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Highlights

GAs and iPLS improved errors of determined concentrations with Raman spectroscopy.
The whole non-linearity of the dataset can be removed by LWR, pPLS or SVM.
High non-linearity appears if a component of high Raman-activity occurs in samples.
Raman map was created with real concentration applying proper quantitative regression.
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Abstract

This work demonstrates how nonlinearity in Raman spectrometry of pharmaceuticals can be 

handled and accurate quantification can be achieved by applying certain chemometric 

methods including variable selection. Such approach proved to be successful even if the 

component spectra are very similar or spectral intensities of the constituents are strongly 

different. The relevant examples are: blends of two crystalline forms of carvedilol (“CRYST-

PM” blend) and a three-component pharmaceutical model system (“PHARM-TM” blend). 

The widely used classical least squares regression (CLS) and partial least squares regression 

(PLS) quantification methods provided relatively poor root mean squared error of prediction 

(RMSEP) values: approximately 2-4% and 4-10% for CRYST-PM and PHARM-TM 

respectively. The residual plots of these models indicated the nonlinearity of the preprocessed 

data sets. More accurate quantitative results could be achieved with properly applied variable 

selection methods. It was observed that variable selection methods discarded the most 

intensive bands while less intensive ones were retained as the most informative spectral 

ranges. As a result not only the accuracy of concentration determination was enhanced, but 

the linearity of models was improved as well. This indicated that nonlinearity occurred 

especially at the intensive spectral bands. Other methods developed for handling nonlinearity 

were also capable of adapting to the spectral nature of both data sets. The RMSEP could be 

decreased this way to 1% in CRYST-PM and 3-6% in PHARM-TM. Raman maps with 

accurate real concentrations could be prepared this way. All quantitative models were 

compared by the non-parametric sum of ranking differences (SRD) method, which also 

proved that models based on variable selection or nonlinear methods provide better 

quantification.

Keywords: hyperspectral imaging; pharmaceutical analysis; chemometrics; multivariate 

regression; variable selection; nonlinear behavior
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1. Introduction

Chemical imaging, including Raman mapping, has been a particularly rapidly emerging 

technique in analysis and characterization of various substances in the last decade. This 

method has several advantages over non-imaging spectroscopic techniques. Besides 

qualitative and quantitative characterization of ingredients in bulk materials, it can provide 

further information about spatial distribution of major and even minor (sometimes trace) 

components [1]. Many diverse issues have been already solved using chemical imaging in the 

field of life sciences and diagnostics [2,3], forensic sciences and counterfeiting [4,5], food 

analysis [6,7], plastics [8] and artworks [9]. In recent years, the application of this approach 

has sparked explosively growing interest particularly in the pharmaceutical industry [10,11]. 

Raman (or NIR) chemical imaging is greatly applicable for performing detailed analysis in 

various steps of manufacturing processes [12,13]. Researchers pay more and more attention to 

quantification, further highlighting the relevance of this topic.

There are many issues in which Raman spectroscopy and hyperspectral imaging has helped 

tackle serious challenges, such as identifying unexpected chemical substances or new 

polymorphs [14,15], investigating blend homogeneity [16], or testing polymorphic stability 

[17,18]. These qualitative studies reveal various types of information about the samples, 

allowing better understanding of pharmaceutical processes. However, the interest, regarding 

pharmaceutics, is mostly focusing on the complex view of the structure and the real 

quantification of component. Since FDA approved the guidance on Process Analytical 

Technology (PAT) [19], the significance of spectroscopic techniques has extremely grown 

thanks to their superior adaptability into continuous manufacturing processes [20-23]. 

