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Abstract 

 

Several explanations have been proposed for variation in geophysical properties and depths to 

the lithosphere-asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). 

Here we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing 

upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for 

the observed geophysical anomalies. The pargasite dehydration solidus may be associated 

with a very small degree of partial melting in the upper mantle at temperatures and pressures 

in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically more 

fertile upper mantle) and from 1 to 3 GPa (~ 30 to 90 km) respectively. This small amount of 

partial melt may be responsible for changes in geophysical properties (e.g. lower seismic 

velocity, higher attenuation of seismic waves, higher electrical conductivity) in association 

with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical 

data of the Carpathian-Pannonian region (CPR), central Europe. The high resolution heat flow 

data available in the CPR allows us to estimate the depths to intersection of area specific 

depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C 

isotherms). There is relatively small mismatch (< 5 km) between the position of these 

intersections and the geophysically determined LAB in the central area of the CPR. These 

observations lend support for the proposition that the dehydration solidus may be largely 

responsible for depth variation of the LAB in young continental rift areas. Towards the 

margins of the CPR, however, where the heat flow is lower (< ~ 70 mW/m2), the predictive 
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capability of the dehydration solidus model deteriorates. This is because, for lower 

geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~ 3 GPa) before 

temperature exceeds the dehydration solidus temperatures. Consequently we should expect 

changes in geophysical properties attributable to hydrous silicate melt at ~90 km depth in 

areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic 

continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the 

intersection of the geotherm with pargasite breakdown may correlate with the MLD rather 

than the LAB, which is at deeper levels.  

 

Keywords: lithosphere-asthenosphere boundary (LAB), mid lithosphere discontinuities 

(MLD), amphibole, melt, water 

 

Introduction 

 

The lithosphere-asthenosphere boundary (LAB) is one of the most fundamental 

discontinuities in the Earth’s interior separating the outer, rigid lithosphere from the 

convective and more plastic asthenosphere underneath. The classic view of plate tectonics is 

that the rigid but fragmented outer shell (lithosphere) floats on the less viscous asthenosphere 

with relative plate movements driven by ridge push, subduction pull and active asthenospheric 

flows or the combination of these forces. The LAB is thus a rapid change of viscosity over a 

small depth interval and such a rheological change cannot be sensed directly by geophysical 

techniques. However seismic velocities, seismic attenuation and electrical conductivity can be 

measured and layers showing generally lower seismic velocity, greater seismic attenuation 

and higher electrical conductivity are commonly assumed to equate with the asthenosphere. 

With this simplifying and reasonable assumption, the LAB represents the uppermost part of 

the global low velocity zone which extends from the LAB to the Lehman boundary at ~220 

km depth (Fischer et al. 2010). Yet more than 100 years from the early theory of continental 

drift (Wegener 1912; Carey 1958), and more than 50 years after the birth of the modern 

theory of plate tectonics (Dietz 1961; Wilson 1963; Mason and Raff 1961) there is still no 

consensus as to what causes the weakening at the LAB and whether the seismological and 

electrical discontinuities/layers should be equated to the rheological boundaries. In addition, 

there is still an ongoing controversy how LAB is related to sometimes multiple discontinuities 

found in cratonic and thicker continental lithospheres (i.e. mid-lithosphere discontinuities 

referred to as MLD(s) hereafter) (i.e., Thybo 2006; Abt et al. 2010; Selway et al. 2015; Karato 
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et al. 2015). As well as rheological, seismological and electro-magnetic properties of the 

upper mantle, thermal/heat-flow and density/gravity observations must also be reconciled 

with mineralogical and petrological characteristics of inferred or sampled upper mantle 

compositions. Heat-flow and inferred geothermal gradients are particularly important in their 

relationship to melting in the mantle and as sensors for thermal perturbations in plate tectonics 

(McKenzie 1978; McKenzie & Bickle 1988). 

It is not our primary aim here to give a very comprehensive overview of processes that 

have been already invoked to explain the rheological weakening and geophysical properties 

characteristic for the LAB and MLD. Instead, after a brief discussion of these proposals, we 

test the application of a petrological model involving the stability of pargasitic amphibole (i.e. 

Green 1971; 1973; Green and Liebermann 1976; Green 2015) and solidi of lherzolitic mantle, 

containing very small water (and carbon) contents. For this we will include heat flow, seismic 

and magnetotelluric (i.e. Horváth 1993; Posgay et al. 1995; Tari et al. 1999; Horváth et al. 

2006) data with dense areal coverage from the Carpathian Pannonian region, central Europe 

(CPR), which is an excellent ‘natural laboratory’ to test this petrologic model, as suggested by 

McKenzie (1978). 

 

Theoretical Background 

 

Overview on petrologic models for the LAB based on high pressure experimental study of the 

mineralogy and melting relations of mantle peridotite 

 

‘Hydrolitic weakening’ 

Olivine (Mg# ~ 90) and pyroxenes (orthopyroxene > clinopyroxene) are the dominant 

minerals stable in uppermost mantle lherzolite compositions and much effort has been applied 

to determining the physical properties of these minerals as functions of pressure and 

temperature. Studies have demonstrated the presence of trace water in defect sites in olivine 

and pyroxenes, which are nominally anhydrous minerals (NAMs, i.e., Smyth et al. 1991; Bell 

and Rossman 1992). It has been argued that trace water in olivine and pyroxenes as structural 

hydroxyl in particular sites causes ‘hydrolitic weakening’ (Kohlstedt et al. 1996; Hirth and 

Kohlstedt 1996). If the lithosphere has lower water contents because of melt extraction at 

mid-ocean ridges, the residual depleted peridotite approaches an anhydrous state and thus 

becomes high strength lherzolite to harzburgite. The inferred higher concentration of ‘water’ 

in the undepleted asthenosphere leads to ‘hydrolytic weakening’ of the mineral structures 
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causing lower seismic velocities and higher seismic attenuation. In addition, the elevated 

‘water’ contents of NAMs contribute to the higher electric conductivity. In this interpretation, 

the asthenosphere and lithosphere are both subsolidus but differ in water content in olivine 

and pyroxenes. No significance is attached to pargasite stability. In addition a recent 

experimental study demonstrated that the weakening of mineral structures due to the 

incorporation of ‘water’ in NAMs as structural hydroxyl may not be significant. (Girard et al. 

2013). 

