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Abstract
A heterogeneous target disease represented by multiple descriptors and disease subtypes frequently
has a rich internal dependency structure. The identification of comorbidities and particularly the
multimorbidities of such diseases requires very large sample size as relevant comorbidities may
form complex interactions. We demonstrate this phenomena by applying a Bayesian probabilistic
graphical model on a large-scale medical datasets UK Biobank (117,392 samples), specifically by
showing that in this case the posterior landscape of multimorbidities is still flat. As a potential so-
lution, we evaluate a Bayesian method, which provides a hierarchic, multivariate characterization
of strongly relevant morbidities and a Bayesian, systems-based score for exploring interactions for
a heterogeneous disease. It explores complete sets of strongly relevant comorbidities using full
multivariate representation for the internal dependencies within the target disease. We used depres-
sion as target, a heterogeneous disease in the UK Biobank dataset. Results are compared against
scenarios using a univariate and an independent, multivariate representation of the target medical
condition, specifically investigating multitarget interaction posteriors and its approximations.
Keywords: Multitarget; multimorbidity; Bayesian networks; comorbidity.

1. Introduction

The shift of focus from single diseases towards multiple diseases permeates medicine and biomedi-
cal research, fueled by shared pathways and overlapping molecular mechanisms of diseases (Menche
et al., 2015). Although the network view of disorders is confounded with well-known terminological
and nosological problems related to definitions of single diseases and social-environmental factors,
the diseasome became an essential crossroad of the molecular and epidemiological levels, further
supported by the availability of large health data sets, such as UK Biobank (Sudlow et al., 2015).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78473194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JOINT BAYESIAN MODELLING OF HETEROGENEITY OF A DISEASE AND ITS MULTIMORBIDITIES

The large sample size opens up new possibilities beyond currently prevailing statistical comorbidity
methods (Smith et al., 2014).

Utilizing large health datasets and the disease network approach, we focus on the exploration
of multivariate patterns of jointly comorbid diseases, i.e. multimorbidity patterns, for a heteroge-
neous target medical condition. This is still an unresolved problem as the application of multivariate
methods with univariate response/outcome is frequently hindered by the availability of an appropri-
ate disease descriptor for the target medical condition. For these heterogeneous targets, multivariate
response variables can be used, but current solutions are limited or their scope is different (Van
Der Gaag et al., 2006; Klami et al., 2013). As approximations for heterogeneous targets, univariate
or constrained multitarget approaches can be applied. However, the use of a single target vari-
able, either by selecting a dominant descriptor best representing the target medical condition or
constructing a mega-variable approximating the target medical condition, can have diverse negative
consequences on the exploration of relevant factors and their interactions, such as loss of power or
artificial, higher-order interaction of factors. The use of multiple separated analyses for each target
can have substantial negative effects as well, because it can overestimate the relevance of predictors
if intermittent dependencies between the targets are neglected (e.g. by using the others systemati-
cally for corrections), but an even more serious effect can be the inability of detecting interactions
relevant for the target medical condition, e.g. those interactions, which effects different targets.

In principle, approaches based on probabilistic graphical models (PGMs) are ideal candidates
both for the overall exploration of the dependencies among all the undiscriminated predictor-response
variables (Madigan et al., 1996; Friedman and Koller, 2003; Schadt et al., 2005; Yeung et al.,
2014) and for the exploration of relevant variables (predictors) for a given medical condition (out-
come) (Yeung et al., 2005; Antal et al., 2006; Verzilli et al., 2006). Indeed, a method using a
special class of PGMs in the Bayesian statistical framework, the Bayesian network-based multilevel
analysis of relevance (BN-BMLA) supports the Bayesian exploration of multivariate patterns of
relevance for multiply represented targets, but the effect of such group representation of the target
medical condition was not investigated yet (Antal et al., 2008).