Ongoing quality control can be achieved through accurate spectral evaluation, to which, 

however, the use of chemometrics is essential.
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Since a vibrational (such as Raman, IR or NIR) spectrum contains hundreds or thousands of 

wavenumbers of interest, it is a multivariate entity, which progresses to a further level of 

complexity when combined with hyperspectral imaging (which requires processing of even 

thousands of spectra within the same dataset). Numerous chemometric methods may serve the 

quantification efforts [10,24-26]. In the simplest cases univariate approaches using one 

selective wavenumber can provide useful results. However, in many cases a sufficiently 

selective band does not exist [10], in which case multivariate methods has to be used 

encompassing the whole spectral range or parts of it [27]. One of the most easily interpretable 

methods is the classical least squares (CLS). It can be adapted fast for simple spectrum 

characterization when the spectra of all components are known and spectrum of each 

compound can be generated from pure spectra using spectral contributions (as estimated 

concentrations). However, some interfering effects, such as spectral similarity of components 

or material interactions or nonlinear behavior, may occur making it necessary to use more 

sophisticated approaches. Some authors have reported successful application of widespread 

chemometric methods such as partial least squares regression (PLS) or principal component 

regression (PCR) [28-30]. These methods were successfully used in polymorphic studies, 

where the component spectra are only slightly different. PLS is especially preferred for 

quantification of selected polymorphs in a mixture. 

A large part of the spectral range is often non-informative in the quantitative evaluation. In 

such cases variable selection methods, such as interval partial least squares (iPLS) [31,32] or 

genetic algorithms (GA) [33-35], are promising candidates for treating the spectra and 

retaining only the sufficiently descriptive variables. In some cases, a certain degree of 

nonlinearity appears in the data, caused by interaction between components or due to spectral 

preprocessing. This phenomenon can be handled by polynomial partial least squares (pPLS) 

[36,37], locally weighted regression (LWR) [38,39] or support vector machine for regression 
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(SVR) [40,41]. pPLS works similarly to the conventional PLS regression, but it uses higher 

degree inner relations by determining polynomial functions between score values of 

dependent and independent variables called X-block scores and Y-block scores. LWR was 

applied based on PLS projection by fitting local PLS models to a specified range of adjacent 

observations. Applying SVR, the regression is carried out in a higher-dimensional feature 

space, in which the nonlinearity of the original input data can be handled properly. The 

construction of the suitable hyperplane is performed by a kernel function and regularized by 

several parameters (see Section 2.4.3.)

Although the conventional data analysis methods (CLS, PCR, PLS) proved to be successful in 

many applications, advances in chemical imaging and in pharmaceutical process-monitoring 

calls for novel chemometric methods [25,42]. Nevertheless up to now only few 

pharmaceutical related studies have demonstrated the advantageous use of aforementioned 

chemometric ways for variable selection and handling of nonlinearity. Support vector 

machine, for instance, has been proposed as a promising candidate [42] and used  in Raman 

[43] and UV [44] quantitative spectroscopic studies, iPLS was applied in determination of 

Vitamin B12 in pharmaceutical tablets [45] and in the quantification of ibuprofen-

nicotinamide co-crystals [46], while LWR has been used in a NIR quantitative analysis [47]. 

However, detailed comparative study demonstrating the relevance of the mentioned methods 

for quantitative determination of polymorph ratio and tablet composition based on Raman 

mapping has not published yet. Thus, the aim of this study is to evaluate the applicability of 

these tools in analysis of two model systems of pharmaceutical importance.

2. Materials and methods

2.1 Materials
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Two-component mixtures of crystalline polymorphs of carvedilol model drug (referred to as 

CRYST-PM) were studied. The commercial carvedilol product (EGIS Pharmaceuticals Plc., 

Budapest, Hungary) consisted of pure Form II polymorph. Form I was obtained by a solvent 

mediated polymorphic transition process. First, 25 g Form II was dissolved entirely in 120 mL 

ethyl-acetate (Merck, Germany) heating the solution until 77 °C. The solution then was 

cooled while 2.5 g of Form I polymorph was added as seed crystals. The recrystallization 

occurred at 50 °C in three hours [48]. Crystals were removed by filtration. After drying the 

product purity was verified by Raman mapping.