 

Elastically accommodated grain boundary sliding 

Elastically accommodated grain boundary sliding (EAGBS for short; i.e., Karato 2013; 

Karato et al. 2015) has also been proposed as the main mechanism for changes seen in 

mineral properties at the LAB. This theory implies that at moderate temperatures grain 

boundaries weaken, thus, grain boundary sliding facilitated by elastic deformation of grains 

can occur. Consequently during the transition from elastic to anelastic behavior with 

increasing temperatures there is a point when EAGBS takes place. This produces a 

temperature and frequency-dependent band in seismic attenuation. The lowering of the elastic 

modulus results in lower seismic velocities of polycrystalline aggregates, such as mantle 

peridotites. Experimental studies, however, demonstrated that EAGBS may be very sensitive 

to grain size, ‘water’ content in NAMs and modal compositions of mantle peridotites. The 

effects of these factors are only poorly constrained, creating uncertainty in P-T conditions 

under which EAGBS is effective. Calculations involving the currently available experimental 

data indicate that the temperature at which EAGBS occurs is most probably at ~900-1000 °C 

(Faul and Jackson2005; Jackson et al. 2014; Karato et al. 2015). This is very similar to the 

water-saturated solidus of pargasite-bearing lherzolite (water-saturated solidus is 980 – 1025 

°C from 1.5 – 2.5 GPa, Fig. 1), and also overlaps the solidus for carbonatite melt (930 °C at 2 

GPa; Green, 2015). Thus, while EAGBS can be considered as a potential mechanism for 

influencing mineral properties at the LAB (or MLDS), its distinction from the effects of 

partial melting may be difficult. 

Besides the models summarized above several other explanations such as 

compositional layering and variations in the geometry of seismic anisotropy in the upper 

mantle may explain the observed seismic anomalies. Selway et al. (2015), however, proposed 

– based on a summary of natural xenoliths - that these factors could only act on a local scale 

and may not explain the global presence of major discontinuities such as the LAB or MLD. 
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Partial melting and the role of pargasite 

An alternative to these hypotheses is that the lithosphere is subsolidus but with increasing 

temperature along the geotherm (i.e. depth-temperature curve), the solidus of mantle 

peridotite is crossed (and the intersection equates to the LAB) and the asthenosphere has 

interstitial melt present. The presence of a small amount (maximum ~ 1 – 2 wt.% but typically 

significantly less) of partial melt causes the changes in geophysical properties associated with 

the LAB and MLD. While there is a general agreement that a small amount of partial melt 

could significantly reduce seismic velocities (Kawakatsu et al. 2009; Takei and Holtzman 

2009), increase conductivity (Ni et al. 2011) and seismic attenuation (Hammond and 

Humphreys 2000), it is debated whether even small degree of partial melting could occur 

under conditions prevailing in the vicinity of the LAB and MLD (Karato et al. 2015). 

The amphibole, pargasite, is found in natural lherzolites, including lithospheric mantle 

sampled from slow-spreading ridges and fracture zones, and peridotite xenoliths from 

kimberlites and silica-undersaturated primary basalts (i.e. Griffin et al. 1984; Konzett et al. 

2000; Szabó et al. 2004). Pargasite contains essential Na2O and TiO2 and from 1.5 to 2 wt.% 

H2O and its stability in lherzolitic compositions is well determined experimentally as a 

function of pressure, temperature and composition (enriched, fertile and depleted lherzolite 

compositions; Green 1973;Wallace & Green 1991; Niida & Green 1999; Green et al. 2014). 

In a model mantle (see Green et al. 2014 and Green 2015 for details) the pargasite 

composition and modal abundance are controlled by P, T and water content, and pargasite 

may form up to 25 wt.% at ~ 1000 oC and 1 - 2 GPa (Niida & Green 1999) in fertile 

compositions (MPY, HZ lherzolites) or enriched compositions (HPY). Most importantly, at 

lithospheric pressures, pargasite is stable up to 3 GPa and three distinctive solidi must be 

considered (Green et al. 2010; Green 2015; see Fig. 1 for an overview): 

 

(i) the water-saturated solidus if the water content exceeds the storage capacity 

defined by the modal pargasite and NAMs (> ~0.4 wt.%) at pressures < 3 GPa., or 

the storage capacity of NAMs (> ~ 190 ppm) at > 3 GPa. 

(ii) the (pargasite) dehydration solidus if water content exceeds that which can be 

stored in NAMs (> ~ 190 ppm) but is less than the storage capacity defined by the 

modal pargasite and NAMs (< ~0.4 wt.%) at pressures < 3 GPa. 

(iii)  the solidus with bulk water content less than that which can be stored in NAMs (< 

~ 190 ppm), thus approaching the anhydrous solidus. 
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The important role of pargasite in defining the dehydration solidus in the uppermost 

mantle, despite being crucial, has been generally overlooked or omitted possibly because of: 

1) unfamiliarity with the amphibole: pargasite and its role in the lherzolite phase equilibria; 2) 

unawareness on the roles of minor components (i.e. Na, Ti, K) in stabilizing pargasite or 

phlogopite to high temperature at upper mantle conditions; 3) ignorance of the roles which 

extremely incompatible elements (such as H, K, P, and C) have in introducing additional rare 

subsolidus minerals and in lowering solidus temperatures (i.e., ‘fluxing’ melting); 4) 

unfamiliarity with the role of ‘incipient melting’ in fertile or enriched lherzolite. A very small 

melt fraction, enriched in volatile and highly incompatible components, is present over a large 

temperature interval, until temperature approaches the anhydrous solidus (Fig. 1) for an upper 

mantle lacking C-H-O vapour or highly incompatible element-rich phases; 5) paucity of data 

on the rheological, seismological and electrical conductivity effects of extremely small melt 

fractions of hydrous silicate melts, including their distribution and porosity/permeability 

effects. 

 

The importance of the pargasite-based petrological model  

 

In the petrological model adopted here including the role of pargasitic amphibole LAB is 

interpreted as the high pressure or temperature limit of pargasite stability so that the geotherm 

passed from subsolidus pargasite-bearing lherzolite to pargasite-free lherzolite with a small 

melt fraction (< 1 wt %; Fig 1). Consequently the asthenosphere is a layer with incipient 

melting, the melt fraction being controlled by the volatile components, particularly H2O 

(Lambert & Wyllie 1970; Green 1971; 1973; Green & Liebermann 1976).  

It is not surprising that, without taking into account the role of pargasite and the 

dehydration solidus (Fig 1), it has remained challenging to explain the existence of a small 

melt fraction in the shallow upper mantle at the LAB or MLD. This is because the anhydrous 

solidus temperature of shallow upper mantle peridotite increases almost linearly from ~1100 

°C at ambient pressure to ~1500 °C at 3 GPa (Fig. 1). Anhydrous solidus temperatures 

generally exceed, at least by 200 °C, those typical for a normal intra-plate geotherm at a given 

depth (Fig. 1). Thus, partial melting of dry upper mantle peridotite could not explain the 

presence of a small amount of partial melt at the LAB or MLD. 