In this paper, we demonstrate that high-order interactions, specifically for complex heteroge-
neous target diseases still cannot be identified with high certainty from recent large-scale medical
datasets such as UK Biobank. In such problems, explicit modelling of remaining uncertainty is
necessary but scalable complexity of model properties of the multimorbid networks can provide a
solution. Especially, we present a systematic comparison of three scenarios for the multimorbidity
analysis of a heterogeneous disease: (1) if only a single, preferably dominant variable is used to rep-
resent the target medical condition in a simplified, frequently used approach, i.e. weaker descriptor
variables or disease subtypes and categories are omitted (shortened as univariate target: UT), (2) if a
group representation is used for the target medical condition, but interdependences among them are
neglected, i.e. they are treated as independent targets (shortened as independent targets: ITs), (3) if a
group representation is used for the target medical condition and the interdependencies among them
are fully modeled using Bayesian networks (shortened as multitarget: MT). Furthermore, we inves-
tigate the presence of higher-order interactions for a heterogeneous disease that cannot be captured
in the first two scenarios, termed as “multitarget interactions”. These real-world analyses explores
the multimorbidities of depression using a UK Biobank data set, which contains 117,392 samples
and 110 variables. The target medical condition of depression are represented with 7 variables. The
paper is organized as follows. In Section 2 we introduce basic concepts of our approach to rele-
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vance analysis. In Section 3, we describe the data and method with detailed settings applied in the
evaluation. In Section 4 and 5, we discuss the results and summarize conclusions.

The notation is as follows: target variables (corresponding to depression descriptors and sub-
types) are denoted with Y (Y = {Y1, . . . , Ym}), explanatory variables are denoted with X (X =
{X1, . . . , Xn}) and V (V = X ∪ Y ) denotes all the variables. The data set with N samples is
denoted by DN .

2. Approach

The exploration of the multivariate-multivariate dependency relations between explanatory vari-
ables and the group representation of the target medical condition using multiple target variables
requires the overall, systems-based modelling of the global dependency/independency structure of
the variables. PGMs, especially BNs, provide a fundamental tool to represent structural properties
of the joint distribution or the underlying causal mechanisms. Furthermore, the Bayesian statistical
framework offers many advantages for this analysis, such as prior incorporation and posterior post-
processing, thus we focus on a Bayesian, systems-based methodology, which performs Bayesian
model averaging over BN structures representing multivariate-multivariate dependency relations
between explanatory variables and the target variables. The Bayesian Network-based Bayesian
Multilevel Analysis of relevance (BN-BMLA) was proposed to focused on special subgraphs in the
neighbourhood of target variables (Antal et al., 2006, 2008). In this work we investigate the effect
of using multiple target variables with Bayesian model averaging over their potential dependencies
as the group representation of the target medical condition to explore relevant variables. Necessary
concepts are as follows (for detailed discussion and references, see (Antal et al., 2008, 2014)).

The probabilistic definition of Markov Blanket and Markov Boundary became fundamental
concepts in data analysis, in the feature subset selection problem, to exceed limitations of pairwise
and predictive approaches ((Pearl, 1988; Koller and Sahami, 1996; Aliferis et al., 2010)).

Definition 1 A set of variables X′ ⊆ V is called a Markov blanket set (MBS) of Y with respect
to the distribution p(V ), if (Y ⊥⊥ V \X′|X′)p, where ⊥⊥ denotes conditional independence. A
minimal Markov blanket is called Markov boundary (Pearl, 1988).

The connections between BNs and Markov Boundaries are provided by the following theorem:

Theorem 1 For a distribution p(V ) defined by the Bayesian network (G, θ) the variables bd(Y,G)
form a (not necessarily unique or minimal) Markov blanket of Y , where bd(Y,G) denotes the set of
parents, children and the children’s other parents for Y . If p(V ) is a positive distribution and DAG
G is Markov compatible with p(V ), then bd(Y,G) is the unique, minimal Markov blanket (called
Markov boundary) (Pearl, 1988).

