500 g mol-1 and Mw/Mn = 1.8) is recommended for extrusion. The polymer 

(<2 % D isomer) has a density of 1.24 g cm-3, while its melt flow index (MFI) is 3.9 g/10 

min at 190 °C and 2.16 kg load. The corn starch used for the preparation of TPS was 

supplied by Hungrana Ltd., Hungary and its water content was 12 wt%. Glycerol with 0.5 

wt% water content was obtained from Molar Chemicals Ltd., Hungary and it was used for 

the plasticization of starch without further purification or drying. Thermoplastic starch 

samples containing 36 and 47 wt% glycerol (TPS36 and TPS47, respectively) were 

prepared and used in the experiments. The composition of the PLA/TPS blends changed 

from 0 to 1 volume fraction in 0.1 volume fraction steps. Glycerol was added to PLA also 

alone as "plasticizer" in 1, 3, 5, 7 and 10 vol%. 

 

2.2. Sample preparation 

 Corn starch was dried in an oven before composite preparation (105 °C, 24 hours). 

Thermoplastic starch powder was prepared by dry-blending in a Henschel FM/A10 high 

speed mixer at 2000 rpm. TPS was produced by processing the dry-blend on a Rheomex 

3/4" single screw extruder attached to a Haake Rheocord EU 10 V driving unit at 140-150-
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160 °C barrel and 170 °C die temperatures, and 60 rpm screw speed. 

 PLA and the second component were homogenized in an internal mixer (Brabender 

W 50 EHT) at 190 °C and 50 rpm for 12 min. Before homogenization poly(lactic acid) was 

dried in a vacuum oven (110°C, 4 hours). Both temperature and torque were recorded 

during homogenization. The melt was transferred to a Fontijne SRA 100 compression 

molding machine (190 °C, 5 min) to produce 1 mm thick plates for further testing. 

 

2.3. Characterization 

 The glass transition temperature of the phases and other thermal transitions 

appearing in the blends were determined by dynamic mechanical analysis (DMA) using a 

Perkin Elmer Pyris Diamond DMA apparatus in tensile mode with constant amplitude (10 

µm) and frequency (1 Hz) in the temperature range between -100 and 100 °C. Heating rate 

was 2 °C/min, while the size of the specimens was 50 x 5 x 1 mm. Mechanical properties 

were further characterized by tensile testing using an Instron 5566 universal testing 

machine. Specimens of 150 x 10 x 1 mm were used, the gauge length was 115 mm. Tensile 

modulus was determined at 0.5 mm/min, while properties measured at larger deformations 

at 5 mm/min cross-head speed. Five parallel measurements were carried out at each blend 

composition. The structure of the blends was analyzed by scanning electron microscopy 

(SEM) using a Jeol JSM 6380 LA apparatus. Samples were broken at liquid nitrogen 

temperature and then a smooth surface was created by cutting the sample with a 

microtome. Surfaces were etched according to the matrix polymer, chloroform was used 

in the case of PLA, while 1 M HCl for the TPS matrix. Light transmittance through the 

samples was measured on 1 mm thick specimens using a Unicam UV-500 

spectrophotometer at 700 nm wavelength. Water absorption was determined at 23 °C and 

52 % relative humidity by the measurement of the weight increase of specimens. The 
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desired relative humidity was achieved with a saturated solution of Mg(NO3)2. 

 

3. Results and discussion 

 The results are presented in several sections. The question of component interaction 

and miscibility is discussed first and then the effect of the plasticizer on PLA properties is 

presented subsequently. Conclusions drawn from these results are supported by model 

calculations in the next section followed by the discussion of structure and properties. 