Theoretical models on the effect of several hundred to thousands ppm of water in 

nominally anhydrous minerals (NAMs) in lherzolite (Katz et al. 2003; Hirschmann 2009) 

predicted decrease of the solidus temperature of mantle peridotite to intersect geotherms as in 
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Fig. 1. These models disregarded the role of pargasite. Katz et al. (2003) argued that the 

presence of 500 and 1000 ppm bulk water reduces the anhydrous solidus temperature by ~ 

150 and 200 °C respectively at a given pressure (Fig. 1). In this model, one would need at 

least 1000 ppm water generally in the shallow upper mantle to intersect the intra-plate 

geotherm at depths characteristic for the LAB or MLD (Fig. 1). Such large amount of bulk 

water, however, is inconsistent with our present knowledge on the average storage capacity 

for water in the Earth’s upper mantle. Experimental works as well as studies on natural upper 

mantle peridotites revealed that normal MORB-source upper mantle contains only ~ 50 - 200 

ppm water (Michael 1988; 1995; Danyushevsky et al. 2000; Saal et al. 2002; Green et al. 

2010; Peslier 2010; Kovács et al. 2012; Warren and Hauri 2014; Demouchy and Bolfan-

Casanova 2016; Xu et al. 2016). This is significantly less than what would be needed (~ 1000 

ppm) in the Katz et al. (2003) model to intersect intra plate geotherms and initiate partial 

melting in the shallow upper mantle (Fig. 1). Only OIB, enriched-MORB and island arc upper 

mantle sources appear to acquire up to 300 – 1000 ppm water (Dixon et al. 2002; Hauri et al. 

2002; Asimow et al. 2004) but their localized appearance could not explain the global 

presence of the LAB or MLDs. Intersection of geotherms with the water saturated solidus of 

fertile mantle predicts partial melt at ~75 km in the upper mantle, or at greater depths for 

cooler geotherms (Fig. 1). At depths less than ~ 90 km, more than 0.4 wt.% bulk water is 

necessary for water saturation in fertile lherzolite (i.e. exceeding the water storage capacity of 

pargasite lherzolite). Such high water contents may only be present in the immediate vicinity 

of subduction zones. In intraplate locations it is the dehydration solidus which is relevant. 

Intersection of model geotherms with the (pargasite) dehydration solidus predicts 

partial melt at < 90 km only in areas of high heat-flow. The depth of the intersections 

increases with decreasing heat flow to a ‘critical’ or ‘optimal’ heat–flow. This is the expected 

behaviour of aging oceanic lithosphere at increasing distance from a mid-ocean ridge. It is 

also the expected behaviour for thermal relaxation from a perturbed geotherm caused by 

lithospheric thinning, rifting, asthenospheric upwelling, and intraplate basaltic volcanism. The 

perturbed heat-flow approaches the pre-rifting or steady state value. At the ‘critical’ heat 

flow, the geotherm intersects the solidus at the inflexion from dT/dP ~ 0 to negative value. In 

Fig 2 this ‘critical’ heat-flow is below 70 mW/m2, intersecting the solidus in intraplate 

locations at ~85 km and 1100 oC (for the MORB pyrolite composition). For further decrease 

in heat-flow to the ‘steady-state’ geotherm chosen as 50 mW/m2, the solidus intersection 

remains at 80-90 km depth, even though the dehydration solidus temperature at this depth 
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drops to 1050 °C (Fig. 2). These depths and temperatures are typical for the LAB in oceanic or 

young continental lithosphere, or MLDs in sub-cratonic lithosphere.  

Our major argument is that lithospheric and asthenospheric mantle contain H2O and 

pargasite is a stable phase in lherzolitic upper mantle at low bulk water contents characteristic 

for MORB mantle (~ 200 ppm) or higher water contents as in OIB or intraplate mantle 

(depleted and refertilised). Thus the solidus of the shallow upper mantle is generally the 

pargasite dehydration solidus to 90 km depth (~ 3 GPa) and the vapour-saturated solidus for 

lherzolite (+ C,H,O) at greater depths. We have used a previously published model for the 

thermal behaviour of stretched and thinned lithosphere, accompanied by adiabatic 

asthenospheric upwelling (Royden and Keen 1980). In pressure (depth) and temperature 

space, by overlaying the experimentally determined solidi for fertile and enriched model 

mantle compositions on to the model for lithospheric thinning we predict a distinctive melting 

pattern due to the role of pargasite in water storage and control of the solidus to ~90 km 

depth. As previously argued this melting behaviour provides an explanation for the LAB and 

the upper and lower boundaries of the LVZ. It is also important that the amount of melt 

generated at the dehydration solidus is dependent on the subsolidus water content (modal 

pargasite) (Green and Liebermann 1976; Green et al. 2014; Green 2015) 

 

Methodology 

 

A possible empirical test of the applicability of the pargasite dehydration solidus 

 

The shape of the pargasite dehydration solidus (Fig. 1) has important implications for 

predicting the onset of partial melting in the shallow upper mantle which may approximately 

equate the position of the LAB or MLD:  

1) The pargasite lherzolite dehydration solidus has roughly constant temperatures [~ 

1050 °C for more depleted compositions (Tinaquillo Lherzolite), and ~ 1100 °C for fertile 

compositions (MOR Pyrolite, HZ lherzolite, Green 2015) in the depth interval between 1 GPa 

(~ 30 km1) and 2.8 GPa (~ 84 km; Fig. 1). The pargasite lherzolite dehydration solidus 

temperature is slightly higher (~1150 °C) for enriched compositions (Hawaiian Pyrolite, NHD 

peridotite; Wallace and Green 1991; Green 2015), however, we use the lower temperatures 

(1050 and 1100 °C) corresponding to more depleted and fertile peridotite as it resembles more 

                                                 
1 for the calculation we generally assumed ~ 3 g/cm3 density for the lithosphere where 1 Kbar or 0.1 GPa 

correspond to ~3 km thickness 
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closely the composition of the upper mantle beneath the CPR (see our following chapter on 

xenoliths). This means that in this depth interval the presence of partial melt is expected if the 

geotherm reaches the dehydration solidus temperatures. Geotherms in Figure 2 specific for 

the CPR (see how these were derived in following chapter) refer to the depth-temperature 

curves for specific surface heat flow values whereas the 1050 °C and 1100 °C isotherms 

approximate to the dehydration solidi between 1 – 2.8 GPa. 

