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Abstract

We propose an extended Bayesian matrix factorization method, which can incorporate multiple
sources of side information, combine multiple a priori estimates for the missing data and integrates
a flexible missing not at random submodel. The model is formalized as probabilistic graphical
model and a corresponding Gibbs sampling scheme is derived to perform unrestricted inference.
We discuss the application of the method for completing drug—target interaction matrices, also dis-
cussing specialties in this domain. Using real-world drug—target interaction data, the performance
of the method is compared against both a general Bayesian matrix factorization method and a spe-
cific one developed for drug—target interaction prediction. Results demonstrate the advantages of
the extended model.

Keywords: Bayesian matrix factorization; missing not at random; drug—target interaction predic-
tion.

1. Introduction

Analyzing incomplete dyadic data (i.e. an incomplete set of pairwise interaction scores) has drawn
considerable interest in recent years. An early benchmark challenge of such problems is the movie
recommendation problem, which aims to model and predict movie ratings provided by a large num-
ber of users. Matrix factorization methods, particularly their Bayesian extension became the most
widely applied approaches to cope with overfitting in these problems (Salakhutdinov and Mnih)
2008b). However, the incorporation of heterogeneous side information about the entities and mod-
elling the potentially informative, complex dependency patterns of missing data are still open chal-
lenges (Hernandez-Lobato et al., 2014).

The matrix completion problem is also abundant in the life sciences, such as in gene function
prediction (Zitnik and Zupan|, 2014), gene prioritization (Zakeri et al., 2015) and in drug—target
interaction prediction (Gonen et al.| 2013} [Yang et all 2014; Buza, 2016). Drug-target interac-
tion prediction is particularly important, as large-scale screening results are curated into publicly
available repositories, thus containing unprecedented amount of high quality bioactivity measure-
ments (Williams et al.,[2012; Jupp et al, 2014). Additionally, the inclusion of rich side information
(e.g. molecular similarities) and the development of a refined model of missing data are especially
promising directions in this domain.

Utilizing the advantages of the Bayesian statistical and PGM frameworks for structured data
and knowledge fusion, we present an extended Bayesian matrix factorization scheme formalized
as a probabilistic graphical model and derive a Gibbs sampling scheme to perform unrestricted in-
ference. The proposed method can incorporate multiple kernels as side information and a priori
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potentially incomplete estimates for interaction scores, and also contains a novel missing not at ran-
dom (MNAR) data submodel. We evaluate its predictive performance using real-world drug—target
interaction data and compare it against general and drug-target specific Bayesian matrix factoriza-
tion methods.

2. Earlier Works

In machine learning, matrix factorization-based methods have become a well-established and pow-
erful approach to analyze dyadic data. The main idea is to find a low-rank approximation for a
matrix of observations R € R’*7 as a product of factors U € RY*! and V' € RY*/ | such that

R~UTV,

where L < rank(R). The usual interpretation is to think of the columns of U as some representa-
tion of I “row-entities” (e.g. users), the columns of V' as some representation of .J “column-entities”
(e.g. movies), and R contains the I x J interaction scores (e.g. movie ratings). In most works, the
Frobenius norm is employed in the loss function:

. 2
wip [R-UTV]L )

Singular value decomposition (SVD) provides a unique and optimal solution for this problem, eas-
ily tweaked to handle missing observations by re-formulating in an element-wise manner and
keeping only the terms where R;; is known. Matrix completion can then be achieved by predicting
the missing values of R by simply multiplying the resulting factors.

This basic model faces multiple challenges. The SVD solution is prone to overfitting as the
factors can get arbitrarily large. This was remedied by introducing a generative model, coined
PMF for probabilistic matrix factorization, which places a Gaussian noise model on R and treats
the columns of U and V as zero-mean multivariate normal variables (Salakhutdinov and Mnih),
2008b). PMF was later extended to full Bayesian inference (BPMF) by putting Normal-Wishart
hyperpriors onto the parameters of PMF (Salakhutdinov and Mnih, [2008a). PMF and BPMF are
illustrated on Figure

A significant amount of research was conducted to find ways to incorporate “side informa-
tion” (i.e. prior representations of entities) into the matrix factorization framework. The traditional
approach to harness this extra information is collaborative filtering (CF). CF computes similar-
ities between entities (e.g. user—user or movie—movie similarities) using prior descriptions and
uses this extra information to take values for “similar” entities into account (for a detailed review,
see (Ekstrand et al., 2011)). More recently, other schemes were proposed, including models using
Gaussian Processes (Adams et al., [2010; Zhou et al., [2012), linear regression models on the latent
vectors (Agarwal and Chen), [2009; [Park et al., [2013} [Simm et al.l 2015 and joint decomposition
models (Yoo and Choi, 2011} Singh and Gordon, 2012).

