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Abstract 

Although early-life stress is a significant risk factor for developing anxiety disorders, including 

posttraumatic stress disorder (PTSD), the underlying mechanisms are unclear.  Corticotropin 

releasing hormone (CRH) is disrupted in individuals with PTSD and early-life stress and hence 

may mediate the effects of early-life stress on PTSD risk.  We hypothesized that CRH hyper-

signaling in the forebrain during early development is sufficient to increase response to trauma in 

adulthood.  To test this, we induced transient forebrain-specific CRH over-expression during 

early-life (pre-puberty, CRHOEdev) in double-mutant mice (Camk2a-rtta2 x tetO-Crh), and 

behavioral responses in the predator stress model of PTSD, and related gene expression changes 

were examined in adulthood.  CRHOEdev induced lasting increases in startle reactivity 

independent of predator stress.  CRHOEdev effects on trauma-induced avoidance were dependent 

on both CRHOEdev and sex.  Whereas females exhibited robust responses to stress that were not 

altered by CRHOEdev, males only developed anxiety-like responses when exposed to both 

CRHOEdev and stress.  Sex also modulated the reducing effect of CRHOEdev on Crhr2 and 

Fkbp51 gene expression in limbic and cortical areas, respectively.  Moreover, CRHOEdev 

blocked stressed-induced modulation of Crhr2 in the extended amygdala in males.  These 

findings indicate that forebrain CRH hyper-signaling in early-life is sufficient to increase 

enduring effects of adult trauma in males with significant alterations in Crhr2 expression.  Our 

study provides evidence for important sex differences in the consequences of developmental 

CRH-exposure on stress responses in adulthood, supporting that developmental CRH-exposure 

may contribute to increased risk for PTSD in males exposed to early-life stress.
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Introduction 

 The significant contrast between lifetime trauma incidence and the prevalence to develop 

PTSD (40-70% vs 7-10%, respectively; (Kessler et al, 2010)) supports the importance of 

identifying underlying mechanisms of stress vulnerability.  Genetic studies have documented 

significant heritability of anxiety and stress vulnerability, implicating several genes as potential 

risk factors including CRH (Heim and Nemeroff, 2001; Skelton et al, 2012; Smoller et al, 2003).  

However, the causal role of these candidates and underlying mechanisms are still not clarified.  

By exhibiting high plasticity and intense maturation in limbic regions, developmental periods 

exhibit significant vulnerability for stress, and accordingly can lead to profound changes in the 

structure and function of these regions, e.g. decreased volume of the hippocampus, and altered 

amygdala-prefrontal functions, which are considered significant risk factors for PTSD 

(Dannlowski et al, 2012; Heim et al, 2001).  Early-life stress may also induce latent alterations in 

brain development with functional consequences that are only precipitated by additional stress in 

later life (Hammen et al, 2000).  Although multiple factors are likely involved in the mediation 

of early-life effects on neuropsychiatric risk, major coordinators of the stress response including 

HPA-axis elements such as glucocorticoid receptor, its binding protein FKBP5, and CRH 

signaling elements are primary neurobiological candidates in the pathogenesis of PTSD (Skelton 

et al, 2012). 

Significant evidence suggests that CRH plays a role in this process as the central 

coordinator of the stress response.  For instance, CRH is elevated in the cerebrospinal fluid 

(CSF) of patients diagnosed with PTSD and individuals with significant childhood trauma 

history (Bremner et al, 1997; Carpenter et al, 2004; Lee et al, 2005).  Moreover, CRH receptor 

type 1 (Crhr1) polymorphisms moderate associations of childhood trauma with depression and 
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anxiety (Bradley et al, 2008; Cicchetti et al, 2011).  Rodent and primate studies also showed that 

early stress increases CRH concentration in the CSF and limbic brain regions (Coplan et al, 

1996; Plotsky et al, 2005) where CRH has been shown to modulate PTSD-related phenotypes 

(Radulovic et al, 1999; Regev et al, 2012).  

Based on the above findings, we hypothesized that CRH hyper-signaling during 

development may be a critical driver of developmental stress effects on trauma response in 

adulthood.  To test this hypothesis, we induced transient forebrain-specific CRHOE before 

puberty in double-mutant mice and exposed them to a single traumatic event in adulthood using 

a well-validated model of PTSD (Adamec et al, 2010; Bakshi et al, 2012).  To determine the 

behavioral sequelae, we assessed PTSD-related symptom clusters, i.e. startle reactivity, general 

and trauma-specific avoidance behaviors.  To begin to understand potential mediators of 

CRHOEdev effects, we examined alterations in expression levels of Crhr1, Crhr2, and FK506 

binding protein 5 gene (Fkbp51), molecules reported to play a role in childhood stress 

associations with PTSD risk (Binder, 2009; Bradley et al, 2008).
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Methods and Materials 