2) There is a sharp negative dT/dP in the dehydration solidi between 2.8 – 3 GPa (Fig. 

1), with the solidus temperature decreasing by 50-100 °C with increasing pressure over a 

depth interval of 5 - 6 km. (e.g. Green 1973; Niida and Green 1999; Green and Falloon 2005; 

Green et al. 2014; Green 2015) This means that the depths of intersections of geotherms 

calculated for heat flows of ~slightly below 70 mW/m2 with the solidus for lherzolite with 

~200 ppm remain stable at ~85 - 90 km depth. Equally, for the early stages of a developing 

continental rift, upwelling asthenosphere freezes to pargasite (± phlogopite) lherzolite at 85 -

90 km depth (Fig. 1 and 2) until the temperature at this depth exceeds the pargasite 

dehydration solidus temperatures. If the uppermost part of the asthenosphere in intraplate 

regions is fertile or depleted lherzolite then the LAB does not move to shallower depths 

(thinning of lithosphere) until the heat flow exceeds ~70 mW/m2. If the geotherm exceeds that 

calculated for ~70 mW/m2, then the intersection with the dehydration solidus moves rapidly 

to shallower depths. This heat flow is the already defined critical heat flow which may be 

different in other tectonic setting depending on the area specific depth-temperature curves. 

The use of the dehydration solidus to map the depth to the LAB in an intraplate setting of 

stretching and rising geotherms predicts an initial slow heating with no change to the 

lithosphere thickness followed by a sharp change to more rapid rifting, rise of the LAB and 

increasing intraplate magmatism. 

In this paper we attempt to test the predictions of the pargasite dehydration solidus for 

the LAB in the CPR using geophysical data. First it is assessed whether the depths of the 1050 

and 1100 °C isotherms (approximating to the dehydration solidi at 1 - 2.8 GPa or ~30 – 85 

km) in the Pannonian Basin (referred to PB hereafter) coincide with the location of the 

geophysically constrained depth of the LAB. This is because the PB is a young continental rift 

in the central CPR with highly attenuated lithosphere and high surface heat flow (> ~ 70 

mW/m2) generally exceeding the critical heat flow where depth-temperature curves are 

expected to cross the pargasite dehydration solidus depths less than 85-90 km (see preceding 

discussion; Fig. 1). The PB is an excellent natural laboratory for such test as numerous 

surface heat flow data, specific depth-temperature curves (geotherms), joint seismic and 
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magnetotelluric constraints on the depth of the LAB are available (Lenkey 1999; Lenkey et al. 

2002; Horváth 1993; Tari et al. 1999; Horváth et al. 2006; 2015). Our approach is somewhat 

simplified in the sense that the shape of the dehydration solidus is approximated by constant 

(1050 and 1100 °C) temperatures between 1 and 3 GPa to simplify calculations. As the Moho 

discontinuity is at ~25-30 km depth beneath the PB the small positive dT/dP at <1 GPa is not 

considered. On the other hand, the strongly negative dT/dP at 2.8-3GPa effectively fixes the 

LAB at 85 - 90 km as previously discussed. By ignoring any curvature in the solidus between 

2.5 and 3 GPa our results may overestimate depth to the LAB only by a few km. 

 

Determination of temperature-depth curves and the depth of the 1050 and 1100 °C isotherms 

for the PB 

The PB was formed by lithospheric extension during the Middle Miocene (Royden et al. 

1983, Csontos et al. 1992; Horváth 1993) and this was accompanied by asthenospheric uplift 

resulting in high surface heat flow (Dövényi and Horváth 1988; Lenkey et al. 2002). Since the 

formation of the basin, the lithosphere has been cooling as evidenced by thermal subsidence 

and accumulation of thick Neogene and Quaternary sediment pile (Magyar et al. 2012). 

Therefore, steady state thermal models similar to those applied to the Fennoscandinavian 

Shield (Artemieva 2009) or the Canadian Shield (Jaupart et al. 1998) cannot be applied to 

estimate the geotherm in the lithosphere. We used the non-uniform stretching model of 

Royden and Keen (1980), which takes into account the transient cooling of the lithosphere, 

and allows the different amounts of stretching of the crust and lithospheric mantle. 

Additionally, we took into account the radioactive heat production in the upper crust. The 

inset in Fig. 2 shows the initial geotherm before stretching and just after stretching. Following 

the stretching the lithosphere cools and the temperature returns to its initial value which takes 

about 100 million years. Given the stretching factors of the crust and the lithospheric mantle 

the model predicts the evolution of the surface subsidence and heat flow. 

The crustal and lithospheric mantle stretching factors for the model were derived in 5 

x 5 km grid in the PB by equating the model-predicted present day heat flow and the total 

accumulated sediment thickness with the observed values (Lenkey 1999). The thermal 

parameters of the model are given in Table 1. It is evident that in case of higher heat flow the 

stretching factors are also higher, and the geotherm in the lithosphere is steeper. We choose 

four places near to the PGT-1 seismic section where the heat flow is 70, 80, 100 and 120 

mW/m2, respectively, and using the stretching factors previously derived (Lenkey 1999) and 

belonging to these locations, the present day geotherms were calculated (thick lines in Fig. 2) 
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and the intersections of the geotherms with the pargasite dehydration solidus temperatures 

(1050 and 1100 °C) were determined. 

In their influential paper on the thermal behaviour of crustal stretching and 

consequential mantle upwelling, McKenzie and Bickle (1988) divided the Earth’s upper 

mantle into underlying convecting layer, assumed to have an adiabatic temperature gradient, 

overlain by a thermal boundary layer in which the gradient is steeper (super-adiabatic) from 

surface temperatures to intersect the mantle adiabat at depths determined by local heat flow 

and thermal conductivity. The term ‘Mechanical Boundary Layer’ (MBL) referred to the 

uppermost mantle and crust with conductive heat transfer, overlying a transitional layer 

(‘Thermal Boundary Layer’) (TBL), also with dT/dP greater than the adiabatic geothermal 

gradient. 

In our thermal model the bottom of the thermal lithosphere is at 120 km depth and 

1300 °C based on the analysis of the ocean floor bathymetry (McKenzie 1978 after Parsons 

and Sclater 1977). This depth and temperature for the base of the thermal lithosphere, 

however, seems to be inconsistent with petrological models at the first sight (cf. Green, 2015). 

