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Abstract 

The refractive index sensitivity of coupled plasmonic nanostructures – namely spherical gold nanoparticles in various arrangements 

– were simulated with the MNPBEM Matlab toolbox. The particle diameter, the distance between the particles and the substrate 

material were the running parameters in four different configurations. The required distances between the particles to achieve 

coupling effect with an enhanced electric near field and thus higher refractive index sensitivity were obtained for the configurations, 

along with the enhancement factors. 
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1. Introduction 

The refractive index sensitivity of localized surface plasmon resonance (LSPR) based sensors is depending on 

several parameters, including the material type, size and shape of the particle and also the spatial arrangement of multi-

particle systems [1]. It is already proven that with the proper nanostructures in the proper arrangement the sensitivity 

of LSPR (considering molecular or biosensing applications) can reach the sensitivity of classic Kretschmann-

configuration based SPR devices on the market [2]. The general aim of our research group is the development of 

technologies, which would enable the cost-effective fabrication of highly ordered nanoparticle systems on large 

surface areas (several cm2). An example of such technology is presented in Fig. 1, where spherical gold nanoparticles 

are placed in a hexagonal arrangement fabricated by using a suitable nanodimpled alumina template and vacuum 

deposition technologies [3]. Hence, the primary motivation of the presented work is to determine through simulation 

the best achievable nanoparticle size/distance ratio (in strong accordance with the technological possibilities) to 

optimize the sensitivity of the fabricated sensor elements. Considering this purpose our secondary objective is to test 

the capabilities of the MNPBEM Matlab toolbox, which utilizes the boundary element method (BEM) approach and 
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provides a convenient way for the simulation of coupled plasmonic nanostructures [4]. Besides the advantageous short 

running times compared to other finite element methods, it also enables the relatively simple inclusion of substrates 

in the model, which can be of further help in deciding the substrate material for technological processes [5]. 

2. Modeling and Simulation parameters 

Although in this work only gold nanospheres are investigated, the MNPBEM Toolbox supports the convenient 

setting up of particles with elementary shape (sphere, rod, torus, and cube). The investigated nanosphere arrangements 

were created with the ‘trisphere’ function and are illustrated in Fig. 1. The changing parameters were the particle 

diameter (D0) and the distance between the particles (D). To increase running speed 144 vertices were used for the 

particle generation, increasing the vertices number did not change the simulation results (based on the performed 

comparisons with 900 vertices). A plane wave excitation was used with light propagation in the Z and light 

polarization in the X directions (see Fig. 1). For the evaluation of the plasmonic behavior of the particles the resulting 

extinction cross sections were used. To calculate the bulk refractive index sensitivity the media surrounding the 

nanoparticles was changed between air (n = 1) and water (n = 1.33). The sensitivity (S, [nm/RIU]) is defined as the 

shift of the extinction peak divided by the refractive index change of the media. For multi-particle arrangements the 

enhancement factor is defined as the absolute peak shift of the multi-particle arrangement (due to refractive index 

change) divided by the absolute peak shift of the single particle model. In this way the enhancement factor quantify 

the increased peak shift which originates from the interparticle coupling effects, compared to the single particle model. 

 

 

Fig. 1 Illustration of the investigated nanoparticle arrangements. Spherical nanoparticles with a diameter of D0 are arranged into different formations 

where the distance between the particles were D. 144 vertices were used for particle generation, the presented images are directly exported from 

Matlab after arrangement generation. Right side: SEM image of highly oriented nanoparticles in the hexagonal arrangement, which were fabricated 

by using a nanodimpled alumina substrate as template [3]. 

Two dielectric functions with tabulated values are available for the plasmonic simulation of gold particles, based 

on the optical constants of Johnson and Palik, respectively. Fig. 2 compares the normalized extinction cross sections 

of single-particle models with a diameter of 70 nm for these two dielectric functions. Although the peak shift (between 

air and water) of the two models are nearly the same, the Palik dielectric function yields systematically shorter peak 

wavelengths, and also secondary peaks could be observed (around 580 nm), which increase significantly when the 

distance between particles is decreased in multi-particle arrangements (data not shown). Comparing the enhancement 

factors calculated for two-particle arrangements it can also be seen, that the model based on the Palik dielectric 

function yields smaller enhancement (and thus intercoupling effects) in the relevant range (Fig 3.). Taking these 

observations into consideration, the Johnson dielectric function was used for further calculations. 