Generation of mice with inducible forebrain-specific CRHOE 

To induce CRHOE in spatio- temporally restricted manner, we used double-mutant mice 

carrying CamkIIα promoter-driven rtta2 transgene (Michalon et al, 2005) and doxycycline-

regulated tetO promoter fused to the Crh gene (Vicentini et al, 2009) on a C57BL/6J background 

as previously described (Toth et al, 2014).  The Crh transgene was turned on by doxycycline 

(DOX) administration in breeder chow (Harlan Laboratories, Indianapolis, IN) to ‘single-mutant’ 

dams from postnatal day 2 for three weeks (PND2-PND23).  Hence, CRHOE was induced only 

in double-mutant pups but not in dams.  Typical litter sizes were 4-5 pups, producing 1 double 

mutant male and 1 double mutant female on average for testing.  The DOX dose administered to 

the dam (6 mg/g food) induces forebrain-specific expression of Crh or Lacz reporter genes in the 

forebrain as early as PND0, with detectable levels after 4 days, reaching its maximum after one 

week and returning to baseline levels 14 days after DOX treatment is terminated (Michalon et al, 

2005; Toth et al, 2014).  We and others have previously established that DOX alone (same 

administration between PND2-23) does not affect startle reactivity and avoidance behavior in 

wild-type mice (Kolber et al, 2010; Toth et al, 2014), therefore control subjects were double-

mutant mice without DOX treatment. 

 

Housing conditions 

All subjects were group housed (3-4 per cage) after weaning (PND28) in a temperature 

controlled (21–22°C) room under a reverse 12 hr light/dark cycle (lights off at 8:00 a.m.).  As 

conducted previously, mice were isolated 1 week before predator stress and housed individually 

for the remainder of the experiment (Adamec et al, 2010), because pilot studies suggested that 
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isolated mice exhibit stronger predator stress effects due to lower levels of baseline avoidance 

behaviors. 

 

Experimental design 

All testing occurred from 10:00 a.m. to 6:00 p.m. and was conducted in accordance with 

the Principles of Laboratory Animal Care, National Institutes of Health guidelines, as approved 

by the University of California San Diego.  Before behavioral testing, subjects were brought into 

an adjacent room under a black cloth 60 min for habituation.  For each test, equipment was 

cleaned thoroughly with water between testing sessions.  One week before predator exposure 

(13
th

 postnatal week), mice were handled for 1 min/day and completed a baseline startle 

assessment.  Control and CRHOEdev mice were assigned to groups (predator exposure or 

handling, N=74, 8-11 per group per sex) after counterbalancing for baseline startle reactivity.  

Behavioral testing began 7 days after exposure with an open field test (AM) and behavioral 

pattern monitor (PM).  The next day, mice were tested in the light-dark box test (AM) followed 

by startle assessment (PM).  Fourteen and fifteen days after predator exposure, mice were tested 

in the “trauma reminder” test.   Two separate cohorts of mice with or without predator exposure 

and DOX administration (4 groups, 5-16 per group per sex, N=91 total) were sacrified for gene 

expression analysis. 

 

Predator exposure 

Mice were presented to a cat (Liberty Research, Waverly-NY, USA) in a well-lit room 

(2.3 × 1.8 m; 150-200 lux) for 10 min. The mouse and cat could freely move within the room.  

The interaction was recorded and analyzed later by an experimenter blind to treatments.  The 



8 Mate Toth 
 

intensity of stress exposure was quantified by the frequency and duration of the following 

variables: cat spent near the mouse (<1 ft), sniffing, pawing and mouthing (grabbing orally 

without biting) the mouse.  None of these behaviors differed between groups (CRHOEdev vs. 

controls; Table S2) and no physical injury occurred.  After 10 min of free interaction, mice were 

returned to their home cages.  Control subjects were exposed to handling for 1 min.  

 

Open field test 

Open field activity was assessed in an open arena (40 × 40 × 40 cm; 800 lux) for 10 min 

and analyzed using Ethovision Tracking Software (Noldus, Leesburg, VA, USA).  Total distance 

moved, entries into and duration of time exploring the center zone (25 × 25 cm), and latency of 

the first entry (mice were placed in the corner) were analyzed. 

 

Open field test with trauma-reminder 

Open field arena was used to assess avoidance of trauma-related cues: in a cross-over 

design, either clean mouse bedding or used cat litter (from the cat used for stress exposure; 

containing urine and fur) was placed into a 50 ml perforated conical tube and affixed to the floor 

in one corner of the arena.  The latency of first approach, number of approaches, and time spent 

within a 3-cm radius zone around the tubes was measured by Ethovision Tracking Software.  