This discrepancy arises from different uses of ‘lithosphere’ as we discussed above. The 

geophysical model uses the thickness of the thermal lithosphere and not the petrological or 

rheological lithosphere (e.g. Artemieva 2009). By definition from thermal point of view we 

can distinguish the conductive, transitional and convective part of the upper mantle. The 

conductive (MBL) part can be equated to the petrological lithosphere. The thermal 

lithosphere, however is thicker and has a transitional thickness between the purely conductive 

and convective upper mantle (TBL) (Artemieva 2009). It follows that the thermal lithosphere 

includes the upper part of the asthenosphere as well. Consequently the 1300 °C at 120 km is 

consistent with the petrological model, since 120 km is not the thickness of the petrological 

lithosphere but that of the thermal lithosphere. The temperature at the top of the purely 

convective asthenosphere is referred to as the potential temperature (Tp) and is assumed to be 

~1430 °C for the modern Earth (Green 2015). At the bottom of the thermal lithosphere the 

temperature approaches Tp, which we assumed to be 1300 °C but its value is uncertain. 

Uncertainty in this temperature is explored by varying its value from 1250 to 1450 °C. 

Therefore, geotherms corresponding to heat flow of 50 to 120 mW/m2 are calculated to 

intersect a range of adiabatic gradients at a chosen depth of 120 km, and temperatures of 1250 

°C to 1450 °C (i.e. corresponding to Tp ~1210 °C to 1410 °C). The geothermal model is quite 

robust, because the depth to the intersections with 1050 and 1100 °C isotherms differ between 

3 km (1250 °C) to 5 km (1450 °C) (Fig. 2). This means that the solidus/geotherm 
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intersections lie at slightly shallower depth if the assumed temperature at 120 km depth is 

higher and vice versa. The inset Fig. 2 illustrates a steady-state or pre-thinning geotherm for 

50 mW/m2 perturbed instantaneously by asthenospheric upwelling with Tp ~ 1300 °C. 

 

Results and Discussion 

 

The depth of the 1050 and 1100 °C isotherms beneath the CPR and implications 

 

Using the geotherms calculated from the stretching model the local positions to the 

dehydration solidus temperatures (1050 and 1100 °C) in the CPR were mapped (Fig. 3a and 

3b). The maps reveal that the geotherm intersections with 1050 and 1100 °C isotherms are 

shallower than 90 km in the PB which is characterized by heat flow values exceeding the 

critical value (> ~ 70 mW/m2). The depth of both geotherm/solidus intersections decreases 

very rapidly from below 90 km at the boundaries of the CPR to ~ 60 km in the inner part of 

PB. This steepening of the geotherm happens usually over a short ( ~ 100 km) horizontal 

distance. The depth of the geotherm/solidus intersections (approximated to 1050-1100 °C 

isotherms) is ~60 km in large part of the central part of the CPR. There are some locations 

(Transdanubian Central Range, Mecsek and Bükk Mts.), however, where the 

geotherm/solidus intersections are in a deeper position. This deviation is due to the intensive 

cooling effect of karst water circulation in the Mesozoic carbonate formations in these 

regions. For the Transdanubian Central range the relatively lower heat flow can also be 

related to the relatively thicker MOHO beneath the area (~30 – 35 km; Kiss et al. 2016) 

The difference between the depths of the 1050 and 1100 °C geotherm/solidus intersections are 

usually within ~ 6 km under the entire CPR. This is probably in the order of or less than the 

uncertainty how accurately the depth of the isotherms could be constrained. This difference 

could represent the apparent variation which arises from geochemistry of pargasite as in more 

fertile (richer in Al, Ti, Fe and alkalis) mantle sources pargasite breaks down at 1150 °C, 

while those from a more depleted source at only 1050 °C. This means that the pargasite break-

down in areas with more fertile upper mantle is expected to take place a few kilometers 

deeper. 

Figure 4a and Figure 4b display the difference in kilometers between the dehydration 

solidus temperatures (1050 and 1100 °C) and the LAB determined by integrated 

seismological observations and magnetotelluric soundings. For the overwhelming portion of 
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the PB the difference between the two independently determined LAB depth is much less than 

±10 km. Consequently, we can state that these results at least do not disagree with the 

prediction of our simple petrologic model based on the dehydration solidus. In fact, the 

agreement between the position of the dehydration solidus temperatures and the geophyscially 

determined LAB is almost within model uncertainty (± ~5 km). This reasonable agreement 

implies that in areas with similarly high heat flow to the PB (young rift areas and oceanic 

plates) the position of the dehydration solidus (1050 and 1100 °C) may give good first order 

estimation for the depth of the LAB. 

Larger discrepancies exceeding 20 km in the PB are usually only observed for areas 

where surface heat flow is underestimated (mountain ranges consists of carbonate formation, 

see Fig. 3). At these areas the position of the dehydration solidus isotherms (1050 and 1100 

°C) are deeper than the geophysically constrained LAB. The calculated dehydration solidus 

isotherms also predict deeper LAB than the geophysically determined one in the central part 

of the Great Hungarian Plain and in the Transylvanian basin (see Fig. 4a and Fig. 4b).  

The particular part of the Great Hungarian Plain, where the calculated dehydration 

solidus temperatures run deeper than the LAB, is characterized by extremely thinned 

lithosphere, where the lithospheric thickness is only ~ 40 km in the Békés basin (at the SE 

corner of this anomaly). This is also an area where deep basins (e.g. Makó basin and Békés 

Basin) separated by elevated basement highs (e.g. Battonya high) with a NW-SE strike. These 

deep basins were formed in the Late Miocene (~ 5 Ma, Early Pannonian; Horváth et al., 

2010), after the main phase of larger-scale extension in the CPR (Huismans et al. 2001) in the 

Middle Miocene. This process may have been associated with the additional localized 

thinning of the lithosphere which can account for the extremely thin lithosphere in this area. 

Note that anomalous MOHO was identified in the Békés basin which may have been the 

result of basaltic underplating in association with this relatively young regional rifting (Hajnal 

et al. 1996). The relatively young rifting event here may imply that in this area the thermal 

equilibrium might not yet have been completely achieved. 