The three component pharmaceutical model system (PHARM-TM) contained imipramine 

(EGIS Pharmaceuticals Plc., Budapest, Hungary) as model drug and microcrystalline 

cellulose (FMC BioPolymer, Princeton, USA) and maize starch (Colorcon, West Point, USA) 

as excipients. Each component was sieved to ensure the same particle size range (50-100 µm), 

to avoid segregation.

2.2 Preparation of mixtures and tablets

Uniform binary mixtures were achieved by grinding and mixing carvedilol Form I and Form 

II in a mortar with pestle, creating nineteen blends with different mass ratios (see Table 1). 

The total weight of each mixture was 2.00 g and the measurements of the components were 

carried out on analytical balance (precision of 0.1 mg). As the precision of the weighted

quantity of the components were within 5 mg, there was no significant difference between the 

prepared actual and nominal concentrations. The mixtures were prepared right before the 

Raman measurements. Sufficient homogeneity was obtained by ten minutes of thorough 

homogenization, which was checked by collecting three Raman maps per mixtures (See 

Section 2.3.). As there were no differences in the spatial distribution of the Raman maps of 

the three samples, the homogeneity of the mixtures were deemed to be representative.
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PHARM-TM was prepared and homogenized in the same manner and then it was compressed 

into a flat tablet (Camilla ‘95 OL57; Manfredi, Torino, Italy). Before analyzing the tablet 

form was broken in half and the fracture surface was mapped. Fig. 1 represents the nineteen 

nominal compositions. Due to long measurement time (see Section 2.3), the representative 

sampling were not intended to achieve by repeated Raman mapping instead, the homogeneity 

of the measured samples was checked by macropixel analysis [49] (see details in 

supplementary material).

2.3 Raman mapping experiments

Raman spectra were collected using a Horiba Jobin-Yvon LabRAM system coupled with an 

Olympus 97 BX-40 optical microscope (Olympus Corporation, Tokyo, Japan). Raman 

mapping of CRYST-PM blends were carried out with an external 532 nm frequency-doubled 

Nd-YAG laser source, while the samples of PHARM-TM were illuminated by a 785 nm diode 

laser (TEC 510 type, Sacher Lasertechnik, Marburg, Germany). An objective of 10× 

magnification was used for optical imaging and spectrum acquisition. The laser beam is 

focused through the objective, and backscattered radiation is collected with the same 

objective, as usual in most confocal spectroscopic systems. The collected radiation is directed 

through an edge filter that removes the Rayleigh photons, then through a confocal hole and 

the entrance slit onto a grating monochromator that disperses the light before it reaches the 

CCD detector. 

The Raman maps of polymorphs were collected with a spectral range of 345-1790 cm-1. The 

acquisition time for one spectrum was 1 s and 3 spectra were averaged per pixel. 

Samples were investigated in 441 points by collecting a 21×21 pixel sized image with 50 µm 

step size. Each sample was mapped three times to ensure representativeness of the sampling.  
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Mixtures of PHARM-TM were investigated in a spectral range of 458-1678 cm-1. Two spectra 

were accumulated using an acquisition time of 30 s in each spatial position. 13×13 pixels 

sized images (169 points) were collected with a step size of 50 µm.

2.4 Data analysis

Basic evaluation of the Raman maps (i.e. unfolding of the 3D data cube, basic preprocessing) 

were carried out using LabSpec 5.41 (Horiba Jobin Yvon, France). Chemometric analyses 

were performed using MATLAB 8.2. (MathWorks, USA) and PLS Toolbox 7.8.2. 

(Eigenvector Research, USA). Sum of ranking differences (SRD) method was carried out 

using a VBA macro in Excel 2010 (Microsoft, USA) made available by the developers 

(http://aki.ttk.mta.hu/srd/).