 

Behavioral pattern monitor  

Locomotor and exploratory activity was measured in behavioral pattern monitor 

chambers (San Diego Instruments, San Diego-CA; (Risbrough et al, 2006)).  Each chamber is a 

clear Plexiglas box containing a 30 × 60 cm holeboard floor.  The location of the mouse is 
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obtained from a grid of 12 × 24 photobeams 1 cm above the floor providing a resolution of 1.25 

cm (+16 beams detecting rears).  Mice were placed in the middle of the dark chamber and their 

activity was assessed by computing total distance moved, number of rears and hole-pokes over 

30 min. 

 

Light-dark box test 

The light-dark box consisted of two 20 × 40 × 20 cm chambers joined by a 6 ×6 cm door. 

One was well-lit (950 lux) whereas the other was covered (<5 lux).  Mice were placed in the dark 

chamber with closed door for 30 sec.  The test was started by opening the door and lasted 10 

min.  Latency of the first entry, the number of entries, and time spent in the light chamber were 

measured by Ethovision Tracking Software. 

 

Acoustic startle and prepulse inhibition assessment 

Startle reactivity was assessed in Plexiglas chambers (San Diego Instruments, San Diego, 

CA) as previously described (Adamec et al, 2010; Toth et al, 2014).  Briefly, one week prior to 

stress exposure, baseline startle was assessed over 3 consecutive days using Session 1, which 

presented ten 105 dB pulses over 50 dB background in dark chambers.  One week after stress 

exposure, startle reactivity was re-assessed in two consecutive sessions (Session 1 and 2).  

Session 1 consisted the same parameters as in baseline assessment except that 10 additional 

pulses (in a pseudorandom order) were presented with houselights on for 2.95 s prior to the 

startle stimulus.  This session replicated the acoustic startle session previously described for the 

mouse predator stress model of PTSD (Adamec et al, 2010).  To further assess startle habituation 

and inhibition as measured by prepulse inhibition (PPI), a second session was presented 
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immediately after the first (Session 2 with 65 dB background and lights on).  This session 

included 5 blocks beginning with the delivery of 5 each of 120 dB startle pulses (Block1) 

allowing startle to reach a stable level before specific testing.  The second block tested response 

to 80, 90, 100, 110 and 120 dB stimulus intensities.  The third block tested PPI using 120 dB 

startle pulses with 3 different prepulse intensities (69, 73, and 81 dB).  The fourth block tested 

interstimulus interval effects on PPI: 73 dB prepulses preceding 120 dB pulses by 25, 50, 100, 

200, or 500 ms.  The session ended with 5 pulses of 120 dB (Block 5) to assess habituation (from 

Block1 to Block5).  For more details see Supplemental Material. 

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

In two separate cohorts of mice, we assessed expression levels of four CRH-related genes 

in order to identify CRH-induced changes which may mediate increased vulnerability to 

traumatic stress.  We assessed Crhr1 and Crhr2 expression in three brain regions: amygdala, bed 

nucleus of stria terminalis (BNST), and lateral septum which are areas of relatively high 

expression for at least one these genes (Van Pett et al, 2000).  We also assessed Fkbp51 in the 

hippocampus and neocortex, areas of moderate to high expression for these genes (Scharf et al, 

2011).  Briefly, male/female DOX treated/untreated and handled/predator stressed double-mutant 

mice were sacrificed, regions of interest were dissected on ice-cold platform immediately after 

brain extraction and were placed in 1.5 ml tubes containing 500 µl of RNA Later (Life 

Technologies, Carlsbad, CA).  Taqman qRT-PCR was run following RNA extraction and cDNA 

synthesis using commercially available kits.  For more details, see Supplemental Material.  For 

each sample, expression of each gene of interest was compared to the housekeeping gene Gapdh.  
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Fold differences vs. control (no DOX) were calculated for each sex.  Because of technical 

reasons sample sizes varied across regions. 

 

Statistical analysis 

Behavioral and qRT-PCR data were analyzed using factorial ANOVA tests with sex, 

stress, and CRHOEdev as between-subject factors for all tests and in the case of startle habituation 

block was included as a within-subject factor (Systat, Chicago-IL, USA).  Because of consistent 

main or interactional effects of sex across behavioral tests, comparisons within each sex were 

completed for each test (Table 1 and 2).  If groups differed in activity measures, an additional 

covariate analysis was also presented to control for non-specific activity effects.  qRT-PCR data 

were analyzed using covariance analysis and variance estimation/precison model to test if there 

was difference between cohorts: significant changes are shown only if latter indicated no cohort-

effect.  Data were logarithmic or square-root transformed where necessary.  When appropriate, 

Fisher`s LSD post hoc comparisons were also conducted.  However, given that multiple tests 

were used to measure a similar behavioral construct (avoidance) with relatively lenient statistical 

cutoffs, we also created a composite avoidance score (average and factor-weighted z-score of 

time in the aversive area in each avoidance test: center of open field; light compartment of light-

dark box; near the tube filled with cat litter), which is common in clinical research when multiple 

measures of a similar construct are conducted (for more details see Supplemental Material).  This 

approach enables a more accurate determination of consistent changes in avoidance behavior 

across multiple tests, calculates overall effect size, and reduces family-wise error due to multiple 

testing. 
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Results 

Avoidance in the open field 

Mice exposed to predator stress showed increased avoidance of the center (all frequency, 

duration and latency measures: Fstress(1,66)>8.08, p<0.01; Fig.1; Table 1 and 2) with an overall 

decrease in exploration as measured by total distance moved (Fstress(1,66)=13.25, p<0.001; Table 

