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Abstract: 

Background: Oncogenic activation of the epidermal growth factor receptor (EGFR) signaling 

pathway occurs in a variety tumour types, albeit in human melanoma the contribution of 

EGFR is still unclear. 

Methods: The potential role of EGFR was analyzed in four BRAF-mutant, one NRAS-mutant 

and one wild-type NRAS-BRAF-carrying human melanoma cell lines. We have tested 

clinically available reversible tyrosine kinase inhibitors (TKI) gefitinib and erlotinib, 

irreversible EGFR-TKI pelitinib and a reversible experimental compound (PD153035) on in 

vitro proliferation, apoptosis, migration as well as in vivo metastatic colonization in a spleen-

liver model. 

Results: The presence of the intracellular domain of EGFR protein and its constitutive activity 

were demonstrated in all cell lines. We detected significant differences between the efficacies 

of EGFR-TKIs, irreversible inhibition had the strongest anti-tumour potential. Compared to 

BRAF-mutant cells, wild-type BRAF associated with relative resistance against gefitinib. In 

combination with gefitinib, selective mutant BRAF-inhibitor vemurafenib showed additive 

effect in BRAF-mutant cell lines. Treatment of BRAF-mutant cells with gefinib- or pelitinib 

attenuated in vitro cell migration and in vivo colonization. 

Conclusions: Our preclinical data suggest that EGFR is a potential target in the therapy of 

BRAF-mutant malignant melanoma; however, more benefits could be expected from 

irreversible EGFR-TKIs and combined treatment settings. 
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BACKGROUND 

Malignant melanoma is an aggressive type of malignant skin lesions with worldwide 

increasing incidence [1], which is resistant to common cytotoxic therapies. Since malignant 

melanomas have a potential to form organ metastases in a very early phase of primary growth, 

a better understanding of their progression is urgently needed. In the past few years paradigm 

shift occurred in the treatment modalities: in contrast to the previous practice when major 

survival benefit could only be achieved with early detection and complete surgical removal, 

recently target based modalities have appeared on the horizon. Fifty to sixty percent of 

malignant melanomas carry mutation in the BRAF oncogene, vemurafenib and dabrafenib 

show activity against the V600E-mutant BRAF [2, 3]. Nevertheless, application of BRAF-

inhibitors can induce cutaneous squamous cell carcinoma due to paradoxical activation of 

RAF signaling in cells carrying wild type BRAF [4]. Moreover, a number of BRAF mutant 

melanomas show limited response due to intrinsic resistance and initially responding patients 

often relapse because of acquired resistance [5]. To prevent these mechanism novel 

combinations are in development, recently clinical trials proved that the addition of MEK-

inhibitors to V600E-selective BRAF-inhibitors was associated to significant improvement in 

progression-free survival among patients of BRAF-mutated metastatic melanoma [6, 7]. 

Hyperactivation of the epidermal growth factor receptor (EGFR) signaling components 

commonly presents in human melanoma (e.g. NRAS-BRAF-MAPK, PI3K-AKT), which 

suggests the potential role of EGFR itself as well. EGFR (Her-1 or c-erbB-1), a member of 

the c-erbB receptor tyrosine kinase family, is a glycoprotein (170 kDa) composed of an 

extracellular binding domain, transmembrane lipophilic segment, and an intracellular protein 

tyrosine kinase domain with a regulatory carboxyl terminal segment. EGFR becomes 

activated by homodimerization, a mechanism that could be promoted by ligand binding as 

well as by high receptor density due to overexpression [8]. Receptor activation normally leads 

to the recruitment and phosphorylation of several intracellular substrates, regulating various 

cellular activities such as differentiation, increased proliferation, survival and migration [9]. 

Aberrant activation of EGFR has been shown to correlate with poor prognosis in a wild range 

of malignant tumors, e.g. urinary bladder, cervix, esophagus, ovarian cancers, and tumors of 

the head and neck region [10]. Therapeutic inhibition of tyrosine kinase activity by small 

molecule substrates is a possible approach to interfere with such an aberrant activation of TK-
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type receptors: small molecule tyrosine kinase inhibitors (TKIs) bind to the ATP cleft of the 

TK receptor and selectively block growth factor-stimulated signal activation via dimerization 

and autophosphorylation [11]. Inhibition of phosphorylation leads to depletion of the 

activated downstream effectors, resulting in attenuation of tumor progression. 