The Transylvanian Basin, on the other hand, is an elevated basin (~ 300 – 400 m 

above the sea level) between the Apuseni Mts. and East Carpathians, which is characterized 

by thicker lithosphere and much lower surface heat flow than the PB. The discrepancy 

between our prediction and the observed lithospheric thickness is related to the distinct 

geodynamic history of Transylvanian Basin, because it was formed by different mechanisms 

to the PB of which exact kinematics is yet to be revealed (e.g. Krézsek and Bally 2006). 
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Xenoliths 

 

It is logical to evaluate whether equilibrium temperatures recorded by upper mantle xenoliths 

from the central PB (Bakony-Balaton-highland) fit into our thermal approach. The studied 

xenoliths from the PB span a considerable range of equilibrium temperatures from ~850 to 

1175 °C (i.e. Embey-Isztin et al. 1989; 2001; Szabó et al. 2004; Dobosi et al. 2010; Kovács et 

al. 2012; Embey-Isztin et al. 2014). The mantle xenoliths mainly originate from the 

lithospheric mantle and only subordinately from the asthenosphere due to the less plastic 

nature of the former. Thus, the maximum equilibrium temperatures (1175±20 °C) seem to 

only slightly exceed what we would expect if the LAB was related to the break-down of 

pargasitic amphibole (i.e. max. 1150 °C in very fertile peridotite). This slight discrepancy 

may be accounted for by the fact that xenoliths record older temperatures of the upper mantle 

than those estimated from the present day surface heat flow. The age of the alkaline basaltic 

activity which brought up the xenoliths to the surface is ~ 5 Ma. It means that there was time 

for further thermal relaxation involving further subsidence of isotherms. During this process 

the upper mantle which had originally 1175 °C equilibrium temperature at 5 Ma cooled 

presumably below at least the dehydration solidus temperature (~1100 °C). The higher 

temperatures of some upper mantle xenoliths may also reflect their asthenospheric origin. In 

either case, the equilibrium temperatures of upper mantle xenoliths from the Bakony-Balaton 

highland seem to be in line with our assumption that the LAB can be equated with the 

dehydration solidus temperatures (1050 and 1100 °C) in a young rift area with high heat flow 

values exceeding the critical heat flow (> ~ 70 mW/m2). In addition pargasitic amphibole can 

be found either as a rock-forming mineral constituent or in traces in these upper mantle 

xenoliths (i.e. Embey-Isztin 1974; Szabó et al. 2004; Dobosi et al. 2010). 

 

Implications for the depth of the LAB beneath (young) oceanic plates 

 

In summary, we can state that – albeit our estimation bears uncertainties (~ ± 5 km) – the 

calculated and independently constrained depth of the LAB appears to agree reasonably well 

(mostly within ±5 km) beneath the PB. The PB is a young continental rift area where the 

surface heat flow exceeds the critical heat flow. This is the particular heat flow value at which 

the corresponding geotherm reaches the dehydration solidus temperatures (1050 and 1100 °C) 

shallower than ~ 3 GPa (~ 85 - 90 km). 
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Below with a brief overview of the literature we explore whether the dehydration 

solidus could predict the depth of the LAB under young oceanic plates where the heat flow is 

usually above the critical value. Note that Green and Liebermann (1976) already put forward 

that the top of the low velocity zone (i.e. LAB) under oceanic lithospheres is defined by the 

intersection of the oceanic geotherm with the dehydration solidus of enriched or fertile 

lherzolite from 0.5 to 2.8 GPa at ~1050-1100 °C. Because the geotherms become less steep 

with increasing distance from the mid-ocean ridge, the lithosphere thickens with age and 

distance from the middle ocean ridge. The steep negative dT/dP of the dehydration solidus at 

2.8-3 GPa means that the lithosphere reaches a stable thickness of ~85-95 km for oceanic 

plates older than 80 Ma. Thus it will be evaluated further whether this classic model and in 

particular the position of the dehydration solidus could, indeed, coincide with the depth of the 

LAB beneath young oceanic plates. 

Rychert and Shearer (2011) studied the shape of stacked SS waveforms (SS 

lithospheric profiling) in the Pacific Ocean and arrived to the conclusion that the depth of the 

LAB beneath oceanic plates varies from 25 to 130 km and correlates with the distance from 

the trench. They found that the depth of the detected geophysical anomalies agrees well with 

the 930 90 °C isotherm(s) (95% of the data fall within this range) calculated from a half-

space cooling model with upper mantle potential temperature of 1350 °C and plate velocity of 

60 mm/yr. The authors proposed that this boundary should be a permeability boundary with a 

small amount of melt below it. Note that the proposed 930 90 °C is not very far from the 

dehydration solidus temperatures, especially if we consider that the dehydration solidus 

should be at lower temperatures (~ 1050 °C) in a depleted oceanic upper mantle. In addition 

the authors used 1350 °C potential temperature which is ~ considerably lower than the 

petrologically more reasonable 1430 °C (Green 2015). If the initial starting temperature in 

their half-space cooling model was higher it is possible that the best fit isotherm would be 

even closer to the dehydration solidus temperature. 

Schmerr (2012) stacked a large dataset of SS precursors from oceanic areas and found 

a sharp velocity contrast at 40-70 km depth. It was found that the depth of the discontinuity 

show relatively good agreement with the depth of the 900 and 1100 °C isotherms predicted 

from the half-space cooling model and the plate model respectively. The author attributed this 

anomaly to the combination of the presence of small amounts of partial melts (0.1 - 3%) at the 

base of the oceanic lithosphere, compositional contrast (i.e. depleted asthenosphere below a 

re-hydrated more fertile lithosphere) and the cooling of the oceanic lithosphere with age. 
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Localized small-scale convections and hydrations enrichments (i.e. subductions) may further 

complicate this picture locally. Again the proposed temperature range overlaps with that of 

the dehydration solidus temperatures. The agreement may be even better if we consider that 

the author assumed again the same low upper mantle potential temperature as Rychert and 

Shearer (2011). 

Naif et al. (2013) reported that there is presumably a melt rich layer beneath the 

oceanic plate subducting below Nicaragua based on electromagnetic soundings. The authors 

found that the high conductivity zone is between 45 and 70 km, of which upper part at 45 km 

could be defined as the LAB in our sense. This depth according to the authors is very close to 

the intersection of a 23 Ma old oceanic geotherm (corresponding to 1420 °C mantle potential 

temperature) and the solidus of peridotite containing 275±85 ppm ‘water’. Alternatively the 

intersection of an oceanic geotherm (corresponding to 1315 °C upper mantle potential 

temperature) and a peridotite solidus with 505±155 ppm water would be also at ~ 45 km. The 

MORB mantle, however, contains usually ‘only’ 50 - 200 ppm water which would be 

insufficient to produce partial melting. Naif et al. (2013) argued that this discrepancy may be 

explained by the uncertainties in the estimation of the solidus temperature and the presence of 

other volatiles. We suggest that the stability of pargasitic amphibole at low bulk water 

contents typical for MORB and the lower temperature of the pargasite dehydration solidus 

may more suitably explain this ‘discrepancy’. The dehydration solidus temperature (1050 and 

1100 °C) would intersect their geotherm very close to the expected ~ 45 km depth. 