In stable distributions, bd(Y,G) also identifies the so called strongly relevant variables (Tsamardi-
nos and Aliferis, 2003). Because of the Bayesian framework at the level of BN parameters, we will
treat bd(Y,G) as Markov Boundary and its members as strongly relevant (for details, see Antal
et al., 2008, 2014). In this case, the Markov Boundary set is the union of the external variables, if
there are multiple target variables Y :

MBS(Y) = (
⋃

Yi∈Y

MBS(Yi)) \Y. (1)
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The induced pairwise, symmetric relation MBM(Y,Xi, G) with respect to G between Y and Xi

is called Markov Blanket Membership (MBM) (although in the Bayesian framework the stricter
Markov Boundary Membership could be used as well):

MBM(Y,Xi, G)⇔ Xi ∈ bd(Y,G) (2)

However, the linear number of MBM features cannot represent the multivariate aspects of rel-
evant factors for a target medical condition, on the contrary, the exponential number of Markov
Boundary sets characterize the joint relevance of factors, but they are intractable computationally,
statistically and their visualization is hard. The concept of k-ary Markov Boundary subsets, focus-
ing on k sized sets of sub-relevantvariables, and the analogous concept of sup-relevant sets were
introduced to support a constrained multivariate analysis (Antal et al., 2008, 2014).

Definition 2 For a distribution p(V ) with Markov Boundary set mbs, a set of variables s is called
sub-relevant if it is a k-ary Markov Boundary subset (k-subMBS), i.e. |s| = k and s ⊆ mbs. A
set of variables s is called sup-relevant if it is a k-ary Markov Boundary superset (k-subMBS), i.e.
|s| = k and mbs ⊆ s.

A k-subMBS and a k-supMBS denotes a necessary and a sufficient set of variables respectively:
a k-subMBS set ssub contains some strongly relevant variables, in contrast the complement of a
k-supMBS set scsup contains variables that are not strongly relevant. The posterior probability of the
sub-relevance of a subset s is denoted as follows:

p(s|DN ) = p(MBS(Y,G) = s|DN ) +
∑

s′:s⊂s′
p(MBS(Y,G) = s′|DN ), (3)

where the first term is the exact MBS posterior of s and subsequent terms, behind the summation
sign, are the MBS posteriors of each proper superset of s. The posterior probability of sup-relevance
p̄(s|DN ) can be defined analogously. Both visualization and post-processing can exploit that subsets
of relevant variables form a lattice with operations intersection and union, where the minimum and
maximum are the empty and complete sets.

3. Methods

We used the following dataset and settings below together with several approximations.

3.1 Data

We used a subset of the UK Biobank disease data with 117,392 participants who filled out the
mental state questionnaire. Disorders were recorded during an interview with trained professionals.
Altogether 526 different diseases appeared in the data set. We assigned multilevel ICD-10 codes
to these disorders. For this analysis we collected those disorders which fall in one of the follow-
ing ICD-10 categories: diabetes mellitus (E08-E13), diseases of the circulatory system (I00-I99),
diseases of the musculoskeletal system and connective tissue (M00-M99), diseases of the nervous
system (G00-G99), mental and behavioural disorders (F01-F99), metabolic disorders (E70-E88)
and irritable bowel syndrome. Furthermore, we filtered diseases with frequency below 0.1% preva-
lence resulting in a subset of 107 diseases together with sex and age (discretized into 3 bins with
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thresholds 52 and 61). We defined obesity over 30 kg/m2 Body Mass Index. Smith et al. (2013)
calculated three depression subcategories based on severity and recurrence. Specifically depression
occurring once, moderate recurrent depression and severe recurrent depression.

In the first scenario we used the interview-based depression from the UK Biobank as target. In
the second scenario we used the following 7 descriptors and subtypes as a group representation of
depression: interview-based depression, depression occurring once, recurrent moderate depression,
recurrent severe depression, post-natal depression, nervous breakdown and mania/bipolar disor-
der/manic depression.