Previously a number of experimental studies suggested the importance of EGFR function in 

malignant melanoma cells [12-16]. Furthermore, according to clinicopathological data, EGFR 

gene copy number alterations in primary cutaneous malignant melanomas were associated 

with poor prognosis [17]. Several genomic and proteomic analysis confirmed the potential 

role of EGFR in the progression of malignant melanoma [18-20], therefore EGFR-TKI 

strategy could serve as a potential anti-melanoma approach. Recent studies demonstrated in 

BRAF-mutant colorectal cells that selective inhibition led to feedback activation of EGFR 

[21]. Previous findings confirmed a similar mechanism in the development of adaptive 

resistance to vemurafenib in the case of BRAF-mutant malignant melanoma as well [22], 

therefore simultaneous application of BRAF and EGFR inhibitors could be a potential novel 

combination. 

In our preclinical study, we first examined the EGFR-TK-status at protein level in six human 

melanoma cell lines representing the major oncogenic driver mutations (mutant BRAF, 

mutant NRAS, double wild-type cells). Moreover, we studied the potential effect of specific 

EGFR TKIs in combination with vemurafenib on proliferation, apoptosis and migration of 

human melanoma cells in vitro as well as on in vivo growth and colonization of human 

melanoma xenografts. 

 

METHODS 

Cell lines and culture conditions  

BRAF-mutant A2058 cell line was provided by L. A. Liotta (NCI, Bethesda, MD), HT168-

M1 human melanoma was the derivative of A2048 with high metastatic potential [23], HT199 

melanoma line was established by our group [24], WM983B melanoma cell lines were gifts 

from M. Herlyn (Wistar Institute, Philadelphia, PA). NRAS-mutant M24met melanoma line 

was kindly provided by B. M. Mueller (Scripps Research Institute, La Jolla, CA). Double 

wild-type MEWO and A431 squamous carcinoma cells (which served as a positive control for 

EGFR) are available from ATCC. Human melanoma cell lines were grown in medium RPMI-
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1640, while A431 were cultured in DMEM containing 4500 mg/l glucose (Sigma Chemical 

Co., St. Louis, MO), both were supplemented with 5% fetal bovine serum (Sigma) and 1% 

penicillin-streptomycin (Sigma), at 37°C in a humidified atmosphere of 5% CO2. 

 

Flow cytometric measurement of EGFR protein expression 

Cells from monolayer cultures were detached with 0.02% EDTA (Sigma), then washed with 

phosphate-buffer-saline (PBS) for 3x5 min, fixed and permeabilized by methanol for 15 min. 

After blocking nonspecific binding sites with 3% BSA for 15 min, cells were labelled for 45 

min at 37 ºC with a mouse monoclonal antibody against the intracellular amino acid region of 

EGFR between 1020 and 1046, purchased from Becton-Dickinson (Sunnyvale, CA, 1:20 in 

PBS). After washing period RPE-conjugated goat polyclonal anti-mouse antibody 

(DakoCytomation, Glostrup, Denmark) was applied for 45 min at 37 ºC. Fluorescence was 

analyzed by flow cytometer (CyFlow SL-Green, Partec, Munster, Germany) using FlowMax 

software (Partec). Positive events from a total of 104 cells were counted. Negative controls 

were prepared by primary antibody with isotype-matched nonimmune IgG (Sigma). 

 

Small molecule tyrosine kinase inhibitors 

EGFR-specific TKI gefitinib (ZD1839, Iressa®; [N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-

(3-morpholin-4-ylpropoxy)quinazolin-4-amine]) was kind gift of AstraZeneca. Erlotinib 

(OSI-774, Tarceva®; [N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine]) 

and irreversible inhibitor pelitinib (EKB-569; [N-(4-(3-chloro-4-fluorophenylamino)-3-cyano-

7-ethoxyquinolin-6-yl)-4-(dimethylamino)but-2-enamide]) were synthesized by Vichem 

Chemie Ltd., Budapest, Hungary. PD153035 [4-[(3-bromophenyl)amino]-6,7-

dimethoxyquinazoline] were purchased from Calbiochem (La Jolla, CA, USA). V600E-

selective BRAF-inhibor vemurafenib (PLX4032, [N-(3-[5-(4-chlorophenyl)-1H-pyrrolo[2,3-

b]pyridin-3-yl]carbonyl-2,4-difluorophenyl)propane-1-sulfonamide] was provided by Selleck 

Chemicals (Munich, Germany). All TKIs were suspended in DMSO (Sigma) and used at 

0.01-100 μM concentrations in 0.5% DMSO-medium for in vitro studies. For in vivo 

metastasis assays vaporized inhibitors were suspended in Tween-20 and diluted in physiologic 

saline to reach a final concentration of 1%. The final applied doses of gefitinib, pelitinib and 

vemurafenib were 2 mg/kg and 20 mg/kg, 0.04 mg/kg and 0.4 mg/kg, 12.5 mg/kg and 25 

mg/kg, respectively. (Applied in vivo doses were based on in vitro proliferation assays.) 
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Immunofluorescence  

Melanoma cells of monolayer culture were fixed in paraformaldehyde for 10 min and then 

permeabilized with 0.1% Triton X-100 (Sigma) in PBS for 1 min. After washing in PBS for 

3x5 min and blocking with 1% bovine serum albumine (BSA; Sigma) and goat serum (9:1) 

for 30 min at room temperature, slides were incubated with primary phosphospecific rabbit 

anti-EGFR[pY1068] antibody (Biosource, Nivelles, Belgium, 1:20 in PBS) for 45 min at 37°C. 

