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Hydrodynamic synchronization is a fundamental physical phenomenon by which self-sustained

oscillators communicate through perturbations in the surrounding fluid and converge to a stable

synchronized state. This is an important factor for the emergence of regular and coordinated patterns

in the motions of cilia and flagella. When dealing with biological systems, however, it is always hard to

disentangle internal signaling mechanisms from external purely physical couplings. We have used the

combination of two-photon polymerization and holographic optical trapping to build a mesoscale model

composed of chiral propellers rotated by radiation pressure. The two microrotors can be synchronized by

hydrodynamic interactions alone although the relative torques have to be finely tuned. Dealing with a

micron sized system we treat synchronization as a stochastic phenomenon and show that the phase lag

between the two microrotors is distributed according to a stationary Fokker-Planck equation for an

overdamped particle over a tilted periodic potential. Synchronized states correspond to minima in this

potential whose locations are shown to depend critically on the detailed geometry of the propellers.
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Synchronization is at the basis of a wide variety of
fascinating and important phenomena in physics, biology,
and engineering. From coupled Josephson junctions [1] to
cardiac pacemaker cells [2], the presence of a weak inter-
action between two or more self-sustained oscillators often
leads to the emergence of synchronous patterns [3]. At the
micron scale of cells and bacteria, hydrodynamic interac-
tions provide a strong and long-ranged mechanism for
coupling [4]. Since synchronization phenomena are known
to occur even in the presence of extremely weak and subtle
couplings, it is quite natural to expect strong synchronous
behavior in such a strongly coupled regime. The presence
of a strong coupling, however, is not a sufficient condition
for synchronization [5,6], and the role of hydrodynamic
interactions for the emergence of synchronous behaviors in
flagella [7–9] and cilia [10–13] is still the subject of a lively
debate [14]. In the case of waving sheets [5], kinematic
reversibility can destroy synchronization when the sheets
have reflection symmetry. For the same reason, a collection
of rigid rotors, spinning around fixed axes and coupled
through hydrodynamic interactions, will appear as the
same physical system evolving on a time reversed trajec-
tory when we change sign to all applied torques. Such
reversible dynamics cannot give rise to any synchroniza-
tion behavior that is, by definition, an irreversible process.
This symmetry upon torque reversal can be broken by
using phase dependent torques [6] or, alternatively, by
introducing some degree of mechanical flexibility in the
form of internal degrees of freedom with finite stiffness
[15,16]. In the latter case, when we reverse the sign of
applied torques, internal forces will not change their sign
and the system will not trace back its history. As a con-
sequence, synchronization in uniformly rotating systems is

driven by small deviations from rigid dynamics and
amounts to a tiny effect, despite the presence of strong
hydrodynamic couplings. In such a situation, synchroniza-
tion is highly sensitive to a small mismatch in the rotors’
free rotational frequencies [16]. An extremely low
Reynolds number is an important condition in mesoscopic
dynamics, but even more peculiar is the unavoidable pres-
ence of noise. However, hydrodynamic synchronization of
rotators has been investigated only by analytical [6,11] and
numerical models [15] or macroscopic experiments [16]
that do not take into account noise. A colloidal model for
rotators, of the kind used [13] for modeling ciliar beating
motions, is still lacking.
In this Letter, we have used two-photon polymerization

to build a microscopic model of hydrodynamically coupled
propellers driven by radiation pressure. We demonstrate
that hydrodynamic interactions alone can synchronize
the two rotors, although the applied torques have to be
finely tuned. The stationary probability distribution for the
phase lag between the two rotors obeys a Fokker-Planck
equation for an overdamped particle over a tilted periodic
potential [17].
Synchronization between two self-sustained oscillators

manifests with the appearance of phase-locked states that
survive even when we detune the two oscillators’ frequen-
cies within some finite range [3]. Those states are even
easily detectable in the presence of noise that would
quickly destroy any accidental phase-locking, driving
phases away in diffusing random walks. On the other
hand, if noise is unbounded, perfect phase-locking never
occurs. However, synchronization still will be clearly vis-
ible as an intermittent dynamics where rapid phase slips
interrupt periods of phase-locking whose lifetime increases
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as we tune the frequencies of the two oscillators [3,8]. An
ideal micron scale model for studying hydrodynamic syn-
chronization of rotators should provide a precise way of
tuning torques, together with some degree of mechanical
flexibility. All those features are readily available in the
colloidal lightmills introduced by Galajda and Ormos in
[18]. These are two-photon polymerized structures mea-
suring a few microns and with a chiral structure similar to
that of windmills. Those structures are also provided with
an axis that automatically ensures stable trapping and
alignment to the axis of an optical trap. Trapping light
will be scattered with a nonzero component of orbital
angular momentum giving rise to an applied torque. At
the same time, trapping light will act as a spring restoring
the rotor axis in its equilibrium position and providing the
required degree of mechanical flexibility.

