View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Repository of the Academy's Library

NFPA: Network Function Performance Analyzer

Levente Csikor, Mark Szalay, Baldzs Sonkoly, and L4sz16 Toka
High Speed Networks Laboratory, Budapest University of Technology and Economics
Email: {csikor, szalay, sonkoly, toka} @tmit.bme.hu

Abstract—With the soar of Software Defined Networking
planning a network service becomes harder of a task than ever
before. Selecting traditional network elements that provide the
best value for money given the performance requirements and
the allocated budget is not the only option today: one might
also take the software solution on generic hardware alternative.
The problem is that the set of available solutions and the
possible combinations of software and hardware components in
this nowadays’ alternative is frustratingly vast while the decision
maker lacks any clear benchmarking comparison between the
existing options. Qur solution presented in this paper provides an
answer to this critical need: we propose a benchmarking tool that
allows the user to measure the important performance metrics
of any network function realized on any hardware and software
combination, and then to compare the results on a web interface
with those of all the setups collected in our database.

Keywords—SDN, NFYV, VNEF, benchmarking tool, performance
analyzer

I. INTRODUCTION

It is commonly accepted that decoupling network functions
(NFs) from the underlying physical infrastructure using virtu-
alization and cloud technologies enables service innovation.
By means of Software Defined Networking (SDN), the pro-
grammability of the Network Function Virtualization (NFV)
infrastructure has gained a huge potential for supporting the
deployment of NFs in a variety of (virtualized) environments,
including Internet and cloud service providers, campus and
enterprise networks, and over-the-top applications. However,
the widely spread usage of SDN is still to come: this promising
new approach of networking has not yet been deployed ubig-
uitously for several plausible reasons. First, most commercial
off-the-shelf devices are not fully compliant with OpenFlow,
therefore deploying services over OpenFlow in carrier-grade
networks is not always feasible. Second, although relying on
(inexpensive) generic platforms and software-based solutions
(as in data centers) first looks promising for faster adaptation
of the latest standards, it is not obvious how a certain service
chain should be embedded or mapped to a set of heterogeneous
networking nodes [1], [2], [3]. Finally, the main fundamental
question that always arises is: are the software-based solutions
(ever going to be) able to cope with the forever changing and
increasing traffic demands?

Traditional black box networking assigned the responsi-
bility for performance to the box vendors with SLAs. Now,
potential adopters of the SDN paradigm worry about the fact
that in a virtualized system the responsibility for quality is not
so clear. What is more, there is limited information available
about the performance of software-based NF implementations.
Although each solution promises to outperform others, the
details of their performance evaluation, e.g., the testing en-
vironment of hardware and software components and properly
installed drivers, remain unrevealed, e.g., in [4]. Only a limited

978-1-4673-6884-1/15/$31.00 ©2015 IEEE 17

number of independent benchmarking tools have appeared so
far and even those lack the necessary generality, e.g., project
Yardstick [5] aims at describing Virtual Network Function
(VNF) performance with a number of metrics, but it is limited
to Openstack-based clouds. We believe that a NF benchmark-
ing tool should not be limited to only a subset of available
technologies, it is crucial to explore possibly the whole range
of all the component levels: evaluate hardware accelerators,
e.g., programmable NICs, Intel DPDK [6], Netmap [7], Open
DataPlane [8], pinpoint software bottlenecks, e.g., packet I/O,
OS kernel, test the effects of virtualization, etc. Furthermore, it
is also important to analyze the packet processing performance
of the data plane under realistic traffic (captured or emulated
traces). Thus, we propose our Network Function Performance
Analyzer (NFPA), which is not only in accordance with
standardized methodologies (RFC 2544, [9]), but also makes
possible to comprehensively compare performance metrics of
NFs in an exhaustive range of dimensions. More precisely,
NFPA answers

how a software-based NF

implemented in a generic language (e.g., C/C++)
running on a generic platform (e.g., Intel Xeon)
over a generic operating system (e.g., Linux)

in different environments (e.g., virtual machine)
using different drivers performs

under different traffic patterns.

The rest of this paper is organized as follows. In Sec. II, we
give a detailed description of the proposed framework, while in
Sec. III we show some results of various measurement setups.
Finally, in Sec. IV we conclude our work.

II. ARCHITECTURE

Complying with RFC 2544, our NFPA is a standalone
benchmarking tool, connected to the Device Under Test
(DUT), as depicted in Fig. 1: the NF to be tested runs in
the desired environment (NF node), e.g., in a KVM virtual
machine, while NFPA runs on a separate machine. First, the
user determines the measurement target on the NFPA node
by all its relevant parameters, e.g., details of the hardware
and software components, number of repeated measurements
and their duration, and selects the traffic traces to be used.
Afterwards, NFPA sends packets on port 0 (anwithd also on
port 1 in case of bidirectional measurements), while receives
(a portion of those) packets on port 1 (and also on port O
respectively), then it calculates the throughput of the DUT in
terms of packet/s and bit/s. Once the measurement is finished,
NFPA analyzes the results and plots them in the preset units,
and in parallel saves the measurement data in a local database.
In addition, we provide a central server with a web-based API,
whereby the NFPA user can upload and share the results for

https://core.ac.uk/display/78472932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Conference on Network Function Virtualization and Software Defined Networks 2015 Demo Track

70

(1)& Traffic traces|
Measurement Setup
Properties. Value
name ovs User Built-in
function 13-router defined
driver DPDK
packet size| 64,128 ...
traffic |simple,tr2i...
CPU Intel Xeon
NIC Intel X710
Virt. KVM
NF Node
(2)
@) 3
Blackbox (4)__ Lua control
(4) scripts

Fig. 1.

further comparison, and in return the user can browse the set
of results measured by others.