After washing, biotin-conjugated anti-rabbit IgG (Amersham, Buckinghamshire, UK) was 

applied for 40 min at 37°C (dilution 1:100). EGFR protein was visualized by streptavidin-

FITC (dilution 1:100, Vector Laboratories, Burlingame, CA). Negative controls were 

prepared by primary antibody with isotype-matched non-immune IgG (Sigma). Cell nuclei 

were stained with propidium iodide (PI, Sigma). Slides were covered with Vectashield 

(Vector Laboratories) and examined with confocal microscopy (Eclipse C1 Plus, Nikon 

Optoteam, Vienna, Austria). 

 

Kinexus Kinex KinetworksTM protein kinase screen 

WM983B control and treated cells with 25 µM gefitinib for 5 min or 30 min were prepared 

according to the recommendations of Kinexus Bioinformatics Corporation (Vancouver, BC, 

Canada; www.kinexus.ca). 1x107 adherent cells were washed twice with PBS, and 200 μl ice-

cold lysis buffer was added to each sample (20 mM MOPS, pH 7.0; 2 mM EGTA; 5 mM 

EDTA; 30 mM sodium fluoride; 60 mM β-glycerophosphate, pH 7.2; 20 mM sodium 

pyrophosphate; 1 mM sodium orthovanadate; 1% Nonidet P-40; 1 mM 

phenylmethylsulfonylfluoride; 3 mM benzamidine; 5 μM pepstatin; 10 μM leupeptin; 1 mM 

dithiothreitol; final pH of the homogenizing buffer was adjusted to 7.2). Scrapped cells were 

collected, sonicated four times for 10 seconds each time with 10-15 second intervals on ice, 

each homogenates were centrifuged at 90,000 x g 30 min at 4°C in ultracentrifuge. 

Supernatants were transferred to 1.5 ml microcentrifuge tubes, resuspended in SDS-PAGE 

Sample Buffer (31.25 mM Tris-HCl, pH=6.8; 1% SDS; 12.5% glycerol; 0.02% bromophenol 

blue; 1.25 % β-mercaptoethanol) to final protein concentration of 1.4 mg/ml, and shipped to 

Kinexus. Commercially available service of fluorescent labelling, hybridization onto KPCS-

1.0 microarray with selected phospospecific antibodies (ERK1/2, MEK1/2, p38 MAPK), as 

well as scanning, imaging and quantitative analysis of the enhanced chemiluminescence 

signal of the detected proteins in the EGFR-pathway were performed by Kinexus. Images of 
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immunoblots were provided by Kinexus, and our further conclusions were based on their 

evaluations. 

 

Flow cytometric measurement of apoptosis 

Melanoma cells of monolayer were previously treated for 48 hours with different 

concentrations EGFR-TKIs and/or vemurafenib, detached with EDTA, washed with PBS, 

then fixed with 70% ethanol (30 min, 4°C). Samples were washed twice with PBS and 

incubated with propidium-iodide and RNAse (CyStain PI Absolute T, Partec) for 4 hours at 

room temperature. The amount of DNA in cells was measured by flow cytometer (CyFlow, 

Partec), and the percentage of the apoptotic cells (sub-G1 fraction) was analyzed by FlowMax 

software. 

 

Cell proliferation assay 

Cell suspensions containing 5x104 viable cells/ml were plated in 96-well dishes (Greiner, 

Frickenhausen, Germany), incubated for 24 hours and treated with gefitinib, PD153035, 

erlotinib, pelitinib at concentrations of 0.1-100 μM and/or 5 μM of PLX4032 in 200 μl serum-

free or serum-containing medium for 48 hours. At the end of incubation, cell monolayers 

were fixed with 10% trichloroacetic acid and stained for 15 min with Sulforhodamine B 

(SRB). Wells were repeatedly washed with 1% acetic acid to remove excess dye. Protein-

bound dye was dissolved in 10 mM Tris, and absorbance was measured at 570 nm using 

microplate reader (BioRad, Hercules, CA). 50% inhibitory concentrations (IC50) were 

calculated by Dose-Effect Analysis with Microcomputers software (Elsevier-Biosoft, 

Cambridge, UK). 