 

3.1. Interactions, miscibility 

 One of the most often used approaches to estimate the miscibility of two 

components is the determination of the composition dependence of the glass transition 

temperature of their blends [18-20]. The DMA spectra of a PLA/TPS47 blend containing 

50 vol% of both components is presented in Fig. 1.  
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Fig. 1 DMA spectra showing relaxation transitions in the PLA/TPS47 blend containing 

50 vol% of both components. 
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The spectra are rather complicated displaying several transitions. Plasticized starch were 

shown to exhibit two transitions, one corresponding to its glass transition, while the second 

was claimed to result from phase separation and was assigned to a glycerol rich phase [6, 

7, 14-17]. The glass transition temperature of TPS depends very strongly on the type and 

amount of the plasticizer used and it may cover a wide range of temperatures from -30 to 

90 °C. The Tg of our TPS samples are -3 and 33 °C for TPS47 and TPS36, respectively. 

The second transition assigned to thermoplastic starch can be also identified in the spectra 

allegedly indicating the presence of a glycerol rich phase [6, 7, 14-17]. However, some 

doubts may arise about the assignment of this transition. Some authors argue that the 

appearance of two peaks proves phase separation a priori [15] that is not true; several 

polymers are known to show  relaxation peaks without the presence of a second 

component (e.g. PMMA, PVC). Phase separation was mentioned only as a possibility 

anyway in the much cited paper of Kalichevsky [14], but later it was treated as fact [6, 7]. 

Basically none of the papers mentioning phase separation show any other evidence, but 

reference to earlier papers and the appearance of two peaks in DMA spectra. Occasionally, 

the claim might be supported by the analysis of the composition dependence of Tg or the 

activation energy of the transition, but no direct evidence. The relaxation transition in 

question appears around -50 or -60 °C that is claimed to be close to the Tg of glycerol at -

78 °C and used as a strong argument for the formation of a glycerol rich phase. Phase 

separation was said to occur above 27 wt% glycerol content. Unfortunately, a number of 

facts contradict or at least question the hypothesis of phase separation. First of all we do 

not believe that -50 °C is close to -78 °C. The  peak appeared also at 15 wt% glycerol 

content in the work of Mikus et al. [17] below the claimed composition of phase separation. 
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Moreover, the transition was detected at around 0 and -10 °C in TPS plasticized with 

sorbitol and mannose, respectively, as shown by the same paper [17]. Finally, similar  

transition was observed in grafted cellulose acetate and benzylated wood which do not 

contain any external plasticizer [21, 22]. Accordingly, we think that the transition belongs 

to smaller units of the amylopectin chain, like a single glucose ring, the movement of which 

becomes possible upon plasticization. The position of the peak depends on the type and 

amount of the plasticizer which forms strong secondary interactions with starch molecules. 

However, the possible phase separation of the glycerol might be important for the phase 

structure and properties of TPS blends and cannot be ignored. The limited miscibility of 

starch and glycerol is shown by the exudation of the plasticizer at large glycerol contents, 

and Stading et al. [23] showed heterogeneous structure in their plasticized starch films. 
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Fig. 2 Effect of composition on the glass transition temperature of the components in 

PLA/TPS blends; (,) TPS36, (,) TPS47; full: PLA, empty: TPS. 
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 The remaining two transitions observed in the spectra of the PLA/TPS blend shown 

in Fig. 1 can be assigned to PLA. The glass transition of the polymer results in a sharp 

peak on the tan  trace and the cold crystallization of the polymer leads to another, smaller 

transition as well. Accordingly, the glass transition temperatures of the two polymers can 

be identified unambiguously. Conclusions about miscibility are often drawn from the 

composition dependence of the glass transition temperature of the blend or its components 

