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ZEROS OF A CROSS-PRODUCT OF THE COULOMB

WAVE AND TRICOMI HYPERGEOMETRIC FUNCTIONS

ÁRPÁD BARICZ

Dedicated to Prof. Péter T. Nagy on the occasion of his 70th birthday

Abstract. Motivated by a problem on conditions for the existence of
clines in genetics, we show that the positive zeros of a cross-product
of the regular Coulomb wave function and the Tricomi hypergeometric
function are increasing with respect to one of the parameters. In par-
ticular, this implies that the eigenvalues of a certain boundary value
problem are increasing with the dimension.

1. Introduction

In his study about the existence of clines in genetics, Nagylaki [5] consid-
ered a partial differential equation in space and time satisfied by the gene
frequency in a monoecious population distributed continuously over an ar-
bitrary habitat. He showed that this partial differential equation reduces to
the simplest multidimensional generalization of the classical Fisher-Haldane
cline model, and investigated the efficacy of migration and selection in main-
taining genetic variability at equilibrium in this model by deducing condi-
tions for the existence of clines in various circumstances. The boundary
value problem considered by Nagylaki reads as follows

(1.1) ∆p+ λ2g(r)p = 0,
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2 Á. BARICZ

where p′(0) = 0 and p(∞) <∞, ∆p is the n-dimensional Laplacian, r is the
distance from the origin of an n-dimensional vector x, and

g(r) =

{
1, r ∈ [0, 1],
−α2, r > 1.

Nagylaki [5] conjectured that for each fixed α > 0 the smallest positive eigen-
values of the above boundary value problem increase with the dimension.
Motivated by Nagylaki’s investigation, Ismail and Muldoon [4] considered
the radial part of the boundary value problem (1.1), that is,

(1.2) − (ry′(r))′ + ν2r−1y(r) = λ2rg(r)y(r),

where p′(0) = 0, p(∞) < ∞, y(r) = rνp(r) and ν = n/2 − 1, and they
showed that the positive eigenvalues of (1.2) are the positive zeros of fixed
rank of the cross-product

Jν+1(r)Kν(αr)− αKν+1(αr)Jν(r),

where Jν is the Bessel function of the first kind, while Kν stands for the
modified Bessel function of the second kind. Moreover, motivated by Askey’s
claim, Ismail and Muldoon [4] proved that the positive zeros of the cross-
product

Jν+β(r)Kν(αr)− αβKν+β(αr)Jν(r)

are increasing with respect to ν on [−β/2,∞), where β ∈ (0, 1]. Thus, it is
clear that Nagylaki’s conjecture follows from the case β = 1 of the above
result. In [4], the authors actually stated more: they showed that the expres-
sion αr in the above affirmation can be changed to any strictly increasing
differentiable function on (0,∞) and αβ can be replaced by an arbitrary pos-
itive constant. Motivated by the importance of the boundary value problem
(1.1) and its radial part (1.2) in the existence of clines, and following the
suggestion of Ismail, our aim is to show that Nagylaki’s claim about the
positive eigenvalues will be also true in a more general setting, we replace
the Bessel function of the first kind by the regular Coulomb wave function,
and the modified Bessel function of the second kind by the Tricomi hyperge-
ometric function of the second kind. This is actually a generalization of the
problem considered by Nagylaki. For more details on the special functions
appearing in this paper we refer to [3, Chapter 6] and [6, Chapter 10].

2. The eigenvalue problem related to Coulomb and Tricomi
functions

In order to extend Nagylaki’s problem we consider the boundary value
problem

(2.1) ∆p+ ϕλ(r)r−2p = 0,

where p′(0) = 0 and p(∞) <∞,

ϕλ(r) = L(L− 1) + λ2r2g(r)− 2ηλrh(r),
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L = (n− 1)/2, η is a real parameter, and

h(r) =

{
1, r ∈ [0, 1],
α, r > 1.

It can be shown that the radial part of the above boundary value problem
(2.1) is

(2.2) r2y′′(r) +
(
λ2r2g(r)− 2ηλrh(r)− L(L+ 1)

)
y(r) = 0,

where p′(0) = 0, p(∞) <∞ and y(r) = rLp(r). If we suppose that r ∈ (0, 1],
then we obtain

r2y′′(r) +
(
λ2r2 − 2ηλr − L(L+ 1)

)
y(r) = 0.

By using the change of variable u = λr (and taking y(r) = z(u)), this
equation becomes the Coulomb wave equation

u2z′′(u) +
(
u2 − 2ηu− L(L+ 1)

)
z(u) = 0.

Moreover, when r > 1, (2.2) becomes

r2y′′(r)−
(
α2λ2r2 + 2ηαλr − L(L+ 1)

)
y(r) = 0,

which after the change of variable v = αλr (and taking y(r) = q(v)) becomes
a transformation of the Kummer confluent hypergeometric differential equa-
tion

v2q′′(v)−
(
v2 + 2ηv + L(L+ 1)

)
q(v) = 0.