 

Modified Boyden-chamber migration assay 

Cell migration was assayed by a method reported previously [25]. Human melanoma cells 

were previously treated with different concentrations of gefitinib, pelitinib or vemurafenib for 

24 hours at 37C, harvested with 0.02% EDTA, washed twice with serum-free medium, and 

resuspended at a density of 106 viable cells/ml in medium contained 0.1% BSA.  Viability was 

assayed by trypan blue staining (Sigma). 20 μl of the cell suspension was placed on top of the 

96-well CXF8 plates (polycarbonate filter with 8 μm pore size, Neuroprobe Inc., Cabin John, 

MD) and the lower compartment was filled with 30 μl of fibronectin in RPMI (100 μg/ml, 

Sigma). Cells were allowed to migrate for 6 hours (except M24met, where 24 hour incubation 
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period was applied) at 37 ºC in a humidified atmosphere of 5% CO2. The cells on the upper 

surface of the filter were then removed mechanically and the membranes were stained with 

toluidine blue (Sigma). Six independent parallel samples were applied. Migrated cells were 

counted under a light microscope in 3 high-power fields per sample. 

 

Animal experiments for liver colonization 

SCID mice (C.B-17/lcr-Prkdcscid/lcrlcoCrl) were bred and maintained in our specific 

pathogen-free colony and housed 10 to a cage. WM983B and HT168-M1 human melanoma 

cells from monolayer culture were detached, washed with serum-free medium and one-cell 

suspension was inoculated into the spleen of SCID mice with a number of 106 or 5x104 

cells/animal, respectively. Fourteen days after intrasplenic injection animals were randomized 

(10 animals per group) and treated intraperitoneally daily for 21 days. Reversible EGFR-

specific tyrosine kinase inhibitor gefitinib, irreversible pelitinib and V600E-selective BRAF-

inhibitor vemurafenib were suspended in physiologic saline containing 1% Tween-20. After 

termination the weight of the primary tumors was measured. Livers were fixed in 10% neutral 

buffered formalin for 48 hours and the number of liver colonies was counted under a 

stereomicroscope. 

 

Ethics approval 

All animal experiments were conducted following standards and procedures approved by the 

Animal Care and Use Committee of the National Institute of Oncology, Budapest (license 

number: 22.1/722/3/2010). 

 

Immunohistochemistry 

Routinely fixed xenograft tumors were dehydrated in a graded series of ethanol, infiltrated 

with xylene and embedded into paraffin at a temperature not exceeding 60°C. Three to four 

micron thick sections were mounted on Superfrost slides (Thermo Shandon, Runcorn, UK) 

and were manually deparaffinized. Endogenous peroxidase activity was blocked by 3% H2O2 

in methanol for 5 min at room temperature. Slides were immersed in 0.05 mM citrate buffer 

(pH=9) and exposed to 93°C for 10 min (MFX-800-3 automatic microwave, Meditest, 

Budapest, Hungary). 

Slides were primarily treated with rabbit antibody (in dilution 1:100) against phospho-S6 

ribosomal protein (pS6; Cell Signaling, Danvers, MA) and incubated overnight at 4°C. After 
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washing, secondary antibody Biotinylated Link (Dako) was used and incubated for 10 

minutes at room temperature. For visualization a standard avidin-biotin peroxidase technique 

(ABC system, Dako) was used with aminoethyl carbazole as chromogen. 

 

Statistical analysis 

To determine statistical differences between different strata ANOVA (analyses of variance) 

were used with the post hoc Scheffé-test where parametric methods were available. For the 

animal experiments we used non-parametric Kruskal-Wallis test with post hoc analysis. 

Statistical significance was determined when P values were under 0.05. Statistical analysis 

was performed by Statistica 11.0 software (StatSoft, Tulsa, OK). 

 

RESULTS 

EGFR-signalization in human melanoma cells 

Fixed and permeabilized cells were labeled with antibodies specific for the intracellular 

domain of the EGF receptor, and the ratio of positive cells was evaluated by flow cytometry. 

Expression of EGFR detected by antibody against the intracellular domain showed 52-88% 

positivity in the studied human melanoma cell lines (Fig. 1). 

In our previously published work we demonstrated tyrosine kinase activation and inactivation 

by immunofluorescence microscopy using a phosphospecific antibody [26]. By the 

application of EGFR-pY1068-specific antibody we detected constitutively phosphorylation of 

EGFR without exogenous EGF stimulation in HT168-M1 and WM983B human melanoma 

cell lines (Fig. 2A, C). Furthermore, the EGFR signal could be inhibited by the EGFR-

specific TKI, gefitinib (Fig. 2B, D). 

Kinexus Kinex KinetworksTM phosphoprotein assay confirmed that EGFR-specific inhibition 

by gefitinib affected elements of the EGFR-pathway in WM983B cells: activation of MEK1/2 

and Erk1 were blocked at both endpoints, while Erk2 and p38a MAPK were blocked at 5 min, 

albeit the inhibitory effect was weakened at 30 min (Fig. 2E-F). Of note, that although p38a 

MAPK is involved in the EGFR signaling via RAC1, the major inducing stimuli are hypoxia 

and stress [27]. 