A. Platform and Applied Technologies

NFPA’s engine is implemented in Python and relies on
standard libraries. It can be configured both by config files and
via a lightweight web GUI. In order to avoid the limitation of
kernel space network card drivers, NFPA’s network interface
is built on Intel’s DataPlane Development Kit (DPDK, [6]) for
fast packet processing: in particular, for sending and receiving
trafficc, NFPA uses PktGen' with custom Lua scripts for
parameterizing, automating and controlling the measurements.
In order to support portability, the results are stored in a local
SQLite database. Result charts are created using Gnuplot?. The
overall set of measurements at our central node is stored in
PostgreSQL database.

B. Traffic Traces

The characteristics of the traffic traces that we use as inputs
influence the measurement results on a NF’s performance.
Naturally, packet sizes and the number of flows in the trace
play an important role, e.g., the smaller the packet size the
lower the throughput assuming a quasi-constant packet/s per-
formance. Specific NFs, however, require even higher caution
when crafting the input trace. For instance, when performance
testing an Open vSwitch (OVS?) programmed to function as
a VXLAN gateway*, not only the packet headers must be
heterogeneous, e.g., the source and destination IP addresses,
L2 informations, VLAN ids, but also the characteristics of
the traffic patterns on the sending and receiving ports need
to be different. NFPA, therefore, provides a wide selection
of synthetic traffic traces with different packet headers and
sizes in order to approximate realistic scenarios as closely as
possible. A brief overview of those is the following:

o simple: PktGen’s default settings where each flow has
the same header information.

o tr2e: 100 different flows with each flow having differ-
ent destination MAC address.

Thttp://dpdk.org/browse/apps/pktgen-dpdk/refs/

Zhttp://www.gnuplot.info/

3http://openvswitch.org/

4A VXLAN gateway allows a virtual extensible LAN to communicate with
another network, particularly a virtual LAN.

18

NFPA Node

Central WEB Site

—>W

()] Gnuplot
visualizer

INTERNET

(6)

Y R
— -
SQLite DB

for Results

PostgreSQL *

The system architecture and the applied method. Note the numbers in parentheses that mark the sequence of the measurement procedure.

e tr2i: 100 different flows with each flow having differ-
ent destination IP address.

e tr3e: 10.000 different flows with each flow having
different destination MAC address.

e r3i: 10.000 different flows with each flow having
different destination IP address.

o trde: 500.000 different flows with each flow having
different destination MAC address.

o tr5ul: 64.500 different flows with each flow having
different source IP and 6.450 of them have different
destination IP addresses.

e tr5ul: 64.500 different flows with each flow having
6450 different source IP addresses and a certain des-
tination IP address.

99:99
1

Traffic traces ending with “e” and “i” can be used for measur-
ing the throughput of L2-switches and L3-routers, respectively.
Traffic traces are available for the following packet sizes: 64,
128, 256, 512, 1024, 1280, 1500 bytes.

Besides the more than 100 different pre-generated synthetic
traffic traces, NFPA is capable of using any pcap trace the user
has or obtains from, e.g., Caida [10].

III. PRELIMINARY FINDINGS

We have set up some scenarios and carried out several
measurements with NFPA. Here, we show how the well-
known OVS performs in different virtualized environments
compared to another emerging software-based switch, called
xDPd (extensible DataPath daemon)?.

First, let us demonstrate how the performance of OVS
is affected by different drivers (kernel, DPDK) and environ-
ments (native, Kernel-based Virtual Machine (KVM), Linux
Container (LXC)) assuming a simple port forward flow-rule
installed. In this case, OVS was running on an Intel Xeon
E5-2620 (2 GHz) server with an Intel X710 10Gb Ethernet
interface. The measurement details are depicted in Fig. 2,
where the red solid line shows the theoretical maximum
number of packets that can be transferred in one second on
a 10Gbit/s Ethernet port. The other lines are denoted by X_7Y,
where X yields the used driver and Y indicates the type of
virtualization. One can observe that the performance of OVS
running natively or in a lightweight Linux container (LXC)

Shttp://www.xdpd.org/

IEEE Conference on Network Function Virtualization and Software Defined Networks 2015 Demo Track

16000 Theoretical -o-
9 Kernel_Native
14000 Kernel_LXG -
Bodk Natva
ative
12000 Bodk LXG-e-
.,10000
3 8000
Z
6000
4000 -.\
2000 T e
——.
OV w v v - -
64128 256 512 1024 1280 1501