3.2 Settings

We applied a Markov Chain Monte Carlo simulation to compute the MBM and MBS posterior
probabilities (Antal et al., 2008). To evaluate the three scenarios we performed nine different simu-
lations as follows. Beside the query with multiple targets we ran a simulation for all target variables
with including the other targets. Each simulation used the following parameters: 10 parallel runs
with 500.000 burn-in steps and additional 2.000.000 simulation steps. Each run started with five
chains in the Metropolis-coupled MCMC with swapping and different temperature (Antal et al.,
2008). Assuming complete, discrete data set DN , multinomial sampling and Dirichlet parameter
priors (P(Θ|G)), we used the Cooper-Herskovits (BDCH ) prior with 1 as virtual sample size per
cell (vss = 1) and uniform structure prior (P(G)) (Cooper and Herskovits, 1992; Heckerman et al.,
1995). To be able to model higher-order interactions of multimorbidities we allowed a relatively
large number of possible parents (max. 6) which motivated the use of BDCH instead of BDeu

as the latter may cause anomalies in case of low sample numbers in specific parental configura-
tions (Hullám and Antal, 2013).

3.3 Approximations of MBS Posteriors

For a detailed comparison of the scenarios we applied several approximations. The posterior proba-
bility of MBM can be used to estimate the posterior of Markov Blanket Sets in two steps. First, we
can approximate the multitarget MBM posteriors (see Eq. 4) and using these values we can calculate
the approximated MBS probabilities (Eq. 5). We followed this approach to estimate the multitarget
MBS using the multiple independent target BN-BMLA runs and for the univariate target scenario

P (MBM(Xi,Y)|DN ) ≈ 1−
∏
j

(1− P (MBM(Xi, Yj)|DN )) , (4)

where Y is the set of the disorders forming the target medical condition and Xi represents the
factors in the data while DN is the data set with N cases. To simplify the equation we omit the
notation of the data DN in the following equations. It is straightforward to approximate the MBS
probability using the approximated MBM probabilities

P (MBSi(Y)) ≈
∏

Xi∈MBSi

P (MBM(Xi,Y)) ∗
∏

Xi /∈MBSi

(1− P (MBM(Xi,Y))) . (5)
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However, this estimation is biased because using the pairwise MBM descriptors we cannot catch
the interactions between the factors. Approximating the multitarget MBS posteriors by utilizing the
single-target MBSs we can handle the interactions and redundancy between the variables

P (MBSk(Y)) ≈
∑

{Ii}ni=1:∪MBSIi
(Yi)=MBSk

n∏
i=1

P (MBSIi(Yi)). (6)

We estimate the posterior of a given MBS (MBSk) by searching for a unitarget MBS for each
target variable which union equals with MBSk. We sum up for all possible combinations resulting
in MBSk the product of the posteriors of the unitarget MB sets.

4. Results and Discussion

To demonstrate the advantages of multitarget BN-BMLA method, first we compare our results for
the three scenarios: univariate target (UT), multiple independent targets (ITs) and the multitarget
case (MT). Next, we present the possibilities using constrained Markov Blanket sets (k-subMBSs) to
search for strongly relevant factors. Finally, we describe the pairwise and higher order interactions
between comorbid disorders and discuss its biomedical relevance.

4.1 Posteriors for comorbidities and multimorbid sets

Markov Blanket Membership can represent a pairwise connection between the target group and the
other disorders. By using the approximation in Eq. 4 we compared the unitarget and the indepen-
dent targets cases to the multitarget MBM posteriors (see Fig.1A). The multitarget approximation
follows accurately the multitarget MBM posteriors with only minor differences present (e.g. heart
attack/myocardial infarction). In case of the single target MBM many differences can be detected
(e.g. type 2 diabetes, osteopenia, osteoporosis). The connection between depression and these
disorders is mostly underestimated compared to the multitarget case as expected, since the other
members of the disease group can have different comorbidities. In summary, the error of the uni-
variate and multiple independent targets estimations are as follows: the UT method provides precise
estimate for 68% of the variables (∆ is less than 0.05 for factors with higher than 0.05 MBM poste-
riors). The ITs estimations are better in all of these cases and less than 0.05 for the relevant variable
except for osteopenia.