The rotors were produced using two-photon excitation
photopolymerization by direct laser beam writing from
SU8 2007 photoresist as described in detail in [19,20].
We fabricated two types of rotors with mirror symmetry
to get clockwise or anticlockwise rotation [Fig. 1(a)]. The
optical tweezers were built around a Zeiss Axio Observer
A1 inverted microscope with an Olympus UPlanSApo
water immersion 60X=1:2 objective. Two counterspinning
rotors were trapped simultaneously by splitting the laser
beam (1070 nm, IPG-YLM-10, IPG Photonics) with a
spatial light modulator (PLUTO NIR, Holoeye) [21].

By changing the location and power of each trap, we
could control independently the rotors’ position and ap-
plied optical torques. Figure 1(b) shows two rotors spin-
ning in opposite directions at a distance d of 6 �m The
rotors were spinning at an average frequency of 7.6 Hz.
The angular frequency � is given by � ¼ RM where R
is the rotational mobility and M is the applied torque.
Using the numerical model described later, we can

estimate a mobility of about R ¼ 5:3 ðpN�msÞ�1, which
gives an optical torque of about 9 pN�m. Individual rotor
phases �1 and �2 are defined as in Fig. 1(b) and extracted
by a real-time video-tracking software. As a phase differ-
ence variable, we choose the quantity ’ ¼ j�1j � j�2j that
gives the appropriate result for rotors spinning in the same
or opposite directions. For each distance, we scanned the
relative torque by scanning the relative power difference in
each trap in steps of order 10�3. Figure 2(a) shows a data
set for the closest investigated distance of 6 �m. There is a
marked tendency for the relative phase to get trapped at
values ’� 60� modulo 120�. That corresponds to rotors
rotating with arms that tend to stay as close as possible. As
we tuned the relative torques toward a better match, the
frequency of phase slips was reduced to about one every
20 seconds, that is one every 150 full rotations. It is enough
to increase the distance to 7 �m to observe a much weaker
phase-locking [Fig. 2(b)].
Our numerical approach to the problem consists of

describing each rotor as a rigid assembly of N spherical
beads with radius a and coordinates R� ¼ fr1�; . . . ; rN�g
with � ¼ 1, 2 the rotor index. Each bead will be subject
to an unknown force f�a

j, resulting from the internal
mechanical interaction with neighboring beads and the
external optical force. Hydrodynamic interactions can be

FIG. 1 (color online). (a) SEM images of microrotors over
glass substrate. (b) Bright-field image of synchronized micro-
rotors spinning in opposite directions. (c) Rotors are modeled as
an array of 17 spherical beads. (d) Snapshot from the numerical
simulation.

FIG. 2 (color online). Phase lag ’ dynamics for different
values of torque mismatch �M. (a) Rotors’ distance d ¼
6 �m. Each curve corresponds to a given �M that is scanned
in steps of order 10�3 pN�m. Smaller �M correspond to curves
with lower average slopes. As �M approaches zero, the phase
lag is locked at 60� modulo 120� for increasing time intervals.
(b) Same plot for a 7 �m distance. (c) Open symbols represent
the experimental probability distributions for ’ at d ¼ 6 �m.
Torque difference is increased in the curves from top to bottom.
Solid lines are the calculated Fokker-Planck stationary
distributions.
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accounted for, at the lowest order, by assuming that each
bead is advected by a background flow that is obtained as
the sum of the Stokes flows propagating from point forces
acting on all the other beads. For rotor 1 this reads