 

Effect of EGFR-TKIs on the in vitro proliferation of human melanoma cells 
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The inhibitory potential of gefitinib on the phosphorylation of EGFR suggested that EGFR-

TKIs may have an effect on malignant melanoma at cellular level (Fig. 2). The inhibition of 

EGFR significantly decreased in vitro proliferative capacity of the human melanoma cells in 

serum-free and serum-containing media (Table 1A and B). The most potent inhibitor was 

irreversible EGFR-TKI pelitinib (IC50 values were in the range of 0.27-2.16 μM). In the case 

of gefitinib, IC50 values were between 0.25-17.2 μM; wild-type EGFR receptor expressing 

NRAS-mutant M24met cell line the [12] and double wild-type MEWO showed relative 

resistance to such inhibitor treatment. In BRAF-mutant lines the effect of PD153035 was 

relatively weaker compared to that of gefitinib, while M24met and MEWO showed total 

resistance. Regardless of oncogenic mutation status, all studied human melanoma cell lines 

were resistant to erlotinib, while the proliferation of the reference non-melanoma cell line, 

A431 was inhibited successfully. Generally IC50 values of human melanoma cells were 

higher than that of EGFR-amplified A431 human squamous cell line. Furthermore, in BRAF-

mutant melanoma cells vemurafenib enhanced the inhibitory effect of gefitinib, while it 

proved to be ineffective in wild-type BRAF-carrying cells, which property was more 

significant in serum-containing media (Table 1A and B). 

 

Apoptosis induction by EGFR-TKIs in human melanoma cell lines 

To investigate the effect of EGFR inactivation on cell survival/apoptosis, we treated human 

melanoma cells with small molecule TKIs for 48 hours, and after propidium-iodide staining, 

samples were analyzed by flow cytometry. Since erlotinib proved to be ineffective to interfere 

with cell viability, we have not tested its potential for apoptosis induction. Measurement of 

sub-G1 fractions (Fig. 3) revealed that significant induction of apoptosis have not occurred in 

the range of the IC50 values for proliferation inhibition in most of the studied cell lines. After 

treatment with higher concentrations of gefitinib (25 and 50 μM) a strong, dose-dependent 

induction of apoptosis was shown in BRAF-mutant melanoma cells (Fig. 3A). Irreversible 

inhibitor pelitinib was already effective at lower concentrations, 5 μM led to 23-30% of sub-

G1 fraction (Fig. 3B). PD153035 showed the weakest pro-apoptotic effect (Fig. 3C). 

Similarly to the proliferation assay, all the three reversible EGFR-TKIs were less capable to 

induce intense apoptosis in the wild-type BRAF-expressing M24met and MEWO cell lines; 

however the irreversible inhibitor pelitinib showed higher activity. Of note that vemurafenib 

have not induced significant apoptosis, its inhibitory effect was rather realized through the 
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blockade of cell cycle in G1-phase, and furthermore this effect was detectable only in BRAF-

mutant cell lines (data not shown). 

 

Effects of EGFR-TKIs on the in vitro migration of human melanoma cells 

To investigate the effect of gefitinib and pelitinib on cell migration, we used modified 

Boyden-chamber assay using fibronectin as chemoattractant. Similarly to vemurafenib, pre-

treatment with the EGFR-specific TKIs significantly reduced 6 hour migration of the BRAF-

mutant human melanoma cells (Fig. 4). The inhibitory capacity of gefitinib and pelitinib 

proved to be dose-dependent. Pre-treatment with 10 μM concentration of pelitinib completely 

abolished viability of HT168-M1 cells, therefore migration assay could not be performed. 

 

EGFR-TKI strategy inhibited liver colonization of BRAF-mutant WM983B and HT168-

M1 xenografts 

Based on our in vitro results, we examined the in vivo effect of gefitinib in combination with 

vemurafenib and pelitinib alone on the liver colonization of WM983B and HT168-M1 human 

melanoma cells in SCID-mice. Fourteen days after intrasplenic inoculation of WM983B or 

HT168-M1 cells, mice were treated intraperitoneally with gefitinib or pelitinib daily for three 

weeks, at doses of 2 mg/kg, 20 mg/kg or 0.04 mg/kg, 0.4 mg/kg, respectively. Based on the in 

vitro IC50 values, we applied equivalent in vivo dose, 2 mg/kg of gefitinib or 0.4 mg/kg of 

pelitinib, and we administered 10-fold higher or lower concentrations, respectively. 