We also investigated the structural interaction between relevant variables, so we examined the
Markov Blanket sets for the three scenarios. In the first to cases (UT, ITs) we approximated the
multitarget MBS with MBM (Eq. 5) and MBS (Eq. 6). Besides, we used the multitarget MBM to
approximate the multitarget MBS as well. Figure 1B shows the ordered multitarget MBSs and the
approximations. The highest multitarget MBS posterior is 0.262 followed by steep drop. No MBS
have high posterior probability (> 0.5) and a few sets have medium posteriors between 0.05 and 0.5.
It can be clearly seen, that MBM estimates (triangles) performed worse than MBS approximations.
This implies that there are many interaction between variables which MBM cannot handle. How-
ever, MBS approximations gave better results, the estimations of the multitarget MBS posteriors
were still not accurate.

315



MARX, MILLINGHOFFER, JUHÁSZ, AND ANTAL

A B

Figure 1: Approximations of MBM and MBS showing the three different scenarios. A shows the
difference between the MT MBM the ITs MBM and UT MBM posteriors. Disorders with higher
than 0.01 posterior in either case are shown. B presents the multitarget MBS probabilities and its
different estimations. Red shows the calculated multitarget MBS and MBM by the BN-BMLA
approach. Green presents the approximation of the multitarget MBS based on multiple unitarget
MBMs and MBSs. Blue shows the unitarget MBM-based approximation together with the unitarget
MBS posterior of the multitarget MB sets.

To summarize, these results for the multitarget MBS and its poor approximations indicates that
the performance of the three scenarios should be investigated at intermediate levels bridging Markov
Blanket Memberships and Markov Blanket Sets.

4.2 Limits of data in multivariate relevance analysis

The k-subMBS concept in the Bayesian framework provides a unique approach to understand the
power of the data to explore strongly relevant comorbid disorder subsets. Figure 2B shows the
multitarget MBS posteriors with several k-subMBSs. 1-subMBS (red dashed line) which equals the
MBM posteriors predicts the number of comorbid conditions for the target group but MBMs cannot
include the interactions between the factors. As expected, in case of k = 1, 2 a couple of variables
and variable pairs have a high posterior followed by a steep fall in the posteriors probabilities. The
high number of 3- and 5-subMBSs with high posteriors implies that the group representation of
depression has multiple strongly relevant comorbidities which corresponds to our current knowl-
edge (Smith et al., 2014).

The sub-MBS and sup-MBS posteriors characterize the power of the data (see Fig. 2A). Using
only depression as a target we have the highest posterior probability at the intersection point (about
0.5) of the sub and sup curves. The multitarget curves have a moderate ( 0.375) intersection posterior
with higher set size than depression. The multiple independent targets MBS approximation have
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Figure 2: Sub- and supMBS curves. A shows the curves for the posteriors for the sub- and sup
relevancies in the three scenarios (MT, ITs, UT). B presents the curves of the k-MBS posteriors
together with MBS posteriors in the MT scenario.

the highest set size and the lowest posterior. As expected the univariate case can filter out irrelevant
factors with higher confidence and can form a relevant subset with higher belief. On the other hand
the multitarget case includes more factors with high posteriors in the MBS.

4.3 Pairwise and higher-order interactions in morbidities

To investigate the presence of interactions between the factors we examined an interaction-redundancy
score (IRS see equation 7) based on posterior decomposition (Antal et al., 2008)

IRS(X1;X2) = log
p({X1, X2} ⊆ MBS(Y))

p(MBM(Y, X1, G))p(MBM(Y, X2, G))
. (7)

Figure 3 and Table 1 shows these interactions together with the redundancies between the dis-
orders. In the case of UT method, 11 interactions gave significantly different estimates (the ratio of
IRS scores outside 0.95-1.05 interval) whereas the ITs scenario gives an even worse approximation
for 38% in that sense. An interesting interaction which can be detected in the multitarget case but
not present using the individual targets is the heart attack/myocardial infarction and osteoarthritis.