[18-20]. The Tg of the two blend series is plotted against composition in Fig. 2. Separate 

transition temperatures can be identified for the two polymers. The Tg of PLA is detected 

at around 65 °C, it does not seem to depend on the amount of plasticizer in TPS and 

decreases slightly with increasing TPS content. Similar changes were observed by others 

and led them to the conclusion of partial miscibility [8]. However, the Tg of PLA was 

shown to decrease also in the presence of particulate fillers [24, 25] and we cannot claim 

partial miscibility in that case. Moreover, if the components are partially miscible, the Tg 

of TPS should increase, instead of decreasing, with increasing PLA content. Changes in Tg 

opposite to the direction expected have been observed earlier for various combinations of 

polymers. The phenomenon occurs relatively often in impact modified polymers, in which 

the Tg of the elastomeric phase decreases with increasing concentration of the stiffer 

component [26-29]. The decrease was explained with the development of negative 

hydrostatic pressure during cooling resulting from the different thermal expansion 

coefficients of the components [27]. The condition for the decrease of Tg is the good 

adhesion of the phases resulting in volume dilatation and increased free volume. The 

opposite effect was observed in polystyrene (PS)/polypropylene (PP) blends, in which the 

Tg of PS increased with increasing PP content [30]. The effect was explained again with 

the difference in thermal expansion coefficients and shrinkage during the crystallization of 

PP leading to positive hydrostatic pressure this time. In our case, however, the explanation 
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is more difficult, since the Tg of the TPS phase decreases which would require the good 

adhesion of the phases. This is not probable thus the reason for the decrease remains 

unclear and needs further study and considerations. Obviously, a more detailed 

investigation of thermal expansion coefficients, the developing stress fields and interfacial 

adhesion must be carried out in the future in order to reveal the actual reason for the change 

in the glass transition temperature of the TPS phase. Accordingly, the only conclusion that 

we can draw from the analysis of DMA spectra and the composition dependence of the Tg 

of the components is that they are immiscible with each other and even partial miscibility 

must be very small. 

 Other measurements may supply further, indirect evidence about the miscibility or 

immiscibility of the components. The light transmittance of the blends is plotted against 

composition in Fig. 3.  
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Fig. 3 Effect of blend composition on the light transmittance of PLA/TPS blends; () 

TPS36, () TPS47. 
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PLA is transparent, 68 % of the incident light passes through it. Light transmittance of TPS 

is smaller, 14.7 and 20.2 % for TPS47 and TPS36, respectively, indicating a slightly 

heterogeneous structure. However, the transparency of the PLA/TPS blends is extremely 

small, it is below 1 % at most compositions indicating very poor miscibility and a 

heterogeneous structure. Obviously, interactions between the two blend components 

cannot be very strong and phase separation occurs at all compositions. Another indication 

for poor interactions is supplied by the results of water absorption measurements (Fig. 4).  

 

0 20 40 60 80 100
0

2

4

6

8

10

12

 

 

E
q
u
il

ib
ri

u
m

 w
at

er
 u

p
ta

k
e 

(%
)

TPS content (vol%)
 

 

Fig. 4 Independence of the water absorption of PLA/TPS blends of blend composition 

and glycerol content; () TPS36, () TPS47. 

 

If the interaction between two polymer components is strong, water or any other solvent 

must compete for active sites and absorption will be smaller than that dictated by additivity. 

As Fig. 4 shows, water absorption in PLA/TPS blends follows almost perfectly additivity 

indicating the weak interaction of the components. 
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3.2. PLA/glycerol interaction 

 Similarly to others we treated TPS as a single, homogeneous material up to now. 

However, to check the possible effect of glycerol diffusion into PLA, measurements were 

done on PLA modified with different amounts of glycerol. The transmittance of light 

through 1 mm thick PLA plates containing various amounts of the plasticizer is plotted 

against composition in Fig. 5. 
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Fig. 5 Effect of glycerol content on the light transmittance of PLA/glycerol binary blends. 

 

PLA is transparent, as mentioned above, but transparency decreases considerably with 

increasing glycerol content. According to the correlation the solubility of glycerol cannot 

be more than 1 or 2 vol% in PLA, above this amount a separate phase forms. Dispersed 

glycerol droplets scatter light resulting in inferior transparency. Obviously, the solubility 

of glycerol in PLA is quite small, thus one cannot expect considerable diffusion of the 

plasticizer from starch into the PLA phase in the blends. 