Vemurafenib was applied at clinically relevant doses (12,5 mg/kg or 25 mg/kg). The weight 

of the primary tumors was measured during the autopsy and the number of liver colonies was 

determined under stereomicroscope after formaldehyde-fixation. Contrary to the in vitro 

results in the case of HT168-M1 cells, gefitinib did not inhibit primary tumor and liver 

colonization (data not shown) as compared to the irreversible inhibitor pelitinib, which 

reduced liver colonies at a dose of 0.4 mg/kg (Fig. 5A). In the case of the other BRAF-mutant 

WM983B melanoma cells, gefitinib significantly (p<0.05) inhibited liver colonization at the 

dose of 2 mg/kg as well as 20 mg/kg in a dose-dependent manner (Fig. 5B). Compared to 

control group, vemurafenib significantly affected liver colonization, however additive effect 

of the combination did not reach significance, only a statistical trend appeared. In the TKI-

treated groups primary tumor sizes did not differ significantly from that of solvent-treated 

control, however a tendency of decrease was observed: 18% and 27% in the case of 2 mg/kg 

and 20 mg/kg of gefitinib and 9% and 14% in the case of 0.04 mg/kg, 0.4 mg/kg of pelitinib, 
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respectively. Interestingly, vemurafenib have not shown any effect on primary tumors either 

alone or in combination (data not shown). 

Ribosomal S6 protein is the part of the translational machinery, one of the effectors of 

EGFR/KRAS/MAPK-pathway, therefore its phosphorylation status is highly dependent of 

signalization activity. By immunohistochemical examination of the primary WM983B 

xenograft tumors we confirmed in vivo inhibitory effect of gefitinib, since compared to 

solvent control, gefitinib-treated cells showed lower pS6-positivity (Fig 5C-D). 

 

DISCUSSION 

Aberrant activation of the tyrosine kinase EGFR was demonstrated in several common solid 

tumors, resulting in increased proliferation, survival, invasiveness and metastasis. Constitutive 

activity of EGFR has been shown to correlate with poor prognosis in urinary bladder, 

cervical, esophageal, ovarian cancers and head and neck tumors [10]. EGFR-inhibitory 

strategy has already been approved in cancers of the head and neck region, colon cancers and 

non-small cell lung cancer [28]. Nevertheless, the effectiveness of EGFR inhibition may be 

influenced by oncogenic mutations in the downstream signaling pathway, for instance by the 

V600E mutant BRAF or by mutant NRAS, which are the two most common driver mutations 

in malignant melanoma cases [29]. On the other hand, activation of EGFR and vemurafenib 

resistance linked to the signal of microphthalmia-associated transcription factor [30]. 

Although EGFR-family pathway has more influent on epidermal tissue and cancers, it was 

previously described that heregulin (ligand of ErbB3 and ErbB4 receptors) stimulated the 

proliferation of both melanocytes and malignant melanoma cells [13]. Since heregulin 

contains similar domains to EGF, the oncogenic effect of EGFR (ErbB1) could not be 

excluded in malignant tumor type that shares neuroectodermal origin, malignant melanoma or 

glioblastoma multiforme. In the latter the role of EGFR seems to be more clear [31]. Among 

numerous other tyrosine kinases Tworkoski et al. showed the activity of EGFR in human 

malignant melanoma cell lines [20]. A previous work using standardized ATP-based 

chemosensitivity assay showed significant response of human melanoma cells to gefitinib, 

however, the extracellular domain of EGFR could be detected only in minority of tumor 

samples [14]. These findings are in concordance with our results that all the studied human 

melanoma cell lines expressed the intracellular domain of the receptor that harbours the 
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tyrosine kinase domain. In mutant BRAF-carrying melanoma cell lines EGFR-TKI treatment 

led to significant response in the signaling cascade, inhibited phosphorylation level of EGFR 

itself which resulted inactivation of the major elements in the downstream signal (e.g. 

MEK1/2, Erk1/2, p38a MAPK) in 30 minutes. These short-term alterations in the EGFR-

signal may be the explanation of the detected long-term biological responses. Furthermore, 

we are the first to categorize the effectiveness of EGFR-TKIs in human melanoma according 

to the molecular pattern: treatment blocked proliferation activity of BRAF-mutant cells, 

however wild-type BRAF-carrying human melanoma cells showed relative insensitivity 

against gefitinib. 

Inhibition of EGFR leads to the inactivation of PI3K/Akt survival signal, which results in 

increased apoptosis [32-34]. Our results confirmed previous studies showing that albeit a 

minority of malignant melanoma cells expresses extracellular domain of EGFR, gefitinib still 

proved to be an apoptosis-inducing agent [15, 35]. This observation suggests the involvement 

of intracellular domain in the survival signal, while the presence of the extracellular region is 

not essential. Another novel statement of our current work is that irreversible inhibition of 

EGFR by pelitinib had a more potent effect on apoptosis as well as on proliferation than the 

already clinical administered agents. Previously Djerf Severinsson et al. showed that pan-

ErbB tyrosine kinase inhibitor canertinib also had better anti-tumor activity in malignant 

melanoma [36]. Additionally, our results served the first evidence that irreversible inhibition 

could work in NRAS-BRAF double wild-type as well as NRAS-mutant melanoma cells. 