1 and 2).  Reduced center activity was independent from locomotor activity change as center 

time and latency to enter the center remained significantly lower in the stressed groups when 

total distance moved was considered as a covariate (Fstress(1,65)>5.68, p<0.05).  The impact of 

CRHOEdev exposure on latency to enter the center was significantly modulated by sex and stress 

(Fsex x stress x CRHOE(1,66)=5.23, p<0.05), with increased latency in male mice exposed to both 

stress and CRHOEdev (compared to all other male groups: 0.017<p<0.085; Table 1). 

 

Avoidance in the light-dark box 

CRHOEdev alone did not affect avoidance behavior but CRHOEdev females exhibited a 

trend for increased avoidance in non-stressed groups (duration: Fstress x CRHOE(1,32)=3.49, 

p=0.071, post hoc: p=0.098; Table 2) as described previously (Toth et al, 2014).  Mice exposed 

to predator stress exhibited increased avoidance of the light chamber (frequency: 

Fstress(1,66)=5.16, p<0.05; duration: Fstress(1,66)=4.87, p<0.05; latency: Fstress(1,66)=2.21, ns; 

Table 1 and 2) in a sex- and CRHOEdev-dependent manner (frequency, duration and latency 

measures: Fsex x stress x CRHOE(1,66)=7.15, p<0.01; Fsex x stress x CRHOE(1,66)=5.62, p<0.05; Fsex x stress x 

CRHOE(1,66)=2.91, p=0.092, respectively).  Posthoc analysis revealed that male mice exposed to 

both CRHOEdev and stress exhibited higher avoidance (frequency and duration: p<0.05 and 
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p=0.063, respectively compared to handled CRHOEdev; Fig.1 and Table 1).  In contrast, females 

exhibited main effect of stress regardless of CRHOEdev exposure (Fig.1 and Table 2). 

 

Avoidance of trauma-associated cue 

Predator stress increased avoidance of the trauma reminder as indexed by decreased 

exploration of the tube containing cat litter (frequency: Fstress(1,66)=4.38, p<0.05; duration: 

Fstress(1,66)=7.78, p<0.01; latency: Fstress(1,66)<1, ns).  In contrast, exploration of the neutral tube 

was not affected by predator stress (all measures: Fstress(1,66)<2.63, ns).  CRHOEdev alone had no 

effect on avoidance of either tube (duration and frequency: FCRHOE(1,66)<1, ns), and its effect on 

latency in males was driven by increased total distance moved (FCRHOE(1,66)=4.40; p<0.05).  

 

Avoidance across testing paradigms: combined avoidance score 

The average z-score of three avoidance tests confirmed the highly significant effect of 

stress on avoidance (all measures: Fstress(1,66)>11.08, 0.001<p<0.002; duration shown in Fig.1) 

which showed strong interaction with CRHOEdev in a sex-dependent manner (frequency and 

duration: Fsex x stress x CRHOE (1,66)>7.82, 0.002<p<0.007).  Post hoc analysis confirmed our finding 

in individual tests:  predator stress increased avoidance only in male mice previously exposed to 

CRHOEdev as compared to handled CRHOEdev controls (frequency and duration: p<0.05 and 

p<0.01 , respectively), whereas male stressed non- CRHOEdev did not show change of avoidance 

(Fig.1; Table1 and 2).  Factor loading-weighted z-scores showed highly similar results (duration 

in open field, ligh-dark box and odor test loadings: 0.73, 0.68 and 0.49, respectively; Fsex x stress x 

CRHOE (1,66)=10.19, p<0.01;: post hoc: handled vs. stressed CRHOEdev p<0.01).  However, there 

was a trend for increased approach in handled CRHOEdev male mice compared to handled 
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controls (p=0.076).  Consistently with individual tests, post hoc analysis in females showed a 

robust effect of predator stress on avoidance in both CRHOEdev and non- CRHOEdev groups 

(p<0.05 and p<0.001, respectively; Fig.1 and Table 2). 

 

Locomotor and exploratory activity  

CRHOEdev increased the total distance moved in the behavioral pattern monitor but did 

not affect the number of rears and hole-pokes (FCRHOE(1,66)=5.50, p<0.05; FCRHOE(1,66)<1, ns; 

FCRHOE(1,66)<1, ns, respectively).  Predator stress did not alter total distance moved or number 

of rears (Fstress(1,66)<1, ns) but decreased the number of hole-pokes (Fstress(1,66)=8.20, p<0.01; 

Table S1). 