 

 Limited solubility of glycerol in PLA is further confirmed by the results of DMA 
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measurements. The spectra recorded on PLA containing 10 vol% glycerol is presented in 

Fig. 6. 
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Fig. 6 DMA spectra of the PLA/glycerol binary blend containing 10 vol% of the 

plasticizer. Strong glycerol transition at low temperature. 

 

The spectra show the typical behavior of PLA, glass transition around 65 °C and the 

subsequent cold crystallization of the polymer. However, an additional transition also 

appears on the spectra at very low temperatures, around -80 °C. The transition can be 

assigned to glycerol and its temperature corresponds to that determined for this plasticizer 

by Avérous et al. [6] using DSC. The nearly linear increase of the intensity of the tg  peak 

with increasing amount of glycerol in the blend, at least at small glycerol contents, further 

confirms the assignation (Fig. 7). The deviation from the expected linearity at the largest 

glycerol content might result from changing morphology or simply from experimental 

error. However, since the transition can be detected already at the smallest glycerol content, 

below 1 vol%, we must assume that the solubility of glycerol in the blend is smaller even 
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than this amount, since dissolved glycerol would shift the glass transition temperature of 

PLA and would not appear as a separate peak on the tg  vs. temperature trace. The study 

of PLA/glycerol blends confirmed our previous conclusions and indicated that the 

interaction between PLA and the plasticizer is relatively weak resulting in very limited 

solubility. 
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Fig. 7 Influence of composition on the intensity of the tg  peak assigned to the glass 

transition of glycerol.  

 

3.3. Modeling 

 Density functional theory (DFT) and local coupled-cluster calculations with single, 

double and perturbative triple excitations [LCCSD(T)] have been performed to investigate 

hydrogen bond interactions between poly(lactid acid) and glycerol, amylose and glycerol, 

as well as PLA and amylose. In order to reduce time and computer capacity to a reasonable 

level, simplified computational model systems for linear PLA and amylose were 

introduced. A trimer structure of three L-lactic acid monomer units was created for the 
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former in which the terminal hydrogens of both OH groups were replaced by methyls in 

order to avoid the formation of hydrogen-bonded complexes by them during geometry 

optimization. The amylose model system was a single monomer unit, that is, a single -

D-glucose molecule, in which the (1,4) OH groups were replaced by methoxy groups for 

the same reason. Fig. 8 shows the corresponding structures indicating hydrogen bond 

donors (in blue) and acceptors (in red) as well as the acronym for each site used for the 

identification of the various hydrogen-bonded complexes. All possible donor-acceptor 

pairs were considered.  

   

 

 

 

 

 

 

 

 

                                     a)                     b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             c) 

Fig. 8 Structure of the computational model systems and acronyms used for the 

identification of hydrogen bond donors (marked with square) and acceptors 

(marked with circle) studied in this work: (a) trimer of L-lactic acid with terminal 

methyl protection; (b) glycerol; (c) -D-glucose with methyl protection on the (1,4) 
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OH groups. 

 

Equilibrium structures for the individual donor and acceptor molecules were 

obtained separately from fully unconstrained optimizations using DFT with the M06-2X 

functional of Zhao and Truhlar [31], which accurately describes weak non-covalent 

interactions. For these calculations the 6-311++G** basis set [32] was used. The donors 

and acceptors were then linked into hydrogen bonded complexes, and unconstrained 

geometry optimizations were performed for these structures subsequently.  

 

The total energies of the species were converted into enthalpies using the rotational 

constants and harmonic vibrational frequencies calculated at the reference geometries. 