In summary, it seems that the pargasite dehydration solidus and the classic 

petrological model of Green and Liebermann (1976) - while there are still some discrepancies 

- seem to give a reasonable explanation for the presence of a small amount of partial melts 

where geophysical anomalies likely indicating the LAB. It should be evaluated further, 

however, how other volatiles (especially CO2) and the higher modal abundance of pargasite 

below the dehydration solidus would improve the correspondence between petrological and 

geophysical constraints on the depth of the LAB beneath oceanic basins. 

 

Reconciling the relation of the LAB and MLD? 

In the marginal areas of the CPR surrounding the PB, where the heat flow is below the critical 

heat flow for the area (< ~70 mW/m2) the discrepancy between the dehydration solidus 

temperatures and the geophysically determined LAB becomes large. This makes sense since 

the pargasitic amphibole breaks down at ~90 km depth uniformly in such areas. In these areas 

we expect to see a horizon of geophysical anomalies at ~ 90 km depth. These areas may 
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include older (Phanerozoic) continental and oceanic plates and cratons where surface heat 

flow is below the critical heat flow.  

In Figure 5 it is illustrated how the relation of the LAB and MLD may vary in 1) 

young continental rifts and oceanic plates, 2) Phanerosoic continental lithospheres and older 

oceanic plates and 3) cratons. The main point is that in young continental rifts and oceanic 

basins the identification of the LAB is usually straightforward. In these areas the LAB is 

mainly related to the break-down of pargasite at the dehydration solidus temperatures (1050 

and 1100 °C isotherms). 

In contrast in older Phanerozoic continental lithospheres, older oceanic plates or 

cratons where the heat flow is below the critical value the pargasite breaks down at ~ 90 km, 

which should cause geophysical anomalies at a relatively constant depth globally. Indeed. 

Thybo and Perchuc (1997) and Thybo (2006) were among the first to reveal the presence of a 

global layer of geophysical anomalies at ~100 km, referred to as the 8° discontinuity. Its 

origin, have been explained by several possible scenarios including the presence of partial 

melt but no significance was attached to the role of pargasitic amphibole. Kind et al. (2012) 

reported that the top of the low velocity zone (LVZ) is sharper and appears to be a global 

horizon (at depth ~100 km). This anomaly seems to be present below cratonic areas as well. 

Their study was based on receiver function analysis of a global dataset of converted S and P 

phases. Kind et al. (2012) argued that the global anomaly may be related to the role of 

aluminous orthopyroxene (Mierdel et al. 2007) or EAGBS (Karato 2014). Fischer et al. 

(2010) also reported a global layer at ~100 km (including oceans and cratons) which is 

perturbed by upwelling (plumes) and down welling (subductions) in the mantle. This 

boundary is characterized by steep velocity gradients reflected in ScS reverberations and P 

and S receiver function analysis. They argued that its origin is not only related to the thermal 

gradient but hydration, presence of melt and anisotropy may all play a role. The ~100 km 

depth of global geophysical anomalies agrees very well with the upper stability (~ 90 km) of 

pargasite in areas where heat flow is low. Thus, it appears to be reasonable to attribute the 

origin of this global boundary layer dehydration solidus of the pargasite bearing upper mantle 

at low bulk water contents.  

Consequently in Phanerosoic continental lithospheres and older oceanic plates the 

geophysical anomalies generated by the pargasite melting at 90 km may not always be clearly 

distinguished from those of the sometimes only slightly deeper LAB (Fig. 5) We argue that in 

many previous studies the shallower anomalies interpreted as the MLD may be produced by 

the melting of pargasite at ~ 90 km (i.e., Abt et al. 2010; Selway et al. 2015). In cratonic areas 
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where the LAB is very deep (> 150 km) the anomaly caused by the pargasite dehydration can 

easily be discerned from the LAB by the much shallower depth of the former (Fig. 5). This is 

not to say that all MLDs can be explained in Phanerosoic continental lithospheres, older 

oceanic plates and cratons by the pargasite melting at ~ 90 km. What we want to stress here is 

that some MLDs detected in these areas could be related to pargasite dehydration as argued by 

Selway et al. (2015). 

Note that there are similar anomalies present at ~ 100 km depth in other continental 

areas with thicker lithosphere as well (e.g. North America, Abt et al. 2010) which are also 

interpreted as MLDs. Rader et al. (2015) argued that the MLD is the geophysical 

manifestation of a geochemical boundary which may be due to the prior intersection of the 

volatile-rich solidus with cooling geotherms. They also suggested that the MLD marks the 

former position of the LAB when the lithosphere was tectonically younger and presumably 

warmer. Rader et al. (2015) implied the presence of higher modal abundance of phlogopite, 

carbonate or pyroxene may account for the slower seismic waves at the MLD but attributed 

only moderate roll to the pargasite dehydration solidus. In their study the average of accurate 

geophyscial MLD determinations was 92 km with the vast majority of the data vary between 

80 and 110 km. This agrees very well with pargasite melting at ~ 3 GPa (90 km). 

In Hansen et al. (2015) the depth of the MLD and LAB was estimated based on Sp 

reciver function imaging focusing on the position of negative velocity gradients (NVG). The 

authors proposed that NVGs in the western US indicates the LAB which is at 60-85 km with 

temperatures between 1200-1400 °C. In contrast, the NVGs under the central US and Rockies 

are between 70 and 110 km at temperatures 700-900 °C. These are mainly interpreted as 

MLDs but there is an area between the Rockies and the central US where the interpretation of 

NVGs is ambiguous (they could indicate both LAB and MLD). The temperatures were 

estimated from surface wave tomography model originating from the USArray dispersion 

measurements using the olivine inelasticity model of Faul and Jackson (2010) assuming an 

average grain size of 1 mm for upper mantle rocks. The model, however, is strongly grain size 

dependent and larger average grain size could result in higher temperatures. Considering 

normal intra-plate geotherms (Fig. 2) the MLD temperatures seems to be unusually low while 

LAB temperatures exceptionally high from petrological point of view. Thus, our preferred 

interpretation is that in the western US the heat flow should be above the critical value and the 

pargasite dehydration solidus temperatures are reached shallower than ~90 km. Consequently 

NVGs under the western US indicate indeed the LAB, however, the corresponding 

temperatures at that depth should not exceed ~1100 °C (which is much lower what the authors 
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claimed). In the other areas on the east the heat flow should be below the critical value and 

pargasite melts at ~ 90 km. In our interpretation, the transitional area between the western and 

central US, where the assignment of the NVGs is ambiguous, represents a situation where it 

cannot be accurately predicted whether the pargasite break-down at ~90 km could correspond 

to the LAB or MLDs. Further to the east under the central US the LAB is deeper and can be 

well resolved from the pargasite break down at ~90 km. This depth seems to be in line with 

the 84 km peak in NVGs’ depth under the central US. The calculated temperature (~770 °C) 

for the MLD, however, appears to be underestimated. 

