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Abstract: The effect of Na2SO4 concentration on electrochemical migration (ECM) of copper and tin 
was investigated applying an in-situ optical and real-time electrical inspection system. According to 
the Mean-Time-To-Failure (MTTF) values, the ECM susceptibility of copper has increased at low 
concentration levels. However, the ECM susceptibility of copper has decreased at the medium and 
stopped at the high and even saturated concentration levels. On the other hand, the ECM 
susceptibility of tin has increased at low levels. Afterwards the ECM ability of tin was hindered and 
even stopped at medium level. Interestingly, the ECM susceptibility of tin was reappeared at high 
concentration levels. 

1. INTRODUCTION 

Electrochemical migration (ECM) is a kind of humidity induced failure, which can lead to high reliability 

risk from the operating electronics point of view [1]. According to the classical model of ECM, the failure 

mechanism starts on the anode with the dissolution of metals and forms metal ions. The directions of the metal 

ion migration are dominated by the applied voltage (electric field) towards to the cathode, where they can 

deposit as pure metals and resulted in dendrites (See Fig 1). So, the dendrites are kinds of conductive filaments 

and therefore, they can form shorts. Many types of metals that are widely used in the electronics have relevant 

ability for ECM, such as tin, silver or copper [2]. Next to Ag, Cu and Sn are also widely studied from the ECM 

point of view [2-10].  

Usually, ECM investigations are carried out by the following methods; water drop (WD) tests [11], 

environmental tests using climatic chambers [12] and by various electroanalytical technics, such as cyclic 

voltammetry [13] or electrochemical impedance spectroscopy [14]. The electrochemical corrosion and ECM 

tests of Cu and Sn were usually investigated in bulk solutions [2, 4, 6, 10, 15]. On the other hand, the 

importance of thin electrolyte layer (TEL) tests are growing [16, 17], hence ECM susceptibility depends also on 

the thickness of water layer [18]. Furthermore, the types of the applied electrolytes had a wide variety as well: 

high purity water [2], acidic or alkaline electrolytes [19] and also salt solutions [20], which simulate the 

different contamination effects. 
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Fig.1. Dendrites caused by ECM. 

Among the applied technological processes of electronics and used materials a common contaminant is the 

sulphate ion, which has an effect on the electrochemical corrosion processes and thus, also on the migration 

behavior of copper and tin. Copper and tin ions can combine with [OH]
-
 groups and also with [SO4]

2-
 and form 

complexes in sulphate contained aqueous solutions [2, 7, 21, 22]. On the other hand, the influence of [SO4]
2-

 on 

copper and on tin ECM is not deeply addressed in the literature. Furthermore, simulating the effect of sulphate 

ion contamination on ECM is an important factor, hence sulphate ions can be found in the different 

technological processes. In this study, different concentrations of Na2SO4 solution were investigated in order to 

find out the effect of sulphate ion concentration on ECM in terms of copper and tin. 

2. EXPERIMENTAL 

Pure copper and electroplated tin on copper with the dimensions of 2 mm × 5 mm were prepared on an FR4 

substrate using conventional printed wiring board technology. The gap size between the conductor traces on the 

test board was 0.5 mm (See Fig. 2).  

 

Fig. 2. Prepared sample used in WD tests. 

The platform (See Fig. 3) can follow the different ECM processes with visual (in-situ) and also with a real-

time voltage measurement. The real-time voltage measurement is characteristic for the dendrite growth (sort 

formation).  

 

Fig. 3. Schematic of the measuring platform for ECM investigation. 



Before each experiment, the sample surfaces were rinsed with deionized (DI) water, degreased with 

isopropyl alcohol subsequently, and dried in cool air. The electrolyte was Na2SO4 bulk solution with various 

concentrations (0.1mM, 1mM, 10mM, 500mM and saturated), which was prepared from DI water (18.2 MΩcm 

in resistivity) and from analytical grade reagents. As a reference the ECM susceptibility of Cu and Sn was also 

measured in DI water as well. In each experiment 10 µl droplet was placed onto the traces of the sample (see 

Fig. 2) using a micropipette. The test voltage was 3 VDC in all cases. Simultaneously, the different 

electrochemical processes were in situ observed using a USB microscope. To check the reproducibility, all the 

ECM tests were repeated at least ten times. The Mean-Time-To-Failure (MTTF) and deviations were also 

calculated from the real-time voltage measurements, where the failure criterion was the first voltage jump (See 

Fig. 4). 

 

Fig. 4. Example for MTTF calculation. 

3. RESULTS AND DISCUSSION 

3.1 ECM results of Cu in Na2SO4
 

During the first experiments, deionized water was used as reference. In this case only dendrites were grown 

(See Fig. 5) and the MTTF was about 149 sec.  

  Fig. 5. Cu dendrites were formed during the WD test using DI water. 