 

Startle reactivity and PPI 

Both prior to and following stress exposure, male and female CRHOEdev mice showed 

higher startle magnitude during Session 2 and 1 (FCRHOE(1,66)=4.61, p<0.05; FCRHOE(1,66)=9.52, 

p<0.01, respectively; Fig.2A and Fig.S1).  CRHOEdev robustly reduced startle habituation in both 

sexes (Fblock x CRHOE(4,264)=2.72, p<0.05; block effects: p<0.05 in controls, p>0.3 in CRHOEdev 

mice; Fig.2B).  Similarly, PPI was significantly reduced by CRHOEdev (FCRHOE(1,66)=9.43, 

p<0.01), although this effect was stronger in males (Fig.2C).  When startle magnitude was added 

as a covariate, the CRHOEdev effect on PPI remained significant (Fstress(1,65)=15.84, p<0.001).  

Predator stress alone had no effect on any startle measures (Fstress<2.08, ns; Fstress x CRHOE<1.22, 

ns; Fig.2). 

 

Gene expression changes induced by CRHOEdev 
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Crhr1 in the amygdala showed a trend for decreased expression induced by stress 

(Fstress(1,86)=3.14, p=0.080), which was also present in the BNST in female mice 

(Fsex(1,85)=4.39, p<0.05; Fstress x CRFOE(1,40)=4.60; p<0.05; p=0.098 handled controls vs. stressed 

controls; Fig.3).  The impact of stress on Crhr2 expression was significant in all three regions 

investigated, but highly dependent on sex and/or CRHOEdev exposure.  In the amygdala, Crhr2 

was reduced in males, and marginally increased in females exposed to both CRHOEdev and stress 

(Fsex(1,79)=15.66, p<0.001; males: Fstress (1,32)=5.17; p<0.05; females: Fstress x CRFOE(1,40)=3.35; 

p=0.074; Fig.3).  In the BNST, stress increased Crhr2 level in control males only 

(Fsex(1,76)=8.01, p<0.01; males: Fstress x CRFOE (1,35)=14.33, p<0.001; posthoc: p<0.001 compared 

to all other groups), while it was reduced by CRHOEdev in females (FCRFOE (1,36)=5.69, p<0.05).  

In the lateral septum, Crhr2 showed significant reduction in both sexes induced by CRHOEdev 

(FCRFOE (1,74)=7.81, p<0.05; Fig.3).  Similarly, stress-inudced alterations of FKBP51 expression 

were modulated by sex and CRHOEdev.: stress and CRHOEdev alone (but not double exposure) 

decreased cortical expression in males (Fsex(1,86)=3.60, p=0.066; males: Fstress x 

CRFOE(1,16)=5.38, p<0.05; posthoc: p<0.05 handled CRHOEdev and stressed controls vs. handled 

controls; Fig.3), whereas stress marginally increased hippocampal expression in females 

(Fsex(1,86)=17.39, p<0.001; females: Fstress(1,41)=3.12, p=0.084). 

 

 

Discussion 

 Here we show that a single “traumatic stress” event induced significant avoidance 

behavior that was modulated by forebrain-specific CRHOE during early-life in a sex-dependent 

manner.  In female mice, trauma-induced avoidance was pronounced, but was not significantly 



16 Mate Toth 
 

influenced by early-life CRHOE.  In contrast, male mice exhibited significant trauma-induced 

avoidance only when they had been exposed to early-life CRHOE.  Hence in males, forebrain 

CRH signaling during development may be sufficient to induce the “double hit” phenomenon in 

which early-life stress interacts with adult trauma to induce PTSD-like symptoms.  Moreover, 

early-life CRHOE led to lasting increases of arousal indexed by startle reactivity in both sexes.  

Sex-specific alterations of Fkbp51 and Crhr2 expression suggest that consequences of excess 

CRH signaling during development on stress pathways are dependent on sex, which may explain 

the sexually dimorphic behavioral outcomes.  

That predator stress significantly impacted avoidance in control females, but not in 

control males, suggests that this model may be predictive for mechanisms related to clinical 

findings reporting higher risk for women to develop stress disorders, including PTSD (Kessler et 

al, 2010; Koenen and Widom, 2009; Tolin and Foa, 2006).  Moreover, it was only with the 

additional manipulation of CRHOE during early-life that males exhibited a response to predator 

stress.  Accumulating evidence indicates that CRH-related mechanisms contribute to sex 

differences in stress reactivity and anxiety.  For instance, sexes differ in CRH receptor and 