Using the DFT equilibrium structures, additional single point energy calculations were also 

carried out at the LCCSD(T) [33] level with the aug-cc-pVTZ basis set [34, 35], where 

diffuse functions on hydrogen atoms were excluded. LCCSD(T) energies were also 

converted to enthalpies using corrections obtained from DFT calculations. Particularly, the 

difference between enthalpy and energy calculated with DFT was added to the energy 

obtained with LCCSD(T). Finally, the enthalpy of the hydrogen bonding interaction at both 

levels of theory was derived as the enthalpy difference between the complex and its 

constituent donor and acceptor sites. The Gaussian suite of programs [36] were invoked 

for the DFT calculations; all LCCSD(T) calculations were performed with MRCC [37]. 

 

 Table 1 lists the calculated hydrogen bonding energies and enthalpies for the 

various donor-acceptor pairs defined by linking the corresponding model systems to each 

other. Figs. 9a-c show the three hydrogen bonded complexes with the smallest interaction 

enthalpies, that is, those structures of the three interacting pairs in which the strongest 
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hydrogen bonds form.  

 

Table 1 Hydrogen bonding interaction energies and enthalpies calculated with the 

DFT and LCCSD(T) methods 

 M06-2X/6-311++G** LCCSD(T)/aug-cc-pVTZ 

Species 
E 

(kJ/mol) 
H 

(kJ/mol) 
E 

(kJ/mol) 
H 

(kJ/mol) 

GLY(1H)-PLA(CO) -66 -56 -59 -49 

GLY(2H)-PLA(CO) -78 -68 -69 -59 

GLY(1H)-PLA(COC) -78 -67 -71 -60 

GLY(2H)-PLA(COC) -79 -68 -75 -64 

GLY(1H)-GLU(1OMe) -61 -52 -55 -46 

GLY(2H)-GLU(1OMe) -82 -71 -72 -61 

GLY(1H)-GLU(2OH) -87 -75 -77 -65 

GLY(2H)-GLU(2OH) -91 -79 -82 -70 

GLY(1H)-GLU(3OH) -76 -64 -66 -55 

GLY(2H)-GLU(3OH) -77 -65 -71 -59 

GLY(1H)-GLU(4OMe) -88 -76 -75 -63 

GLY(2H)-GLU(4OMe) -58 -48 -53 -43 

GLY(1H)-GLU(6OH) -75 -65 -69 -58 

GLY(2H)-GLU(6OH) -56 -46 -51 -41 

GLY(1H)-GLU(COC) -56 -46 -51 -41 

GLY(2H)-GLU(COC) -83 -72 -72 -61 

PLA(CO)-GLU(2OH) -65 -58 -60 -53 

PLA(CO)-GLU(3OH) -56 -50 -53 -47 

PLA(CO)-GLU(6OH) -52 -45 -52 -44 

PLA(COC)-GLU(2OH) -58 -52 -54 -47 

PLA(COC)-GLU(3OH) -50 -43 -45 -38 

PLA(COC)-GLU(6OH) -47 -42 -45 -39 

 

According to our results presented in Table 1, the strongest interaction develops 

between glycerol and the model system of glucose. The hydrogen bonding enthalpies 

calculated with DFT and LCCSD(T) are -79 and -70 kJ/mol, respectively, and, as it can be 
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seen in Fig. 9b, three hydrogen bonds can form, in which both glucose and glycerol can 

act as donor and also acceptor at the same time. The interaction between glycerol and our 

PLA model is considerably weaker, binding enthalpies of -68 and -64 kJ/mol were obtained 

with DFT and LCCSD(T), respectively. In this case (Fig. 9a), two hydrogen bonds may 

form between the model PLA and glycerol. As shown in Fig. 9c, the formation of only a 

single hydrogen bond is possible between amylose and the polylactid acid model with a 

bonding enthalpy of -58 kJ/mol and -53 kJ/mol, respectively. 