_rj1 ¼ m0f
j
1 þ

X

k�j

Gðrj1 � rk1Þ � fk1 þ
X

k

Gðrj1 � rk2Þ � fk2; (1)

where m0 ¼ ð6��aÞ�1 is the single bead mobility and
GðrÞ ¼ ð8��rÞ�1ð1þ r̂ r̂Þ is the Oseen tensor. Adding
the analogous equation for rotor 2, we end up with 6N
equations for the 12N unknown components of the vectors

_rj�, f
j
�. We now impose the constraint that each rotor moves

as a rigid body and only allow for rotations around the
z axis. Calling r0� the coordinates of a reference point on
the �th rotor axis, and �� the instantaneous rotor angle
around the z axis we have

_r j
� ¼ _r0� þ _��ẑ� ðrj� � r0�Þ: (2)

That amounts to adding another 6N equations at the cost
of introducing the 4 unknowns _r0�, _��. The system of
equations can be closed by imposing that the total force
acting on each rotor is purely optical and amounts to an
elastic restoring force with finite stiffness k plus a constant
torque along z given by M�:

X

j¼1;N

fj� ¼ �kr0�;
X

j¼1;N

ðrj� � r0�Þ � fj� ¼ M�ẑ: (3)

For each configuration, we can solve equations (1)–(3)
for the speeds _r0� and _�� and obtain trajectories for the two
coupled rotors. Analytical studies of deterministic minimal
models [16,22], made of just one or two spheres per rotor,
have shown that in the limit of large separations and small
torque differences, it is possible to write an equation of
motion for the one cycle average of the phase difference �’
in the form

_�’ ¼ R

�
�dUð �’Þ

d �’
þ �M

�
; (4)

where�M ¼ jM1j � jM2j is the applied torque difference,
R is the rotational mobility of an isolated structure, andU a
periodic function of ’ that encodes the whole complex
structure of hydrodynamic interactions in a term that act as
a periodic potential for ’. A far-field solution of minimal
models also shows that Uð �’Þ ¼ uð �’ÞM2=ka2, where M is
the average applied torque modulus and u an adimensional
periodic function of �’ whose structure depends solely on
geometrical parameters like the shape and relative distance
of the rotors. Using numerical simulations of model rotors
made of 17 spheres [Fig. 1(c)], we find out that the struc-
ture of (4) remains valid even for more complex 3D shapes
and shorter separations as in Fig. 1(d). Figure 3 shows the
numerically calculated potential U for k ¼ 1 pN=�m.
Synchronized states correspond to minima in U whose
shape mainly depends on k through a multiplicative factor.
It is worth noting that, within the approximation order used

to derive (4), hydrodynamic interactions do not modulate
the mobility term R by which the phase lag ’ responds to
small torque differences. They only appear in the potential
term U whose amplitude depends on the average applied
torque. It is then reasonable to generalize (4) to a stochastic
equation for the instantaneous phase lag ’ by simply add-
ing to the torque mismatch �M a fluctuating component �
that, within the present approximation of a constant R,
plays the role of an additive noise

_’ ¼ R

�
� dU

d’
þ�Mþ �

�
: (5)

The above equation has the form of a stochastic Adler
equation [3,8], where � has zero average and a white noise
spectrum

h�ðtÞi ¼ 0; h�ð0Þ�ðtÞi ¼ 2A�ðtÞ: (6)

The resulting dynamics will lead to stationary probability
distributions that are formally obtained by solving the
corresponding Fokker-Planck equation and imposing peri-
odic boundary conditions [17]

Pð’Þ ¼ 1

Z
e��Uð’Þ Z ’þ2�=3

’
e�½Uð’0Þ��Mð’0�’Þ�d’0; (7)

where � ¼ 1=RA and Z is a normalization factor that can

be determined by imposing
R2�=3
0 Pð’Þd’ ¼ 1. The case

of equal torque corresponds to Brownian motion over a
periodic potential so that the stationary distribution (7)
reduces to the Boltzmann equilibrium distribution

Pð’Þ / e��Uð’Þ: (8)

That suggests a straightforward procedure to extract the
potential from the experimental data. If we identify the