Fkbp5 expression during early development, particularly following early-life stress (Bourke et 

al, 2013; Weathington et al, 2014).  Moreover, enhanced CRH neurotransmission during early-

life induces sex-specific alterations in monoaminergic systems (Curtis et al, 2006; Howerton et 

al, 2014; McEuen et al, 2009).  The sex-dependent effects of CRHOEdev in the present study may 

be due to differential CRH receptor expression in males and females (Weathington et al, 2014), 

and the reduced ability of females to desensitize CRH receptors (Bangasser et al, 2010).  The 

present study shows that CRHOEdev produced long-term changes of Crhr2 expression in 

adulthood, also leading to altered expression changes under stressful conditions.  Additionally, 
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males, but not females, exposed to CRHOEdev exhibited reduced expression and stress-reactivity 

of Fkbp51, a protein that curbs excess glucocorticoid signaling and modulates the association 

between early-life stress and PTSD (Binder, 2009; Yehuda et al, 2009).  Plasma Fkbp5 is 

reduced in PTSD, and is negatively correlated with symptom severity (Sarapas et al, 2011; 

Yehuda et al, 2009).  Recent prospective studies also indicate that reduced Fkbp5 expression 

before trauma is a risk factor for development of PTSD (van Zuiden et al, 2012).  Hence, 

reduced Fkbp51 expression found in males is a plausible candidate mechanism for CRHOEdev 

effects on response to trauma, and is suggestive that forebrain CRH hyper-signaling during 

development is sufficient to induce an enduring shift in this pathway.  The next step will be to 

utilize treatments that normalize Fkbp51 expression in CRHOEdev mice to determine if this 

pathway is causally related to the increased susceptibility to stress. 

Unlike in males, CRHOEdev exposure in females did not alter predator-stress response.  A 

potential limitation is a ceiling effect of predator stress on anxiety-like responses which could 

compromise our ability to detect an increase in the CRHOEdev group.  However, the overall 

composite score (Fig.1B) in female mice suggests that the combination of CRHOEdev and 

predator exposure tended to produce less avoidance than predator exposure alone.  In females, 

CRHOEdev induced significant reductions of Crhr2 expression in the BNST and lateral septum, 

and marginally increased stress-reactivity in the amygdala.  It has been shown previously that 

reduction in Crhr2 expression in the BNST reduces PTSD-like susceptibility in mice (Elharrar et 

al, 2013), but opposite effects were also shown (Lebow et al, 2012).  In the lateral septum, Crhr2 

receptor expressing neurons mediate anxiogenic effects (Anthony et al, 2014).  Therefore, it is 

possible that Crhr2 expression changes induced competing anxiogenic-anxiolytic effects across 

regions, and moderated the effects of predator stress in female CRHOEdev mice.  An alternative 
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explanation is that unlike males, female CRHOEdev mice did not develop reduced Fkbp51 

expression which may mediate CRHOEdev exacerbation of predator stress response.  Importantly, 

the differential pattern of Crhr2 vs. Fkbp51 expression changes in female and male mice 

supports the hypothesis that sex significantly modulates adaptive responses to CRH signaling 

during development (Bale et al, 2002; Bangasser et al, 2010). 

Our present findings also support the conclusion that early-life CRH signaling modulates 

development of startle circuitry.  These data are consistent with our and others` previous reports 

showing reduced PPI and habituation following developmental or lifetime CRHOE (Dirks et al, 

2002; Groenink et al, 2008; Toth et al, 2014) .  Pharmacological and genetic manipulation 

studies reported increased startle and reduced PPI following CRHR1 receptor hypersignaling, 

while CRHR2 receptor stimulation increased PPI (Risbrough et al, 2003; Risbrough et al, 2004).  

In the present study, predator stress had no further impact on startle, despite previous reports that 

predator stress increases startle magnitude (Adamec et al, 2010).  These data indicate that the 

predator stress model may be most consistent in modeling the avoidance-like components of 

PTSD rather than full PTSD-syndrome.  It is important to consider that reports of increased 

baseline startle, reduced habituation and PPI are inconsistent in PTSD patients (Acheson et al, 

2014).  Indeed, PTSD is more robustly associated with increased startle reactivity in response to 

specific threat, not under baseline conditions as was assessed here (Grillon and Baas, 2003; Orr 

et al, 2002).   

Taken together, our data support the suggestion that early-life CRH hyper-signaling in 

the forebrain is sufficient to increase enduring effects of adulthood trauma in males.  CRH may 

exert these effects via altering its postsynaptic machinery (CRHR2) or the glucocorticoid 

feedback (Fkbp5) during development.  Indeed, early-life CRH hyper-signaling results in 
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hippocampal deficits (Chen et al, 2004), and its anxiogenic and despair-like effects cannot be 

reproduced by adult-onset CRHOE (Kolber et al, 2010; Toth et al, 2014).  Importantly, these 

early-life stress effects are markedly modulated by sex, potentially via sex-specific compensatory 

mechanisms in response to CRH hyper-signaling.  Consistently, accumulating evidence suggests 

the importance of sex differences in the neurobiological consequences of stress pathway 

activation during development (De Bellis and Keshavan, 2003; Everaerd et al, 2012). 
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Table 1.  Avoidance behavior in males exhibited in the open field, light-dark box and modified 

open field with trauma-reminder.  Data (presented as mean ± SEM) show the number of entries 

into the aversive arena (i.e. center, light compartment and zone around the tube filled with cat 

litter), the latency of the first approach, and distance travelled (total locomotor activity).  Latter 

could not be quantified in the light-dark box as the dark compartment is fully covered (N/A).  