The relative resistance of NRAS-mutant M24met cell line to gefitinib could be explained by 

previous observations that confirmed the inactivity of EGFR in those cells [12], and the 

receptor was not capable to react to exogenous EGF stimulation despite the gene was 

amplified [17]. Probably the relative resistance of double wild-type MEWO cells is caused by 

EGFR-independent signalization, since this line is NF1 mutant, which resulted loss of NRAS-

suppression [37]. In our present study we have not only confirmed the experimental work of 

Djerf et al. [35], but according to the driver oncogenic mutation status we have systematically 

explored the potential of EGFR-TKI strategy in malignant melanoma. Moreover, based on 

previous theories in colorectal cancer that selective BRAF(V600E) inhibition led to feedback 

activation of EGFR [21], we have first shown that the efficacy of EGFR-TKIs can be 

enhanced by vemurafenib. 
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EGFR not only plays a role in the regulation of proliferation and survival but in cell migration 

as well. Selective EGFR-TKI treatment resulted in inhibition of adhesion, migration and 

invasion in several tumor cell lines, such as cutaneous squamous cell carcinoma, carcinoma of 

the head and neck region, malignant mesothelioma, hepatocellular carcinoma and prostate 

cancer [38-43]. Moreover, numerous data of animal experiments is available that gefitinib had 

an in vivo inhibitory effect of metastasis formation in mice using hepatocellular carcinoma, 

head and neck cancer, squamous cell carcinoma of the vulva and prostate carcinoma cells [44-

48]. We are the first to show that in BRAF-mutant melanoma cells selective inhibition of 

EGFR prevented both in vitro motility and in vivo metastasis formation, and that the 

irreversible inhibitor pelitinib could open a new option for those cells which showed relative 

resistance against the reversible inhibitor gefitinib (e.g. NRAS-mutant, NRAS-BRAF double 

wild-type cells). At the same time, in contrast to previous findings, our vemurafenib-treatment 

has not impacted migratory activity of human melanoma cells [49], which effect was 

irrespective of BRAF and NRAS status; however, we applied other cell lines and shorter 

incubation period than the cited work. 

Genetic analysis of tumors of vemurafenib-relapsed melanoma patients revealed several 

acquired resistance mechanisms. These includes among others overexpression of previously 

overseen growth factor pathways of melanoma involving EGFR [22], EGFR3 [50], 

EGFR2/HER2, AXL and PDGFR receptors [51]. Studies revealed also acquired genetic 

alterations such as ERBB4, besides FLT1, PTPRD, RET, TERT and RUNX1T1 [51]. These 

data all conclude to the same direction that in human melanoma cells inhibition mutant BRAF 

frequently results in the (re)-activation of the EGFR receptor family signaling pathway. 

Moreover, recent clinical trials confirmed that in combination downstream elements of the 

TK-signal should be feasible targets: MEK-inhibitors improved the antitumor effect of mutant 

BRAF-specific inhibitors [6, 7]. Our data suggests that these pathways are already active in 

mutant BRAF-expressing human melanoma cells and themselves serve targets for therapeutic 

interventions which can further be exploited later upon vemurafenib resistance. A phase II 

study of gefitinib showed minimal clinical efficacy as a single-agent in unselected patients 

with metastatic melanoma [51], which can be explained by the different EGFR activities in 

various molecular subgroups of human melanoma. Beside of others our data also suggests 

revisiting the clinical application of EGFR-TKIs, since several new agents are now available. 
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CONCLUSIONS 

In summary, our study suggests that EGFR is a potential target in the therapy of BRAF-

mutant malignant melanoma; however, more benefits could be expected from irreversible 

EGFR-TKIs and combined treatment settings. 

 

LIST OF ABBREVIATIONS: 

ATP: adenosine triphosphate 

DNA: deoxyribonucleic acid 

EGF: epidermal growth factor 

EGFR: epidermal growth factor receptor 

FCS: fetal calf serum 

GTP: guanosine triphosphate 

Ras: protein product of RAS gene 

RAS: rat sarcoma gene 

RNAse: ribonuclease 

SD: standard deviation 

TKI: tyrosine kinase inhibitor 
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TITLES AND LEGENDS TO FIGURES 

Fig. 1. Expression of the intracellular domain of EGFR protein in human melanoma cell 

lines (flow cytometry, 3 parallel samples, data are mean ± SD). 