FIG. 3 (color online). Experimental data for the potential �U
measured at rotor distances 6 �m (open circles) and 7 �m
(filled circles). Solid line and dashed line correspond, respec-
tively, to the 17 and 3 spheres models predictions for 6 �m
distance and are scaled by an arbitrary factor. Using the same
scaling factor, dotted line is the 17 spheres model prediction for
7 �m distance.
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equal torque condition as that leading to the most
pronounced peak in the probability distribution Pð’Þ,
then we can obtain the potential as �Uð’Þ ¼
� log½Pð’Þ�. If we apply that procedure using, as the equal
torque case, the uppermost histogram in [Fig. 2(c)], we end
up with the potential reported in Fig. 3. A maximum in the
probability distribution corresponds to a minimum at about
60� in the potential U. It is worth noting that, if we model
our rotors with a minimal three spheres system, of the kind
investigated in [16], we always end up with a minimum at
0� that is with rotor arms belonging to different rotors
always trying to maximize their distance (see dashed line
in Fig. 3). However, in both numerical models, the dis-
sipation shows a maximum at 0� and a minimum at 60�.
This observation confirms the existence of a link between
synchronized states and extrema in the dissipation function
[5,15]. Whether synchronization corresponds to minimum
or maximum dissipation can depend critically on the de-
tailed shape of the rotors. From Fig. 3 we extract a potential
barrier of about 3 in units of ��1 with a maximum slope,
or maximum ‘‘synchronizing’’ torque, of about Mc ¼
6��1. If we now assume that all noise comes from
thermal agitation, we would expect ��1 to be of order
kBT ¼ 4 � 10�3 pN�m. Therefore, no stable synchro-
nized state would exist for torque mismatches larger than
Mc � 2 � 10�2 pN�m that is only 1=1000 of the applied
torque. That is also consistent with the need for performing
very fine power scans to observe synchronization. A simi-
lar sensitivity of synchronization from frequencymismatch
was also observed in coupled oscillating colloids [13],
although synchronization is much more robust in that
case probably due to the time asymmetric character of
the beads’ motions. When slightly increasing the rotors’
distance from 6 to 7 �m, a marked decrease of about a
factor of two is found in the experimental potential U
(Fig. 3). The numerical prediction is slighty lower (dotted
line in Fig. 3) and initially falls off faster than the three
spheres’ model prediction �1=r7. When bringing the si-
mulated rotors at distances larger than about 11 �m, stable
synchronized positions switch to 0� as in the three spheres’
case. This fact suggests that observed synchronization at
60� could be due to higher order terms in the large-distance
expansion of flow fields. Unfortunately, synchronization
cannot be detected at 11 �m, where the numerical model
predicts a reduction in U by more than 1000 times with
respect to the closest distance investigated (6 �m).

We can now use the obtained potential in Fig. 3 and
derive the stationary distributions corresponding to unbal-
anced torques from (7). Although we don’t know the exact
value of the applied torques, we scanned trap powers in
uniform steps, so that the torque differences will be evenly
spaced �M ¼ �M0i, with i a progressive integer. We are
then left with the only free parameter � ¼ ��M0. By a
fitting procedure, we obtain � ¼ 2 which allow us to
produce through (7) all other probability distributions as

shown in Fig. 2(c). This provides a strict quantitative test of
the phenomenological equation (5), which contains a num-
ber of conjectures, such as the statistical properties (6) of
fluctuating torque �. Knowing �, we can now reconstruct
the full tilted potentials U� R�M’ which are reported in
the right column of Fig. 2(c). For the highest torque mis-
matches, the tilted potentials no longer have a stable equi-
librium position, although a peak is still visible in the
corresponding Pð’Þ. This is due to the fact that, even if
the phase lag always drifts without getting locked in local
minima, it slows down, spending more time in the neigh-
borhood of 60�, where the slope of the tilted potential is
minimum.
In conclusion, we have demonstrated that two meso-

scopic rotors can be synchronized by hydrodynamic inter-
actions alone. However, the strength of the coupling
mechanism is so weak that relative torques have to be tuned
with a resolution of 10�3. Dealing with a mesoscopic
model, we have studied synchronization as a stochastic
process and shown that the phase lag is distributed accord-
ing to the steady solution of a Fokker-Planck equation. As a
final remark, the presence of noise and the natural disper-
sity that occurs in biological motors and propeller shapes
will make hydrodynamic synchronization of natural rota-
tors, like flagellar bundles on nearby bacteria, an extremely
weak phenomenon when compared to collective phe-
nomena in cilia that beat with time-irreversible patterns.
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