*p<0.05 compared to handled controls with the same CRH condition (post hoc); CRHOEdev: 

transitional CRH over-expression before puberty. 

CRH Stress Number of entries 
Latency of first 

approach 

Distance travelled 

(cm) 

 
Open field 

Control 
Handled 79.0 ± 6.8 10.8 ± 2.9 5724 ± 458 

Stressed 74.8 ± 5.0 14.6 ± 4.8 5298 ± 401 

CRHOEdev 
Handled 87.6 ± 7.1 9.3 ± 2.8 5851 ± 281 

Stressed 59.4 ± 7.5* 59.8 ± 19.8* 4471 ± 308 

Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,34)<1, ns 

F(1,34)=5.65, p<0.05 

F(1,34)=3.40, p=0.073 

F(1,34)<1, ns 

F(1,34)=6.17, p<0.05 

F(1,34)=3.90, p=0.057 

F(1,34)<1, ns 

F(1,34)=7.54, p<0.05 

F(1,34)=1.72, ns 

 
Light-dark box 

Control 
Handled 15.6 ± 2.2 15.5 ± 6.6 N/A 

Stressed 19.7 ± 3.8 103.3 ± 66.0 N/A 

CRHOEdev 
Handled 23.0 ± 3.8 40.4 ± 19.3 N/A 

Stressed 13.2 ± 2.3* 86.5 ± 64.3 N/A 

Main effect of 

CRHOEdev: 

Main effect of Stress: 

Stress x CRHOEdev: 

F(1,34)<1, ns 

F(1,34)<1, ns 

F(1,34)=4.62, p<0.05 

F(1,34)<1, ns 

F(1,34)<1, ns 

F(1,34)<1, ns 

N/A 

 
Open field with trauma reminder 

Control 
Handled 33.8 ± 4.3 12.3 ± 4.6 6017 ± 590 

Stressed 27.9 ± 5.5 24.6 ± 16.5 5609 ± 470 

CRHOEdev 
Handled 47.3 ± 7.1 7.1 ± 3.2 7052 ± 702 

Stressed 31.8 ± 5.6 2.1 ± 0.8 5548 ± 492 

Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,34)=2.14, ns 

F(1,34)=3.92, p=0.056 

F(1,34)<1, ns 

F(1,34)=4.72, p<0.05 

F(1,34)<1, ns 

F(1,34)<1, ns 

F(1,34)<1, ns 

F(1,34)=2.59, ns 

F(1,34)<1, ns 

 
Composite (z-)scores 

Control 
Handled 0.04 ± 0.19 -0.19 ± 0.06 0.13 ± 0.33 

Stressed -0.02 ± 0.21 0.15 ± 0.30 -0.16 ± 0.26 

CRHOEdev 
Handled 0.37 ± 0.22 -0.10 ± 0.14 0.30 ± 0.25 

Stressed -0.39 ± 0.26 0.16 ± 0.19 -0.39 ± 0.21 
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Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,34)<1, ns 

F(1,34)=3.44, p=0.072 

F(1,34)=2.87, p=0.098 

F(1,34)<1, ns 

F(1,34)=2.47, ns 

F(1,34)<1, ns 

F(1,34)<1, ns 

F(1,34)=3.17,p=0.087 

F(1,34)<1, ns 
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Table 2.  Avoidance behavior in females exhibited in the open field, light-dark box and modified 

open field with trauma-reminder.  Data (presented as mean ± SEM) show the number of entries 

into the aversive arena (i.e. center, light compartment and zone around the tube filled with cat 

litter), and the latency of the first approach and distance travelled (total locomotor activity).  

Latter could not be quantified in the light-dark box as the dark compartment is fully covered 

(N/A).  *p<0.05 compared to handled controls with the same CRH condition (post hoc); 

CRHOEdev: transitional CRH over-expression before puberty. 