Packet <ize

Fig. 2. Open vSwitch’s performance over different drivers and environments

16000 Theoretical -e-
\ Xeon - simple
14000 Xeon - tr2e -
At Xeon;tr?:le v
om - simple
12000 Atom - tr2e-o-
Atom - tr3e-e -
10000
=
Q
§ 8000+
Z
6000
4000]
2000
0-“-----0”- o 2
64128 256 512 Packet <z 1024 1280 1501
Fig. 3. xDPd’s performance on different CPUs and with various traffic traces

hardly differ, while KVM degrades the throughput®. More
importantly, it is noticeable that if OVS uses Intel’s DPDK
driver for forwarding then maximal throughput can be achieved
already with 128-byte packets, but in case of kernel drivers it
is reached when the packet size is greater than 1280 bytes.
Although not shown in this particular example, we have also
learned that due to the flow cache method of OVS, if different
flows are sent, i.e., addresses in packet headers differ, then
the performance significantly reduces, even if a simple port
forward rule is installed.

Second, we show to what extent the performance of a
DPDK enabled xDPd is affected by different platforms and
traffic traces. We used simple, tr2e, and tr3e traffic traces
mentioned above. xDPd was first running on the Intel Xeon
server as in the above-mentioned OVS scenario, and then
on an Intel Atom C2758 (2.4 GHz) with an Intel 82599
10Gb Ethernet interface, respectively. Proper flow rules were
installed in the flow table according to the traces. The results
are depicted in Fig. 3, where again the red solid line shows
the theoretically maximal throughput. One can observe that in
case of the Xeon platform and simple port forwarding scenario
the DPDK enabled xDPd performs similarly to OVS, i.e., it
achieves the maximal throughput immediately as the packet
size reaches 128 bytes. On the other hand, the results indicate

®Note that in case of KVM the performance significantly depends on the
way the virtual interfaces are connected to physical ones by e.g., linux bridge,
Nat, macvtap-passthrough, ivshmem, userspace vhost.

19

that in case of an Atom-based server the average throughput
reaches the theoretical values only when the packet size is
greater than 512 bytes. Furthermore, one can easily see that the
smaller the packet is, the more the performance is decreased
due to the number of different flows, e.g., in case of 64-byte
packets, the throughput from ~ 10 million packet/s reduces to
~ 8 Mpps if 100 different packets are sent instead of sending
the same packet every time.

IV. CONCLUSION

The importance of fully understanding the performance
range of each software-based NF is essential for creating and
operating reliable networks and services. Additional metrics
beyond link speed, such as packets per second, connections
per second, flow modifications per second, one-way delay will
be crucial to develop and deploy new network services. With
this demo, we make the first step in this direction and propose
a publicly available measurement tool that not only measures
the most important properties, but also provides an API for
analyzing and comparing measurements carried out by others.
We believe that such a huge set of measurement data could
provide a very basis for further more complex benchmarking,
e.g., the ones mentioned in [11]. Since NFPA is open-source,
it can be easily extended with additional features to examine
other performance metrics too.

During the demo, we showcase’ each important part of
the NFPA architecture with the steps depicted in Fig. 1. The
audience can access our cloud (1), start a NF (2) and measure
the throughput via NFPA (3). After the measurements are done,
results will be accessible through our central web page and
comparisons could be made in a straightforward manner.

Acknowledgements This work has been supported by
Ericsson. L. Toka was supported by the Janos Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] M. Rost, S. Schmid, and A. Feldmann, “It’s about time: On optimal
virtual network embeddings under temporal flexibilities,” in IEEE

IPDPS, 2014, pp. 17-26.

S. Zhang, Z. Qian, B. Tang, J. Wu, and S. Lu, “An opportunistic resource
sharing and topology-aware mapping framework for virtual networks,”
in IEEE INFOCOM, 2012.

Y. Y. M. Yu, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” in ACM
SIGCOMM CCR, vol. 38, no. 2, Apr. 2008, pp. 17-29.

Cloud Networking Performance Lab, “A blazingly fast software switch,
an overview in our high-performance switch with our extensions.” http:
//cnp.neclab.eu/vale, 2014.

(2]

(3]

(4]

(31

H. Feldt, “Yardstick: Prototype architecture and status,” presentation:
https://wiki.opnfv.org/yardstick, May 2015.

(6]
(71

Intel, “Guide: Data plane development kit for linux,” Guide, April 2015.

L. Rizzo, “netmap: A novel framework for fast packet i/0,” in USENIX
Security Symposium, Aug. 2012, pp. 101-112.

[8] Linaro Networking Group, “Opendataplane introduction and overview,”
January 2014.

S. Bradner and J. McQuaid, “Benchmarking methodology for network
interconnect devices,” RFC 2544, March 1999.

CAIDA, “Caida data - overview of datasets, monitors, and reports,”
http://www.caida.org/data/overview/, Last access: Aug 2015.

(91
[10]

(1]

A. Morton, “Considerations for benchmarking virtual network functions
and their infrastructure,” Internet Draft, May 2015.

7demo showcase: http://g00.g1/zQ5XsI