The “missingness” pattern of R in matrix factorization methods is usually treated as missing
at random (MAR). However, in practice, the MAR assumption often fails, for example, instead of
giving a bad movie a low score, users tend not to rate it at all, i.e. the missingness pattern depends
on the values of R. There were only a handful of works in this field which addressed this issue.
A proposed solution is to build a separate matrix factorization model for the binarized observation
matrix (Hernandez-Lobato et al., [2014).
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Figure 1: Graphical models corresponding to PMF (left) and BPMF (right). Notation was adapted
to this work.

3. The Extended Bayesian Factorization Model

These challenges also arise in drug—target interaction prediction. As side information, a wide range
of molecular representations (“fingerprints”) and induced similarities are available. However, a
distinctive feature of this application area is the availability of analytic models (e.g. docking simu-
lations) for the interaction scores, which may provide valuable estimates. Finally, the set of existing
interaction data is much larger than the shared data located in publicly available repositories, as a
consequence of obvious irrelevance, difficulties of measurements or policies of the pharmaceutical
industry — a clear violation of the MAR condition.

Hence, in this work, we propose an extended Bayesian matrix factorization method, HuTolt,
with the following properties:

e It can incorporate multiple sources of side information through Gaussian Process priors,
which enables the fusion of heterogeneous data about the entities through multiple kernel
learning (Gonen et al.| 2013)).

e [t contains a novel missing not at random (MNAR) model instead of the currently prevailing
missing at random assumption.

e [t can incorporate multiple estimates for missing interaction scores.

3.1 Matrix Factorization with Gaussian Processes

We follow the notation employed in (Salakhutdinov and Mnih, |2008a)). Let us denote the matrix to
be approximated by R € R’*/. Our goal is to find a low-rank approximation of R with factors
U € REX and V e REXY | such that

R~U"V,
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Figure 2: Matrix factorization with Gaussian Processes. Each row of U is governed by a (weighted)
Gaussian Process. Their covariance matrices enforce similarities over the columns of U.

where L is the number of latent dimensions. Each column u; of U can be thought of as a low-
dimensional representation of the entity corresponding to the ith row of R.

Now let us assume that we also have access to multiple symmetric positive definite kernel ma-
trices containing inner products of some high-dimensional representations of these same entities.
Following Zhou et al. (2012), we require the distributions of the rows of U € RZ*! to be governed
by L independent Gaussian Processes, each using a weighted kernel as covariance matrix:

L
pUm", K, X) = [[NUImi, uSi),
=1

where my! is the mean vector for the I/th process, S}' is the inverse of the /th kernel matrix K;
and ) is the associated kernel weight. This ensures that in /th row of U, values respect the inner
products specified by the kernel K; and the columns of U, in general, share similarities governed
by the kernels (Figure [2|illustrates this idea). Moreover, the “importance” of the latent dimensions
are automatically established through learning the kernel weights.

The distributions of the columns of V' € RL* are, as usual,

J
p(VIm?,8%) = [[ N(vlm3, 8771,
j=1
p(mU7 Sv|m07 1/0’ WO) — NW(m”, Sv|m0, l{07 WO, 1/0)’

where v; is the jth column of V' and we put a Normal-Wishart prior on m" and S”. Note that this
can easily be replaced with a Gaussian process prior such as in the case of U. In this work, we keep
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the standard Normal-Wishart prior. The distribution of the incomplete matrix R is given by

I J
p(RIU.V.7*,7") = [TTT W (R ulvy, (53771
i=1j=1

’7 |a‘ bc Hga ’Yz’aw z

(v"|la",b") Hga (vjla%, b7)

where I;; is a binary indicator variable denotlng the existence of R;; and Ga is the Gamma distri-
bution. The kernel weights A follow the Inverse Gamma distribution

L
p(Aa®,b") = [[ZG(\lai’, by").

3.2 Background Knowledge Model

Let us assume that, at least for some (¢, j), we have access to additional information regarding R;;
(e.g. values from other prediction schemes or expert opinions). To account for this in the model, we
specify the nth background knowledge model as

I J
p(B"|R,0%0") = [[ [] IN(BEIRy;. (o707) 1] ™,

i=1j=1

p(anc‘anc? b?’LC Hga TLC|a’7LlC’b:LC)’

p(o_nr‘anr7bnr Hga nr’a?r’b;zr)7

where B € R!*/. By estimating the precision parameters o™ and o™, the accuracy of this

extra information with respect to each entity (i.e. row and column) will be automatically taken into
account when performing Bayesian inference.