Selway et al. (2015) suggested that MLD phase could be commonly explained by the 

stability of (pargasitic) amphibole, however, the amphibole alone may not be the universal 

explanation. The authors argue that in some localities (e.g. Kaapval craton) where the MLD is 

well constrained and upper mantle xenoliths are available the amphibole is not present in 

sufficient modal abundance from MLD depths to account for the observed decrease in seismic 

velocities. Selway et al. (2015) considered only the effect of modal amphibole on seismic 

velocities but did not take into account the role of small amount of melts/fluids which should 

exist at the pargasite dehydration solidus. It may well be that the combined affect of (very) 

small amount of modal pargasite and underlying incipient melt bearing upper mantle 

mineralogy may give better fit to their observations. We certainly agree of course that the 

stability of (pargasitic) amphibole is not the only factor in controlling the formation of 

geophysical anomalies in the upper mantle, therefore, ‘discrepancies’ may be reconciled with 

the consideration of these other factors (e.g. EAGBS, hydrolytic weakening).  

 

Conclusions 

 

A simple petrologic model based on the pargasite dehydration solidus in the shallow upper 

mantle has been tested whether it is suitable to explain the presence of geophysical anomalies 

at LAB and MLD depths. In young continental rifts and oceanic plates where the heat flow is 

above a critical value the model suggests that the position of the pargasite dehydration solidus 

temperatures in the upper mantle (1050 and 1100 °C isotherms) should agree well with the 

geophysically constrained LAB. In this study we demonstrated that in the Pannonian Basin, 

which is a young rift area, the depth of these isotherms indeed resemble well with the 

independently determined depth of the LAB. The critical surface heat flow is the heat flow 

value at which the area specific depth-temperature curves reaches the dehydration solidus 

temperatures in shallower depth than 3 GPa (~ 90 km). This ~ 90 km is the depth at which 
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pargasite ultimately breaks down if the dehydration solidus temperatures are not exceeded. 

This means that in areas where the surface heat flow below the critical value (older 

continental areas, oceanic plates and cratons) there should be a globally occurring horizon of 

geophysical anomalies at ~90 km. This appears to be in line with global geophysical 

observations. In Phanerozoic continental areas and oceanic slabs MLD occurring at ~90 km 

depth may be explained by the break-down of pargasitic amphibole. In these areas sometimes 

it may be difficult to distinguish the LAB from the MLD. In cratonic areas, however, the 

distinction between the LAB and MLD is more straightforward, and the latter could be due to 

the break-down of pargasitic amphibole at ~90 km. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure and Table captions 

 

Fig. 1. The positions of the i) ‘Water-saturated’ (bulk H2O ≥ 0.4 wt.%); ii) ‘Dehydration’ (0.4 

wt.% ≥ bulk H2O ≥ 190 wt.% ppm) and iii) ‘Anhydrous’ solidus (190 wt.% ppm ≥ bulk H2O) 

of upper mantle lherzolite in the P-T space. The Figure is modified after Fig. 3. in Green 

(2015). Calculated solidus temperatures for various bulk water contents in ppm after Katz et 

al. (2003) are also highlighted. The position of an ‘Intra-plate’ geotherm was also plotted for a 

comparison. Different dehydration solidi temperatures correspond to upper mantle 

compositions with different fertility. It is ~ 1050, 1100 and 1150 °C for refractory (Tinaquillo 

lherzolite), fertile (MORB source mantle) and enriched (Hawaiian pyrolite) upper mantle 

(Wallace and Green, 1991).  

 

Fig. 2. Geotherms calculated from a non-uniform stretching model (Lenkey 1999 using the 

model of Royden and Keen 1980), except curve 50, which is a steady-state geotherm. The 

labels in the curves refer to observed heat flow values (in mW/m2) in the CPR near to seismic 

section PGT-1. Thick curves are calculated with the usual boundary condition of 1300 °C at 

120 km depth (McKenzie 1978; Royden and Keen 1980). Inlet: initial geotherm before 

stretching and the geotherm just after stretching. Geotherms calculated based on different 

assumed temperatures (1250, 1350, 1400 and 1450 °C) at 120 km are also indicated (see text 

for more details). The position of the dehydration and anhydrous solidi for different bulk 

upper mantle compositions are also indicated. Dense dotted lines indicate the position of the 

dehydration solidi for TLZ, MPY and HPY upper mantle compositions, whereas less dense 

dotted lines shows the position of the anhydrous solidi for MPY, HPY and Katz et al (2003) 

as well. The least dotted lines represent the adiabats for mantle potential temperatures for 

1280 and 1430 °C. 

 

Fig. 3. a) Schematic geological map of the Carpathian Pannonian region (CPR). Major 

localities are discussed in the text are indicated. Calculated depths of the dehydration solidus 

isotherms of 1050 °C (b) and 1100 °C (c) are highlighted beneath the CPR using surface heat 

flow data of Lenkey et al. (2002) and depth-temperature curves in Fig. 2. The location of the 

PGT-1 geophysical traverse is indicated by solid line. 

 

Fig. 4. Difference between the depths of the dehydration solidus temperatures 1050 °C (a) 

and 1100 °C (b) and the geophysically constrained LAB (Tari et al. 1999) in kilometers. 
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Fig. 5. Variations in the respective positions of the lithosphere-asthenosphere boundary 

(LAB) and middle lithospheric discontinuities (MLDs) in different tectonic settings. This 

Ffgure is substantially modified and completed after Fig. 1 in Fischer et al. (2010). 

 

Table 1. Parameters applied for the calculation of depth temperature curves. 
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Parameter Value 

initial crustal thickness 35 km 

initial lithospheric thickness 120 km 

density of crust 2800 kg/m3 

density of mantle 3300 kg/m3 

temperature at the surface 10 °C 

temperature at 120 km depth 1300 °C 

thermal expansion coefficient 3.1 x 10-5 1/°C  

thermal diffusivity 7.8 x 10-7 m2/s 

heat production in the upper crust 8 x 10-7 W/m3 

thickness of the upper crust 15 km 

 

Table 1. 

Table1
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