 In case of 0.1 mM Na2SO4 the only difference was that the failure process (dendrite growth) was faster 

(MTTF = 68.5 sec). In case of 1mM Na2SO4 the MTTF was about 61 sec. Furthermore, next to the dendrite 

growth, H2 outgassing (Fig. 6) and a small amount of residue were also detected (See Fig. 7). After increasing 

the concentration up to 10 mM Na2SO4, significant changes occurred. Namely, the MTTF was increased up to 

472 sec, while the outgassing was more intense (See Fig. 8) and a huge volume of residue (Fig. 9) was also 

formed. This trend was continued at 500 mM and even at saturated levels. That means the migration process 

was stopped at high concentration levels, hence no dendrites were detected. On the other hand, the gassing 

mechanism was extremely intensive next to huge volume of residue formations (Fig. 10). 
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   Fig. 6. H2 gas evolution and dendrites were formed during WD test using 1 mM Na2SO4. 

   Fig. 7. Pale blue residue was formed during WD test using 1 mM Na2SO4. 

   Fig. 8. Pale blue residue “wall” was formed during WD test using 10 mM Na2SO4. 

Fig. 9. White and blue-green residues were formed during WD test using 10 mM Na2SO4. 
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Fig. 10. Black and dark blue residues were formed during WD test using 500 mM and satureted Na2SO4. 

 

The summary of MTTF values of copper ECM can be seen in Fig. 11. According to the Mean-Time-To-

Failure (MTTF) values, the velocity of dendrite growth has increased at 0.1mM and 1 mM Na2SO4 compared to 

the case of deionized water. However, the velocity of dendrite growth has decreased at the 10mM and stopped 

(MTTF = 0 sec) at the 500 mM and even saturated concentration levels. This phenomena is caused by the 

formed residues with all likelihood.  

 

   Fig. 11. MTTF and deviations (1 σ) after WD test of Cu using different Na2SO4 concentrations. 

3.2 ECM results of Sn in Na2SO4
 

During the first experiments deionized water was used as reference. In this case only dendrites were grown 

(See Fig. 12) and the MTTF was about 166 sec. 

Fig.12. Dendrites were formed during the WD test using DI water. 

 

In case of 0.1 mM Na2SO4 the only difference was that the failure process (dendrite growth) was faster 

(MTTF = 83 sec) and some H2 gas evolution was detected. However, in the case of 1 mM Na2SO4, the ECM 

ability was significantly decreased (MTTF = 582 sec) and next to the more intense gas evolution some residue 

was occurred as well (Fig. 13). 
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Fig. 13. Dark blue residue and dendrites were formed during WD test using 1 mM Na2SO4. 

 

In the case of 10 mM Na2SO4, no dendrites were detected (MTTF = 0 sec), while a relative huge volume of 

residue was formed (Fig. 14). 

 

Fig. 14. Blue residue wall was formed during WD test using 10 mM Na2SO4. 

Fig. 15. Salt crystals and dendrites were formed during WD test using 500 mM and saturated Na2SO4. 

Interestingly, the ECM susceptibility of tin was reappeared at 500 mM concentration and even at saturated 

levels. In both cases salt crystals and dendrites (Fig. 15.) were remained after WD test. 

 

The main difference between the two cases was the ECM susceptibility. The MTTF value in the 500 mM 

case was about 231 sec, while in the saturated solution the MTTF was 467 sec. The summary of the MTTF 

values can be seen in Fig. 16. 
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Fig. 16. MTTF values and deviations (1 σ) after WD test of Sn using different Na2SO4 concentrations. 

 

According to the Mean-Time-To-Failure (MTTF) values, the velocity of dendrite growth has increased at 

0.1mM Na2SO4 compared to the case of the deionized water. However, the velocity of dendrite growth has 

decreased at the 1 mM and stopped at the 10 mM concentration level (MTTF = 0 sec). This phenomena is 

caused by the formed residue wall with all likelihood. However, the ECM ability was reappeared at 500 mM 

and at saturated concentration levels, which is an unexpected result. In order to explain unexpected result, 

further investigation are needed to identify for example the elemental composition and/or the chemical state of 

the formed residues caused the different electrochemical processes.  

4. CONCLUSIONS 

The effect of Na2SO4 concentration on electrochemical migration of copper and tin was investigated 

applying an in-situ optical and real-time electrical inspection system. Mainly the dendrite and residue 

formations were observed visually using water drop test. On the other hand, the short formation mechanism was 

measured by electrically to calculate the Mean-Time-To-Failure (MTTF) data. According to the MTTF values, 

the ECM susceptibility of copper has increased at low concentration levels (0.1 mM and 1 mM). However, the 

ECM susceptibility of copper has decreased at 10 mM and stopped at 500 mM and even saturated concentration 

levels. On the other hand, the ECM susceptibility of tin has increased at 1 mM concentration. Afterwards the 

ECM ability of tin was hindered and even stopped at medium level (10 mM). Interestingly, the ECM 

susceptibility of tin was reappeared at high concentration levels (500 mM and saturated), which was an 

unexpected result. Further investigations are needed to explain this result. 
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