3.3 Missing Data Model

The missing data model is built around a priori specified intervals which influence whether a given
R;; is accessible or not (i.e. a NMAR approach). We give X € {0, l}IXJ a Bernoulli distribution:

p(X|R? 817827:u‘) = HHf('Rij7817s27M)Xij(1 - f(Rij7817527M))1_Xij'
]

Here we utilize the “bump” function

1, if |z —p| < st

, if |z — u| > s9
o ( s2+53—2(z—p)?
((z—p)?—s7)-((w—p)?—s3)

=)

f(13751752aﬂ) =

) otherwise,
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Figure 3: HuTolt: the extended matrix factorization model. R and all its ancestors constitute the
matrix factorization model. B,, denotes the nth background knowledge model and X is the missing
data model.

where o () is the logistic sigmoid function, y is the mean parameter and s1, so specify the “interme-
diate” region on the sides. When R;; is outside the support of f, it will be considered to be missing
with probability 1. This lets us

e constrain the unknown (sampled) values of R;; to meaningful intervals,
e exploit the information carried by missing data points.

This model can be refined by multiplying several bump functions to define more intervals or by
incorporating a smoothing parameter p to soften the probability 1 assumption; in both cases, the
function will remain in C*°. Another interesting extension is the application of a binomial distribu-
tion, modelling how many times a particular interaction has been measured.

3.4 Inference using Gibbs Sampling

We use Gibbs sampling to perform Bayesian inference. Using conjugate priors makes the inference
easy, the only non-trivial parts being sampling the columns of U and the missing entries of R.
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Figure 4: “Bump” function with s; = 0.5, so = 1, 4 = 0.5.

Let ©\U denote all variables except U. A fairly easy derivation shows that the conditional is
p(U®WY) = HN (wiltpi, A7),

=7 Z% V;; Z]+dlagl()‘ Sl ),

i Z 7] R’LJ v] ] — vec; )\ Z Sl Uln - m?n) ’

n#i
where vec; {xl}lL: L=, £]" . A detailed proof can be found in Appendix A. The joint
distribution with respect to R;; is
N
p(Rij, ©\Fi) = N (Ryjlul vy, (40)~ H B |Rij, (0707 ) )B(X 45| f(Rij, s1, 52, 11))

where B is the Bernoulli distribution. It is easy to see that the conditional is, in general, not log-
concave, hence we had to resort to a slice sampling step within the Gibbs sampling. The convolution
of the first two terms gives a normal distribution on R;;, which can be calculated analytically. Then
we separate the unimodular and bimodular cases corresponding to X;; = 0 and X;; = 1 and apply
a simple slice sampling scheme.

4. Experiments

4.1 Drug-Target Interaction Prediction

We evaluated the HuTolt method in a drug—target interaction prediction task. Binding affinities
were collected from the public ChEMBL database (Bento et al., [2014)). We restricted our attention
to psychiatric drugs belonging to the ATC class NO6*. K; values were logarithmically transformed,
multiple measurements were aggregated by their median values and inexact measurements were
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HuTolt
2K+MDM 2K 1K 0K
Mean 0.669 0.698 0.733 0.767 | 0.749 | 0.817
StDev 0.041 0.017 0.032 0.075 | 0.058 | 0.132
Diff 0.126 0.050 0.087 0.176 | 0.159 | 0.392

Macau | BPMF

Table 1: RMSE values in the drug—target interaction prediction task in a 80%-20% cross-validation
setting. “nK” denotes the number of kernels used (in the case n = 0, the identity matrix was used).
“MDM?” denotes the utilization of the missing data model.

discarded, resulting in an incomplete matrix with 37 drugs and 82 targets. The matrix contained
446 entries within the interval [0, 4.328] with mean 0.986.

Chemical fingerprints were computed using the CDK library (Steinbeck et al.| [2003)). Specif-
ically, MACCS and Klekota-Roth fingerprints were used. Kernels were computed using the Tani-
moto similarity measure, which is the gold standard similarity measure in chemoinformatics (Eckert
and Bajorath, [2007).

The HuTolt algorithm was compared to the general BPMF method (Salakhutdinov and Mnih,
2008a)) and the drug—target specific Macau tool (Simm et al., 2015). RMSE values were computed
using a 80%-20% cross-validation scheme. Due to space limitations, here we present a cumulative
evaluation of the extensions. In this experiment, we used N'W(0, 1000, I, L) for the prior of V,
N (0, S") for U, Gamma priors were parameterized with a = 10, b = 1, Inverse Gammas with
a = 1, b = 2 and 8 latent factors were utilized (4 for each kernel). Since BPMF cannot incorpo-
rate a background knowledge model, we also omitted their use for a fair comparison (results from
molecular docking simulations would be a reasonable choice here). The missing data model was
parameterized to include the interval described above.