The spectrometric map was originally acquired in a 3-dimensional hypercube form (sized 

n × m × λ), which contained the spectral intensities. Two of the cube dimensions are the 

spatial coordinates, while the third corresponds to the wavelength channels. Before any 

chemometric analysis, the data had to be unfolded into a 2-dimensional matrix along to the 

coordinates in order to treat the data in the mentioned programs. Wavelength channels are in 

columns of the data matrix (in this case number of the channels is 1000) and each row 

contains a spectrum of a measured point.

Quantitative models were built by using the averaged spectra of the Raman maps. The sample 

sets were divided into calibration and validation sets as marked in Table 1 and Fig. 1. All 
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model building was conducted on calibration set, while the validation set was used to examine 

the predictive power of these models. On the calibration sets, contiguous blocks cross-

validation was also performed by leaving out one concentration level at a time. 

All Raman mapped spectra were preprocessed by baseline correction and normalization. 

Other preprocessing methods such as mean centering, autoscaling, multiplicative scatter 

correction (MSC) and standard normal variate (SNV) were also tested in various 

combinations. The combinations that provided the lowest RMSE value were applied for the 

final model building.

The goodness of fit, i.e. the performance of the model was evaluated by comparing the 

predicted and actual concentrations, using the two most widely used measures, namely the 

coefficients of determination (R2) and the root mean square errors (RMSE). The indicators of 

goodness were calculated for calibration (R2
cal, RMSEC), prediction (R2

pred, RMSEP) as well 

as cross-validation (R2
cv, RMSECV).

R2 values come from the conventional analysis of variance in model fitting [50]. However, 

coefficient of determination was not in itself used to drive any decisions; it was used as a 

secondary metric to the RMSE values. The root mean square error (RMSE) was a simple 

measure to compare the calculated concentrations from the model and the “real” (actual or 

measured by other means) concentrations (see Equation 1).

(Eq. 1)



12

N is the number of elements of the set, yi
(real)is the actual concentration in spectrum i. The 

yi
(calc) refers to the predicted concentration and may come from the calibration set (RMSEC), 

validation set (RMSEP) or the cross-validation iterations (RMSECV).

The comparison of prediction and cross-validation played an important role in the 

examination of overfitting. To test the predictive power of the models, in this study the 

RMSEP values of the validation set were compared with the RMSECV values. Inspecting the 

residual plots is an efficient way of revealing the nonlinearity of the models.

Sum of ranking differences [51,52], which is a non-parametric statistical process, was applied 

to compare the models. The objects (the quantitative models in this case) can be ordered and 

ranked based on a comparison to a reference (e.g. estimated concentrations are compared to 

actual concentrations in each pixel). The ranking differences are then summed. These SRDs 

are scaled to 0 to 100 percent, indicating the fully perfect match (0%) and the completely 

reversed ranking, respectively. Accordingly, the method having the lowest SRD is regarded as 

the best. By generating high number of random rankings, a Gaussian distribution is obtained 

to test whether the rankings of the examined methods differ significantly from the randomly 

generated rankings (see supplementary material).

2.4.1 Reference methods

Univariate regression and classical least squares (CLS) principal component regression (PCR) 

and partial least squares (PLS) models were used as reference models methods to estimate the 

concentrations in the mixtures. These methods are detailed in the literature [28-30].

2.4.2 Variable selection methods

Spectra with thousands of wavelength channels (variables) usually contain some non-

informative variables. Although PCR and PLS project data to lower dimensions, aiming to 

retain only the substantial information, in fact each latent variable created still takes all 
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original variable into account, which reduces the predictive power of the model. To make 

models more accurate, non-informative regions should be completely removed before 

regression. For this purpose, two variable selection methods were tested. 

Interval PLS [31,32]: Interval PLS is based on a systematic search of the best combination of 

variables to reach a better estimation against PLS on the whole spectral range. First, the 

spectra are divided into variable windows, with a window size specified by the user. Utilizing 

variable windows enables us to select meaningful bands of the spectra instead of standalone 

wavenumbers. However, the application of wider windows can obstruct the entirely 

elimination of non-informative variables, while narrow windows could lead to overfitting. 