5. Conclusion

Complex, heterogeneous diseases pose a critical challenge in multiple domains, such as in network
medicine to find comorbidities and in genetic association research to find relevant variants, genes
and pathways. This challenge is further complicated by the necessity of finding higher-order in-
teractions, e.g. multimorbidities, whose pattern of presence and absence synergistically influences
various aspects of the heterogeneous medical condition. Indeed, it is currently unknown what is
the presence, frequency and significance of the introduced multitarget interactions, whose defining
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Figure 3: The interaction diagrams of the multitarget MBS (A) and the unitarget depression exclud-
ing the other target variables (B). Red line shows positive interactions while blue lines represents
redundancy between the connected variables. The length of the brown lines in the grey circle shows
the MBM posterior of the given variable.

characteristics is their systems-based relevance for a heterogeneous disease, consequently, they can-
not be identified by simplified univariate target analysis or based on separated analyses of multiple,
independently treated targets.

We confronted these challenges of exploring relevant factors for a heterogeneous disease through
the problem of exploring multimorbidities for depression. Results are compared using three scenar-
ios with (1) the univariate, (2) the independent-multivariate and (3) the group representation for the
target heterogeneous disease. These investigations confirmed the limitations of the first two scenar-
ios: brittle and constrained disease definitions lead to decreased statistical power and to asymptotic
limitations as well. The univariate approach poorly approximates the posteriors of strong rele-
vance for 32% comorbidities and it falsely quantifies 25% of the significant pairwise interacting
comorbidities. The performance of the second scenario, which assumes independence of the 7 vari-
ables representing subtypes and aspects of depression, is improved, but it still cannot cope with the
estimation for the exploration of interacting comorbidities. From the point of view of multitarget in-
teractions, this result shows that such interactions are not just existing, but frequent, which indicates
that systems-based methods are needed for the detailed exploration of the multivariate-multivariate
relevance relations.

The above results confirm that large-scale datasets are still limited for non-ambiguous iden-
tification of high-order interactions of complex heterogeneous target diseases. As a solution, we
evaluated the applicability of Bayesian probabilistic graphical models, where PGMs offer a rich
toolset for representing relevance and interaction with varying complexity and the Bayesian statis-
tical approach provides an explicit and processable representation for the confirmation of the data
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Table 1: Observed posteriors of 2-MBSs (P ), their MBM-based approximations (P̂ ) and the in-
teraction score (IRS) are shown for the three scenarios (MT, UT, ITs) and their respective ratios.
Pairwise interactions with 2-MBS posteriors above 0.05, IRSMT outside the 0.95-1.05 and the
IRSMT
IRSITs

is above 1.05 are shown.

MT ITs UT
Joint relevant
comorbidities
for depression

P P̂ IRS P P̂ IRS P P̂ IRS
IRSMT
IRSITs

IRSMT
IRSUT

IRSITs
IRSUT

osteoporosis
osteoarthritis 0.091 0.029 3.151 0.024 0.028 0.844 0.001 0.006 0.234 3.732 13.477 3.611

heart attack
osteoarthritis 0.113 0.029 3.927 0.044 0.031 1.455 0.023 0.006 3.684 2.698 1.066 0.395

angina
osteoarthritis 0.114 0.029 3.905 0.045 0.031 1.452 0.023 0.006 3.693 2.691 1.057 0.393

diabetes
osteopenia 0.119 0.045 2.648 0.085 0.085 0.997 0.000 0.000 0.185 2.656 14.332 5.397

type 2 diabetes
osteopenia 0.119 0.045 2.646 0.085 0.085 0.999 0.000 0.000 0.363 2.647 7.287 2.752

osteoarthritis
high cholesterol 0.114 0.028 4.133 0.042 0.027 1.576 0.023 0.006 3.905 2.622 1.058 0.404

type 2 diabetes
osteoarthritis 0.091 0.043 2.106 0.035 0.042 0.830 0.001 0.009 0.155 2.538 13.577 5.351

diabetes
osteoarthritis 0.091 0.043 2.108 0.036 0.043 0.831 0.001 0.009 0.158 2.536 13.359 5.268

through posteriors. Results show that the hypothesized multitarget interactions exist and they can be
explored in the diseasome using large-scale health data sets using Bayesian model averaging over
the dependency structures of the group representatives and the potential factors.
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