Results are shown in Table |[I} HuTolt is on par with Macau using only MACCS fingerprints
and both outperform BPMF which does not utilize side information. It is worth mentioning that
HuTolt outperforms BPMF even with no side information (i.e. using the identity matrix in the
Gaussian Process priors) which highlights the benefits of the more sophisticated noise model of
HuTolt, utilizing a product of per-entity noise variables v“ and +" instead of a single Gaussian
noise variable employed in BPMF. The second kernel brings an additional decrease in RMSE which
indicates the advantages of data fusion and Multiple Kernel Learning. Finally, using the missing
data model yields best results which demonstrate the applicability of NMAR-type models in drug—
target interaction prediction.

We used 500 burn-in steps, which was sufficient for convergence (Figure [5)). We also examined
the resulting low-dimensional representations of the drugs, i.e. the columns of U. Figure [6]illus-
trates the correlation between column—column similarities and corresponding kernel values. The
number of latent factors was increased to 15 for this experiment.

5. Conclusion and Future Work

The extended Bayesian matrix factorization method, HuTolt, allows the synergistic use of three
extensions. First, it allows the incorporation of multiple similarities both over row-entities and
column-entities, performing adaptive multiple kernel learning driven by the whole system. Second,
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Figure 5: Geweke—Brooks plots demonstrating the convergence of the Gibbs inference for high and
low affinities in R. On the right, corresponding trace plots are shown.
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Figure 6: Correlation between U and the inner product values of K after a run with 15 latent factors
and one kernel. Similarities of u; to the fixed column w for all 7 are illustrated with black dots. The
corresponding kernel values K; are denoted with a red line. The pairs {(sim(u1,u;), K 11-)}{:1
were sorted w.r.t. Kq;.

it supports the fusion of analytic estimates or expert hints for missing data, again, automatically
establishing their importance w.r.t. the whole system. Third, it extracts information from the miss-
ingness pattern, whose effect is integrated consistently into the overall posterior. In summary, the
proposed system defines a consistent, encompassing, Bayesian fusion of entity similarities, interac-
tion data, interaction estimates and missingness status. The derived Gibbs sampling based inference
offers an efficient inference scheme in a practical dimension (for less than 1000 row-entities and
column-entities), but scaling up can be crucial in many domains. In general, this is a difficult
question due to the memory complexity of storing the kernels and the notoriously hard problem
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of scaling up Gibbs sampling. We plan to investigate low-rank kernel approximations, alternative
MCMC schemes and GPU-based implementations.

Whereas the proposed method can be applied in multiple domains, drug—target interaction pre-
diction expectedly remains a central challenge. In this domain important open issues are as follows:
the availability of multiple interaction scores (i.e. multiple bioactivity data), the selection of row-
entities and column-entities (i.e. compounds and targets) using prioritization methods and the inter-
pretation of the results (i.e. finding the interesting predictions using linked open data and semantic
technologies (Williams et al., [2012))).
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Appendix A.

The conditional for U can be computed as follows.

hlp(U,@\U [ZZ’Y’L’Y] iJ uT’U])ZIij
l
[ZZ_%’YJ j—ul UJ Lij Z 2)\122 (Uii —my;) Z(Uln_mrn)]

1
=> .3 %Z% —ulv;) IU+ZA 12 Uy; —mj;) Si* (Uzn—m?‘n)]

+

1 u u u
Z N (U, —mi)" S (U, — ml:)]

1 . _
X —3 ulT Z’y]rvjvaIij —i—dlagl()\l 15;;_) u;
i L J
T
—’Yic Z V;Rij'vj]ij + vec; /\l_l Z Slzfn (Uln — mfn) Uq] ,
J n#i

so by completing the square u! Aw; + 2bTu; < (u; — (—A71b))T A(u; — (—A71b))
p(U|®WY) = HN wilipi, A7),
=% ZV] v] Z] + dlagl(A Sl )

P = _Az'_l i Z'YJ Rijvj) Iij + vee | A7 Z Si;,, (Utn = mip)
n#i

The conditionals for V' can be found in (Salakhutdinov and Mnih, 2008b). The conditionals for ~¢,
~", o™¢ and o™ follow from the standard expressions for the posterior of conjugate models using
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the Gamma prior. For A, using the conjugacy of the Inverse Gamma prior yields

L 1 1
. [H ((2m) \ |82 ]) % exp {—Mwl: —mp)T SHUL — m;f>}]

L w U U u
x H A—(a;"-‘,—%)_l exp {_bl + 1/2 ) (Uli — ml:)TSl (Ull — ml:) } 7

I
=1 &
ie.
L
pAIOY) = [T ZG(Mlak, 87).
=1
w o__ W +1
o = qp 9’
1
B = b’ + 5 (U —mit) " S{ (U, —mit).
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