Hence, determining the appropriate window size is a substantial matter of optimization, which 

was carried out by minimizing the RMSECV values. The searching algorithm can run in two 

different modes. Applying forward selection mode, the initial step is a PLS model built with 

one variable window and RMSECV is calculated. In the next steps, variable windows are 

individually added and PLS models are built. Variable windows are added until the best 

subset of variable windows (resulting model with the lowest RMSECV) is found. Reverse 

mode operates in the opposite direction. The first PLS model is built by eliminating only one 

window from the spectra, then variable windows are excluded successively until the 

RMSECV of the PLS models cannot be reduced further. In this way, iPLS determine a subset 

of variables with which the goodness of PLS model is enhanced. Nevertheless, it has to be 

noted that being a stepwise method, iPLS tend to stuck in local minimum, hence it does not 

necessarily results the best subset.

PLS regression aided by Genetic algorithms (PLS-GA) [33-35]: Compared to the iPLS 

method, PLS-GA is suitable for finding the variable subsets resulting in the global minimum 

of RMSECV and then the best subset can be applied in a PLS regression. The searching 

algorithm operates on the analogy of natural selection. Sets of variable windows (genes) are 
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used to create regression models (individuals) which are compared to one another based on 

the RMSECV (the fitness function) values. These models form a “population”. The best half 

of the models is left in the population, while the rest are discarded. The remaining “survivor” 

genes are “crossed over” to fill up the population to its original size (while some mutation 

may occur as well), creating a new “generation” to next calculation. The algorithm stops 

when the required convergence criterion or the maximum number of generation is reached.

2.4.3 Regression methods for handling nonlinearity

Polynomial PLS (pPLS) [36,37]: PLS regression can be used for nonlinear curve fitting by 

using higher powers of scores. During the model building process the nonlinear/polynomial 

function has to be determined to describe the relationship in the inner model of PLS.

Locally weighted regression (LWR): [38,39] It is worth noting that LWR is a linear method 

locally. Nevertheless it can be used if data sets exhibit nonlinearity as it decomposes a single 

model in a series of local models [53]. Curve fitting with locally weighted regression method 

is carried out by considering only a defined number of adjacent points during the regression 

process. Adjacent points are also weighted LWR the distance from the given calibration point. 

The weight function and the number of adjacent points had to be determined by the user. The 

regression can be carried out either with the original variables or in the principal component 

space. 

Support vector regression (SVR) [40,41]: Support vector regression is a machine learning 

method that is based on the transformation of the nonlinear data matrix into a higher 

dimension space where the data points fit to a linear curve. The transformation is carried out 

by a kernel function. Gaussian radial basis function kernel was applied, which is referred as a 

type of nonlinear SVR [43,54]. The effectiveness of SVR depends on parameter (γ) which 

influences the “curliness” of the kernel. In order to fit the regression function, two other 
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parameters also had to be set. The margin of tolerance (ε) affects the number of points 

involved in curve fitting, as only the calibration points outside or on the margin (called 

support vectors) are actually taking part in the regression. The cost (C) value represents the 

penalty associated with errors larger than ε.

3. Results and discussion

The two selected model systems allowed us to study the quantification of pharmaceutical 

samples in various aspects. Carvedilol polymorph mixtures (CRYST-PM) made it possible to 

study the accuracy of the quantification of components with high spectral similarity (Fig. 2). 

This examination can be essential to convince us, for instance, about purity or long-term 

stability of polymorphic form of active pharmaceutical ingredient (API). Detection and 

quantification limits at low concentration are required to recognize the appearing impurities. 

For these reasons, data analysis was mainly carried out at low concentration levels.