Thus, when r ∈ (0, 1] the differential equation (2.2) has as a particular
solution the regular Coulomb wave function

y(r) = FL(η, u),

while for r > 1 the equation (2.2) has the particular solution a transforma-
tion of the Tricomi hypergeometric function

y(r) = vL+1e−vψ(L+ η + 1, 2L+ 2, 2v).

When η = 0 the above particular solutions reduce to

y(r) =

√
π

2u
JL+ 1

2
(u) and y(r) = 2−L

√
2v

π
KL+ 1

2
(v),

which show that the boundary value problem (2.1) is a natural extension of
(1.1), while (2.2) is a natural extension of (1.2).

Now, we are ready to state the main result of this paper.

Theorem 1. a. The boundary value problem (2.2) has for its eigenval-
ues the zeros of the cross-product of the regular Coulomb wave and
Tricomi hypergeometric functions

F ′L(η, r)QL(η, αr)− αQ′L(η, αr)FL(η, r)

and corresponding eigenfunctions

r 7→ ΘL(η, r) =

{
QL(η, αλ) · FL(η, λr), r ∈ (0, 1],
FL(η, λ) ·QL(η, αλr), r > 1,
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where

QL(η, r) = rL+1e−rψ(L+ η + 1, 2L+ 2, 2r).

b. For fixed α > 0, η ∈ R such that L+ η > 0, and L > −3/2, L 6= −1
if η 6= 0 and L > −3/2 if η = 0, the equation

(2.3) F ′L(η, r)/FL(η, r) = αQ′L(η, αr)/QL(η, αr)

has infinitely many positive roots, which we denote in increasing
order by λL,η,α,n, n ∈ N. These zeros satisfy

xL,η,n−1 < λL,η,α,n < xL,η,n,

n ∈ {2, 3, . . . }, where xL,η,n is the nth positive zero of the Coulomb
wave function ρ 7→ FL(η, ρ). Moreover, if α > 0, η ∈ R and L >
−1/2, then we have λL,η,α,1 < xL,η,1.

c. For fixed α > 0, η ≥ 0 and n ∈ N the zeros λL,η,α,n increase with L
on [0,∞).

We note that since the boundary value problem (2.1) is an extension of
(1.1), while (2.2) is an extension of (1.2), if we take η = 0 in the above
theorem, we obtain some of the main results of [4] for the case β = 1.

Proof of Theorem 1. a. Subject to the stated boundary condition the dif-
ferential equation in (2.2) has solution

y(r) =

{
A · FL(η, λr), r ∈ (0, 1],
B ·QL(η, αλr), r > 1.

Since y and y′ are to be continuous at r = 1 we must have

A · FL(η, λ) = B ·QL(η, αλ)

and

A · λF ′L(η, λ) = B · αλQ′L(η, αλ),

and there will be a notrivial solution of this system if and only if

F ′L(η, λ)QL(η, αλ) = αQ′L(η, αλ)FL(η, λ).

Hence we may take A = QL(η, αλ) and B = FL(η, λ). Thus, indeed the
boundary value problem (2.2) has for its eigenvalues the zeros of the cross-
product of the regular Coulomb wave and Tricomi hypergeometric functions,
that is,

F ′L(η, r)QL(η, αr)− αQ′L(η, αr)FL(η, r),

and corresponding eigenfunctions r 7→ ΘL(η, r).
b. The equation (2.3) is equivalent to

(2.4)
F ′L(η, r)

FL(η, r)
− L+ 1

r
= α+

2αψ′(L+ η + 1, 2l + 2, 2αr)

ψ(L+ η + 1, 2L+ 2, 2αr)
.

Now, we shall use the Mittag-Leffler expansion of regular Coulomb wave
function (obtained from its infinite product representation, see [1, 7, 8] for
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more details). Namely, since for L > −3/2, L 6= −1 if η 6= 0 and L > −3/2
if η = 0 we have [1, Lemma 1]

F ′L(η, r)

FL(η, r)
− L+ 1

r
=

η

L+ 1
−
∑
n≥1

(
r

xL,η,n(xL,η,n − r)
+

r

yL,η,n(yL,η,n − r)

)
,

the left-hand side of the equation (2.4) is decreasing on (0, xL,η,1) and also
on each interval (xL,η,n, xL,η,n+1), n ∈ N. Here yL,η,n stands for the nth
negative zero of the regular Coulomb wave function r 7→ FL(η, r). When
r ↘ 0 the left-hand side of (2.4) tends to η/(L + 1), when r ↗ xL,η,n,
n ∈ N it tends to −∞ and when r ↘ xL,η,n, n ∈ N it tends to +∞. On
the other hand, according to [2, Remark 3] we know that for a > 1 and
c ∈ R the function r 7→ ψ′(a, c, r)/ψ(a, c, r) is increasing on (0,∞). Note
that this monotonicity result is in fact equivalent to a Turán-type inequality
for Tricomi hypergeometric functions. Moreover, by using the recurrence
relation