 
 

a) 

 

 

 
 

b) 
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c) 

 

Fig. 9 Formation of hydrogen bonds between various pairs of the components in the 

ternary system PLA/glycerol/starch; a) glycerol/lactic acid trimer, b) 

glycerol/glucose, c) lactic acid trimer/glucose 

 

In order to estimate the amount of glycerol dissolving in PLA and starch, let us 

assume that the number of binding sites in both phases is significantly larger than the 

number of glycerol molecules available. Accordingly, the glycerol molecules can be 

attached to the site with the strongest binding enthalpy, i.e. using the notation of Table 1, 

the GLY(2H)-PLA(COC) and GLY(2H)-GLU(2OH) complexes can form in PLA and 

amylose, respectively. The ratio of concentrations can be approximated by the equilibrium 

constant of the GLY(2H)-PLA(COC) + GLU ⇌ PLA + GLY(2H)-GLU(2OH) reaction. If 

we assume that the binding entropy is approximately identical for the two complexes, the 

Gibbs free energy of the above reaction (ΔrG) equals the difference in the binding 

enthalpies of the complexes. Using the more accurate LCCSD(T) enthalpies, we obtain the 

value of ΔrG = -6 kJ/mol from Table 1. Relying on the well-known formula for the 

equilibrium constant, K = exp(-ΔrG/RT), we arrive to K = 11 at room temperature 

indicating that the concentration of glycerol is at least by an order of magnitude larger in 

the amylose than in the PLA matrix.  
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 Using the enthalpies determined in these calculations a lattice model was also 

created for the estimation of the mutual solubility of the polymer phases and the effect of 

glycerol on it. Either one glucose, one glycerol or three lactide units were placed in the 

cells of the lattice, respecrtively. The phase diagram was constructed from the change of 

free energy 

G H T S         (1) 

where G, H and S are the changes in the free energy, enthalpy and entropy of mixing. 

The change of entropy was calculated from the lattice model 

3

1 ,

lni

i

i p i

S
N






       (2) 

where i is the volume fraction of the components and Np,i their degree of polymerization. 

The change in enthalpy was calculated form the Flory-Huggins interaction parameter of 

the various pairs in the following way 

1
( )

2
ij ii jj

ij
RT

  



 

     (3) 

where ij  is the interaction enthalpy of the components, while ii and jj are the bonding 

enthalpy of like components at 298 K. Accordingly, the enthalpy of mixing is calculated 

from Eq. 4 

12 1 2 13 1 3 23 2 3
( )H RT               (4) 

where R is the universal gas constant and T the absolute temperature. The calculated phase 

diagram is shown in Fig. 10. Dashed black lines connect the compositions of phases, which 

are in equilibrium at various glycerol contents of TPS. The results of the calculations and 

Fig. 10 clearly show that most of the glycerol is located in the starch phase. Blue points 

and lines show the compositions of the TPS/PLA blends studied in this work. Neat PLA 

and neat TPS are the endpoints of the blue lines while the composition of the blends are 



21 

 

located between these two extremes. All compositions studied are located in the two phase 

range of the diagram, i.e. they phase separate to PLA and starch containing small amount 

of PLA.  
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Fig. 10 Calculated phase diagram of the ternary system PLA/starch/glycerol; effect of 

glycerol on miscibility. 

 

 The phase diagram unambiguously shows that PLA does not dissolve any TPS at 

all, while it can be dissolved in a small extent, about 3 vol % at most, in plasticized starch. 

Glycerol facilitates the dissolution of PLA in TPS, a conclusion which is in agreement with 

those of Ma et al. [9, 10] who found that a plasticizer can improve the compatibility of 

PLA and TPS. On the other hand, these calculations also confirm that the majority of 

glycerol molecules is located in the TPS phase and do not diffuse into PLA. We must 

emphasize here, though, that these calculations are very qualitative in manner giving 

information only about the direction and magnitude of changes brought about by the 

mixing the two components.  
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3.4. Structure 

 The phase structure of the PLA/TPS blends was studied by scanning electron 

microscopy. Etched surfaces were prepared in order to help the clear distinction of the 

phases. Three micrographs are presented in Fig. 11 to demonstrate the effect of 

composition on structure.  