  



 

3. Results and Discussion 

The absolute peak shifts of the extinction cross sections (between air and water) simulated for two-particle 

arrangements are presented in Fig. 4. The calculated bulk refractive index sensitivities and enhancement factors are 

also given. Based on the results it can be stated, that in order to achieve a significant field enhancement effect and 

enhanced sensitivity compared to the single-particle model, the spherical particles should be very close to each other, 

specifically, on a relative scale of distance/particle diameter (D/D0 ) the significant enhancement starts below 0.2. If 

the distance between the particles is substantially large (e.g. D/D0 > 0.5), the results converge into the theoretical shift 

predicted by the Mie-theory for single-particles (see in Fig. 4, 6). As can be seen in Fig. 5 at D/D0 = 1 the amount of 

peak shift is nearly independent of the arrangement. Another interesting aspect is that compared to the two-particle 

model, the addition of further particles in the arrangement decreased the measured peak shift at given distances (see 

Fig. 6, below 10 nm). Fig. 7 presents the effect of various substrates on the hexagonal particle formation placed atop 

them. By increasing the refractive index of the substrate, the calculated sensitivities drop accordingly. 

 

 

Figure 2: Normalized extinction spectra of single 70 nm (D0) 
particles in water/air. Comparison of the two available tabulated 

gold dielectric functions (‘GoldJohnson’, ‘GoldPalik’). Simulation 

without substrate. 

 

Figure 4: Extinction peak shift of two-particle arrangements 

between water/air in function of their distance. Insert: Enhancement 
factor (peak shift_2P/peak shift_1P) in function of D/D0. Simulation 

without substrate. 

 

Figure 3: Comparison of the enhancement factors (peak 
shift_2P/peak shift_1P) in function of D/D0 for two-particle 

arrangements with 70 nm particles (D0) for the two available 

tabulated gold dielectric functions (‘GoldJohnson’, ‘GoldPalik’).  

  
Figure 5: Normalized extinction spectra of 70 nm (D0) particles in 

various arrangements in water/air. Distance between the particles: 
D = 70 nm (D/D0 = 1). The arrows indicate the position of the peaks. 

Simulation without substrate. 

y = 4.68*exp(-15.23*x)+1.14 
            (R2 = 0.999) 
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Figure 6: Extinction peak shift of 70 nm (D0) particles in various 
arrangements between water/air in function the particle gap (D). 

The dotted line indicates the single-particle shift based on Mie-

theory. Simulation without substrate. 

 

Figure 7: Extinction peak shift (water-air) of hexagonally ordered 

nanoparticles (D0 = 70 nm) in function of the particle gap laced on 

top of different substrates (Refractive indexes: PDMS – 1.4; PMMA 
-1.49; w/o: without substrate). 

 

The obtained enhancement factor curves can be approximated as exponential functions of the gap between the 

particles (equation in Fig. 4). This exponential decay is in good agreement with the theory of quantum tunneling of 

photons through the gap during evanescent coupling, and also with previous experimental results [6]. The decay length 

is depending on the shape of the particles, which could be the reason of the significantly smaller decay length simulated 

for the nanospheres compared to for example the elliptical nanodiscs used by Su et al. [6] in their simulations. In the 

extended paper the simulation results of other particle shapes and arrangements will be presented and the effect of the 

particle shape on the decay length will be discussed in more detail. 

4. Conclusions 

The plasmonic properties of spherical gold nanoparticle systems were investigated with the MNPBME Matlab 

toolbox. The plasmonic coupling effect between the nanospheres was quantified for different particle arrangements. 

It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle 

arrangements compared to single-particle models) is an exponential function of (D/D0) where D is the gap between 

the particles and D0 is the particle diameter. It was also found that significant plasmonic coupling effects starts below 

0.2 D/D0 for spherical nanoparticles. 
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