ψ′(a, c, r) = −aψ(a+ 1, c+ 1, r),

the fact that ψ(a, c, r) is positive for a, c, r ∈ R, and the asymptotic expan-
sion

ψ(a, c, r) = r−a(1 +O(r−1)) as r →∞,
it follows that r 7→ ψ′(a, c, r)/ψ(a, c, r) maps (0,∞) into (−∞, 0). Thus, the
right-hand side of (2.4) is increasing on (0,∞) for α > 0 and L+ η > 0 and
maps the interval (0,∞) into (−∞, α). These show that the equation (2.4)
has infinitely many positive roots, and starting from the second positive root
they are certainly located between the positive zeros of the regular Coulomb
wave function. Now, by using the asymptotic relation

ψ(a, c, r) ∼ Γ(c− 1)r1−c/Γ(a) as r → 0 and c > 1,

it follows that ψ′(a, c, r)/ψ(a, c, r) ∼ (1− c)/r as r → 0 and c > 1, and thus
the right-hand side of (2.4) tends to −∞ as r → 0 and L > −1/2. This
shows that if α > 0, η ∈ R and L > −1/2, then we have λL,η,α,1 < xL,η,1.

c. We shall follow the approach considered in [4], namely, the Sturmian-
type arguments and the approach of the Hellman-Feynman theorem of quan-
tum chemistry. Since r 7→ ΘL(η, r) are eigenfunctions of the boundary value
problem (2.2), we have

−Θ′′L(η, r)ΘL(η, r)+2ηλ
1

r
h(r)Θ2

L(η, r)+L(L+1)
1

r2
Θ2
L(η, r) = λ2g(r)Θ2

L(η, r).

Integrating from zero to infinity we get∫ ∞
0

(
λ2g(r)− 2ηλ

1

r
h(r)

)
Θ2
L(η, r)dr

= L(L+ 1)

∫ ∞
0

1

r2
Θ2
L(η, r)dr +

∫ ∞
0

(
Θ′L(η, r)

)2
dr,
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where we used integration by parts in the last integral. Since the right-hand
side of the above relation is positive for L ≥ 0, it follows that

(2.5) λ2

∫ ∞
0

g(r)Θ2
L(η, r)dr ≥ λ

∫ ∞
0

2η
1

r
h(r)Θ2

L(η, r)dr.

Now, writing λL instead of λL,η,α,n, multiplying the equations

−Θ′′L(η, r) + 2ηλL
1

r
h(r)ΘL(η, r) + L(L+ 1)

1

r2
ΘL(η, r) = λ2

Lg(r)ΘL(η, r),

−Θ′′M (η, r)+2ηλM
1

r
h(r)ΘM (η, r)+M(M+1)

1

r2
ΘM (η, r) = λ2

Mg(r)ΘM (η, r)

by ΘM (η, r), ΘL(η, r) respectively, subtracting and integrating between 0
and ∞ we get(

Θ′M (η, r)ΘL(η, r)−Θ′L(η, r)ΘM (η, r)
) ∣∣∣∞

0

+ (λL − λM )

∫ ∞
0

2η
1

r
h(r)ΘL(η, r)ΘM (η, r)dr

+ [L(L+ 1)−M(M + 1))]

∫ ∞
0

1

r2
ΘL(η, r)ΘM (η, r)dr

= (λ2
L − λ2

M )

∫ ∞
0

g(r)ΘL(η, r)ΘM (η, r)dr.

Note that the integrated term vanishes at 0 and ∞ for L,M > 0, and
consequently dividing both parts of the above equation by L−M and taking
the limit M → L we obtain

dλL
dL

∫ ∞
0

2η
1

r
h(r)Θ2

L(η, r)dr + (2L+ 1)

∫ ∞
0

1

r2
Θ2
L(η, r)dr

=
dλ2

L

dL

∫ ∞
0

g(r)Θ2
L(η, r)dr

or equivalently

dλL
dL

∫ ∞
0

2η
1

r
h(r)Θ2

L(η, r)dr + (2L+ 1)

∫ ∞
0

1

r2
Θ2
L(η, r)dr

= 2λL
dλL
dL

∫ ∞
0

g(r)Θ2
L(η, r)dr.

This implies that

dλL
dL

(
2λL

∫ ∞
0

g(r)Θ2
L(η, r)dr −

∫ ∞
0

2η
1

r
h(r)Θ2

L(η, r)dr

)
= (2L+ 1)

∫ ∞
0

1

r2
Θ2
L(η, r)dr > 0,

which in view of (2.5) and the fact that λL is positive according to part b,
yields dλL/dL > 0, so for fixed α > 0 and η ≥ 0 the zero λL is increasing
with respect to L on [0,∞). �
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