Fig. 2. Gefitinib inhibited the activity of EGFR-signal in HT168-M1 and WM983B 

human melanoma cells. Immunofluorescent detection of p-EGFR (green) using antibody 

against pY1068, nuclei were labeled by PI (red) (A-D). Commercially available Western-blot 

analysis of Kinexus Kinex KinetworksTM demonstrated the effect of gefitinib on WM983B 

cells, bands represent ERK1/2, MEK1/2 and p38a MAPK – marked by white lines (E). The 

analysis of Kinexus Kinex KinetworksTM protein kinase assay confirmed that EGFR-specific 

inhibition blocked activation of MEK1/2 and Erk1 at both endpoints, while Erk2 and p38a 

MAPK were blocked at 5 min, albeit the inhibitory effect was weakened at 30 min (F). 

Fig. 3. Induction of in vitro apoptosis by EGFR-TKIs in human melanoma cell lines (flow 

cytometry). Comparing gefitinib (A), PD153035 (B) and pelitinib (C), the most effective 

drug was irreversible inhibitor pelitinib while PD153035 had the lowest capacity to induce 

apoptosis (3 parallel samples, data are mean ± SD). 

Fig. 4. Effects of gefitinib (A) and pelitinib (B) pre-treatment on the in vitro migration of 

human melanoma cell lines. The inhibition of EGFR reduced migratory capacity of 

melanoma cells expressing mutant BRAF, while wild-type BRAF-expressing cells were 

unaffected. Vemurafenib-treated cells (C) served as reference. (*p<0.05 compared to solvent 

control; **no viable cells after pre-treatment, migration assay was not performed; 6 parallel 

samples, data are mean ± SD). 

Fig. 5. Effects of EGFR-TKI treatment on in vivo liver colonization of human melanoma 

cells. Pelitinib (irreversible TKI) inhibited colonization of HT168-M1 (A). Gefitinib 

(reversible TKI) inhibited WM983B, while the inhibitory effect of vemurafenib was as 

explicit as significant additional effect has not presented, only tendency has appeared (B). The 

inhibitory effect of ZD1839/gefitinib was confirmed by immunohistological examination of 

the primary WM983B xenograft tumors: compared to solvent control (C) gefitinib-treated 

tumors (D) showed lower positivity to antibody against ribosomal phospho-S6 protein. 

(*p<0.05 compared to solvent control; 10 animals per group, data are mean ± SD). 
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Table 1. Effect of EGFR-TKIs on the in vitro proliferation of human melanoma cell 

lines with different molecular background and A431 as positive control (50% 

inhibitory concentrations in μM, 5 parallel samples). The most effective drug was 

pelitinib, while all melanoma cell lines showed resistance against erlotinib. Asterisks 

indicate synergistic inhibitory effect of 5 μM vemurafenib with gefitinib in cells 

harboring V600E-mutant BRAF (NA: not available). 

 

A) Serum-free media 

   gefitinib 
(ZD1839) 

gefitinib + 
vemurafenib 
(PLX4032) 

 erlotinib 
(OSI-774) 

pelitinib  
(EKB-569) 

PD153035 

A431 0.33 NA 0.05 0.22 0.4 

M24met 

(NRAS – Q61R) 

17.2 >25 >100 2 ~100 

MEWO 

(wt NRAS-NRAF) 

>25 >25 >100 0.64 >100 

A2058 

(BRAF – V600E) 

4.72 2.15* >100 1 3.3 

HT168-M1 

(BRAF – V600E) 

1.1 1.085 >100 2.16 3.6 

HT199 

(BRAF – V600E) 

0.979 0.507* >100 0.27 8.05 

WM983B 

(BRAF – V600E) 

0.25 0.078* >100 0.38 1.93 

 

B) Media contained 2.5% of serum 

   gefitinib 
(ZD1839) 

gefitinib + 
vemurafenib 
(PLX4032) 

 erlotinib 
(OSI-774) 

pelitinib  
(EKB-569) 

PD153035 

A431 0.01 NA 0.01 0.43 0.05 

M24met 

(NRAS – Q61R) 

>25 >25 >100 0.94 >100 

MEWO 

(wt NRAS-NRAF) 

>25 >25 >100 0.127 >100 

A2058 

(BRAF – V600E) 

5.361 4.543* >100 1.1 8.51 

HT168-M1 3.87 1.213* >100 1.08 15 
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http://www.editorialmanager.com/bcan/download.aspx?id=64355&guid=8d44376d-e4a8-4646-bdcb-4585ec81e2e5&scheme=1
http://www.editorialmanager.com/bcan/download.aspx?id=64355&guid=8d44376d-e4a8-4646-bdcb-4585ec81e2e5&scheme=1


(BRAF – V600E) 

HT199 

(BRAF – V600E) 

9.989 0.199* >100 1.02 30.23 

WM983B 

(BRAF – V600E) 

3.553 1.888* >100 0.22 4.51 
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