CRH Stress Number of entries 
Latency of first 

approach 

Distance travelled 

(cm) 

 
Open field 

Control 
Handled 114.8 ± 21.4 5.2 ± 1.6 8158 ± 1258 

Stressed 60.6 ± 13.9 25.2 ± 7.1 4966 ± 739 

CRHOEdev 
Handled 99.6 ± 13.6 13.6 ± 3.5 6878 ± 1011 

Stressed 73.0 ± 15.5 29.9 ± 16.1 5305 ± 726 

Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,32)<1, ns 

F(1,32)=7.43, p<0.01 

F(1,32)<1, ns 

F(1,32)<1, ns 

F(1,32)=2.50, ns 

F(1,32)=2.09, ns 

F(1,32)<1, ns 

F(1,32)=5.70, p<0.05 

F(1,32)<1, ns 

 
Light-dark box 

Control 
Handled 23.0 ± 2.3 30.7 ± 18.9 N/A 

Stressed 11.8 ± 3.0 189.0 ± 92.5 N/A 

CRHOEdev 
Handled 19.1 ± 3.9 91.0 ± 66.1 N/A 

Stressed 15.4 ± 3.3 119.7 ± 50.3 N/A 

Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,32)<1, ns 

F(1,32)=5.56, p<0.05 

F(1,32)=1.44, ns 

F(1,32)<1, ns 

F(1,32)=5.92, p<0.05 

F(1,32)<1, ns 

N/A 

 
Open field with trauma reminder 

Control 
Handled 53.7 ± 6.3 1.7 ± 0.7 8564 ± 1074 

Stressed 35.6 ± 6.5 25.2 ± 15.3* 6504 ± 1238 

CRHOEdev 
Handled 61.5 ± 9.3 6.4 ± 2.9 9031 ± 1526 

Stressed 65.8 ± 12.0 3.2 ± 1.6 10306 ± 1625 

Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,32)=2.82, ns 

F(1,32)=1.12, ns 

F(1,32)=2.24, ns 

F(1,32)<1, ns 

F(1,32)=1.90, ns 

F(1,32)=6.65, p<0.05 

F(1,32)=2.38, ns 

F(1,32)<1, ns 

F(1,32)=1.45, ns 

 
Composite (z-)scores 

Control Handled 0.38 ± 0.19 -0.34 ± 0.06 0.27 ± 0.31 
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Stressed -0.60 ± 0.11 0.29 ± 0.22 -0.49 ± 0.26 

CRHOEdev 
Handled 0.16 ± 0.23 -0.18 ± 0.09 0.12 ± 0.33 

Stressed -0.26 ± 0.21 0.29 ± 0.25 -0.19 ± 0.22 

Main effect of 

CRHOEdev: 

Main effect of stress: 

Stress x CRHOEdev: 

F(1,32)<1, ns 

F(1,32)=12.70, p<0.01 

F(1,32)=2.01, ns 

F(1,32)<1, ns 

F(1,32)=10.82, p<0.01 

F(1,32)< 1, ns 

F(1,32)<1, ns 

F(1,32)=3.31,p=0.078 

F(1,32)< 1, ns 
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Figure legends 

Fig.1.  Avoidance behavior in open field (A), light-dark box (B), and trauma reminder (C) tests, 

and their composite avoidance score (D) indexed by average z-scores of the three above tests.  

All graphs indicate time spent in the aversive arenas (i.e. center of the open field, light 

compartment of the light-dark box, and zone around the tube filled with cat litter).  Accordingly, 

higher/positive scores indicate increased approach of the arenas, lower/negative scores indicate 

increased avoidance.  Upper and lower panels show data from males and females, respectively.  

Data are presented as mean ± SEM.  Asterisks in legends indicate significant main effect of 

stress vs. ‘no-DOX’ controls (*p<0.05; **p<0.01; ***p<0.001; indicated by 3-way ANOVA); 

whereas asterisks above bars indicate significant interaction effects with additional significant 

posthoc comparison vs. handled group with the same CRF background.  CRHOEdev: transitional 

CRH over-expression before puberty. 

 

Fig.2. The magnitude (A), habituation (B) and prepulse inhibition (C) of the startle response.  

Upper and lower panels show data from males and females, respectively.  Data are presented as 

mean ± SEM.  Asterisks indicate significant (*p<0.05) main effect of CRHOEdev (or in the case 

of habituation, block x CRHOEdev interaction; indicated by repeated measure ANOVA).  

CRHOEdev: transitional CRH over-expression before puberty. 

 

Fig.3. Long-term expression changes of Crhr1 (A), Crhr2 (B) and Fkbp51 (C) in regions of 

interest.  Data are presented as mean ± SEM of fold changes compared to no DOX controls.  

Asterisks and hash signs (*p<0.05; **p<0.01; 
#
0.05<p<0.05; 3-way ANOVA) indicate either 

main effects of stress (Crhr1-Amygdala, Fkbp51-Hippocampus), main effect of CRHOEdev 

(Crhr2-Lateral Septum, Crhr1-BNST in females), or significant posthoc comparison to 
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respective groups as indicated by lines between groups.  BNST: bed nucleus of stria terminalis; 

CRHOEdev: transitional CRH over-expression before puberty; Crhr1/Crhr2: CRH receptor type 1 

and type 2; Fkbp51: FK506 binding protein of the glucocorticoid receptor. 
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Fig.2. 

A: Startle response B: Startle habituation C: Prepulse inhibition
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Fig.3. 
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