 
 

a) 

 

 
 

b) 

 

 
 

c) 

Fig. 11 Effect of composition on the dispersed structure of PLA/TPS blends, SEM 
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micrographs at magnification 500x; a) 10, b) 50, c) 90 vol% TPS. 

 

In accordance with previous results, heterogeneous structure forms at all compositions. 

PLA is the continuous phase at large PLA and small TPS content in which TPS is dispersed 

in the form of droplets of a few micron size (Fig. 11a). The opposite occurs at the other 

end of the composition range, PLA is dispersed as small particles in the continuous TPS 

phase here (Fig. 11c). A more or less co-continuous structure develops at around 50 vol% 

of both components as shown by Fig. 11b. The concentration range of co-continuous 

structure is very narrow, dispersed structure was observed at both sides of 50/50 

composition, i.e. at 40 and 60 vol% TPS content. Both the dispersed structure and the 

narrow range of the interpenetrating network like structure are in strong agreement with 

the rest of our conclusions about the immiscibility of the two components and the 

development of only weak interactions between the phases.  

 

3.5. Properties 

 Conclusions about compatibility are often drawn from the composition dependence 

of mechanical properties. However, the characteristics of the components differ 

considerably from each other in our case, composition dependence is dominated by this 

difference and it is very difficult to arrive to any reasonable conclusion as a consequence. 

This statement is demonstrated adequately by Fig. 12 showing the composition 

dependence of the Young's modulus for the two sets of blends. The stiffness of PLA is 

approximately 3 GPa, while it is around 60 MPa and less than 1 MPa for TPS36 and TPS47, 

respectively. Young's modulus decreases quite rapidly with increasing TPS content and 

the stiffness of the blends is always smaller than the one predicted by additivity, indicating 

again weak interactions. 
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Fig. 12 Composition dependence of the Young's modulus of PLA/TPS blends; () 

TPS36, () TPS47. 
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Fig. 13 Tensile strength and elongation-at-break of PLA/TPS blends plotted against TPS 

content; (,) TPS36, (,) TPS47; full: strength, empty: elongation-at-break. 
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 The composition dependence of mechanical characteristics measured at yielding 

and at break is very similar to each other. Tensile strength and elongation-at-break are 

plotted against TPS content in Fig. 13. The correlations offer limited information again. 

The strength of PLA deteriorates rapidly with increasing TPS content almost 

independently of glycerol content. The negative deviation from additivity indicates strong 

incompatibility of the components. The deformability of PLA and most of the blends is 

very small forecasting also poor impact properties that was confirmed by independent 

measurements. Changes in the elongation-at-break values of the blends shows that TPS 

properties dominate above 80 vol% TPS content, but PLA decreases the deformability of 

TPS quite fast. Obviously the properties of these PLA/TPS blends are moderate at most 

and some coupling strategy much be applied in order to develop a material for practical 

use. 

 

4. Conclusions 

 A detailed analysis of experimental results obtained on PLA/TPS blends supported 

by model calculations showed that the interaction of the two components is weak. The 

investigation of the possible partitioning of glycerol in the two phases indicated that most 

of the plasticizer is located in the TPS phase and does not diffuse into PLA. 

Thermodynamic modeling predicted some dissolution of PLA in TPS which was assisted 

by the presence of the plasticizer, but TPS does not dissolve in PLA at all. As a 

consequence of weak interactions, properties are moderate at most. Blending of the two 

components resulted in heterogeneous, two phase structure at all compositions. No tangible 

proof was found for the formation of a glycerol rich phase in TPS, the relaxation transition 

assigned to this phase was rather explained with the movement of smaller structural units 
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of starch molecules. Weak interfacial adhesion does not allow stress transfer through the 

interface resulting in poor strength and small deformation. TPS deteriorates the properties 

of PLA considerably, but blends with a starch matrix are also extremely weak. Useful 

materials can be produced from PLA and TPS only with the development of an appropriate 

coupling strategy. 
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