Effective quantification of blends of an API and excipients (PHARM-TM model system) is 

also a significant issue during drug formulation steps or in quality control. Although the 

model system consisted of three components only, data evaluation was difficult due to the fact 

that the spectra of the selected two typical excipients were similar to each other (see Fig. 3). 

In addition, imipramine has much larger Raman activity than the excipients. Consequently, 

applying the necessary spectral preprocessing (e.g. normalization), leaded to nonlinearity in 

the spectral data (meaning that the peak intensities have a nonlinear correspondence to the 

actual concentrations). Our approach aimed at the development of an effective model that is 

suitable to quantify all components in these blends.
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3.1 Preprocessing

Before any chemometric analysis, it is required to preprocess the data. Baseline correction 

was needed to eliminate fluorescent background scattering. In CRYST-PM the same baseline 

was subtracted from all the measured spectra approaching it with a piecewise linear baseline 

attached to the assigned wavenumbers. However, in the PHARM-TM system, determining 

one piecewise linear function, which is appropriate for the correction of each spectrum is a 

cumbersome procedure due to the spectral and fluorescent differences of the components. For 

this reason the method of asymmetric least squares [55] was applied to fit a nonlinear 

baseline, which is defined by two parameters: the asymmetry parameter p, the value of which 

is ranging usually from 10-3 to 10-1, and the smoothness parameter λ, generally set 

exponentially in the range of 102 and 109. In this study, the baseline were tuned empirically to 

p=10-2 and λ= 105. 

In mapping studies, normalization is also commonly used to eliminate the intensity fluctuation 

caused by the error of focusing due to surface roughness. If this is not treated by some sort of 

normalization (bringing back each spectrum to the same scale) then all quantitative algorithms 

will be inherently affected by the goodness of the focusing in each pixel. However, spectral 

normalization, balancing the Raman-activity differences of the components, leads to loss of 

information and distorts quantification. Although it has some unwanted side effect of 

spreading out spectral differences on the entire spectrum this disadvantage is much smaller 

than the negative impact caused by the lack of normalization. As spectra of different 

polymorphs usually have similar Raman-activity, normalization constituted only slight 

interference in the CRYST-PM samples. In contrast, in the case of three component system 
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(PHARM-TM) normalization biased strongly the real contribution of imipramine (as the 

Raman intensities of the components were highly different). 

In addition to baseline correction and normalization, mean centering, autoscaling, 

multiplicative scatter correction (MSC) and standard normal variate (SNV) were also tested in 

various combinations in the case of each calibration method. The best combination was 

applied for each model; these can be seen in Table 2 and Table 3.

3.2 Reference methods

In order to understand the significance of using variable selection and methods handling the 

nonlinearity, first, we carried out the quantification studies in comparison with reference 

methods described in Section 2.4. Preliminary studies with univariate regression showed that 

the selectivity of the visually chosen wavelength (725.9 cm-1 and 753.1 cm-1 in the case of 

CRYST-PM and 1594 cm-1, 480 cm-1, 1096 cm-1 for PHARM-TM) influence significantly the 

accuracy of the quantification. In the case of both model systems the method resulted in 

quantification errors higher than 3% (Table 2-3).

Classical least squares (CLS) regression method with CRYST-PM did not yield any better 

results than univariate regression: RMSEs exceeded 3% and it was not able to discriminate 

between the adjacent concentration levels. The residual plot (difference of predicted and 

actual concentration) shows nonlinearity in the data (Fig. 7.a). In the case of PHARM-TM the 

CLS model compared to univariate regression provided better determination for each 

component, however the RMSE values still remained about 10%. The highest error was 

observed in PHARM-TM (Fig. 4), which can be explained by the fact that this is the case 

when normalization caused the greatest bias in the spectrum of the API. The residual plot of 

imipramine shows nonlinearity too (Fig. 4.c).
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Using principal component regression (PCR) and partial least squares (PLS) methods the 

main issue is the following: in order to avoid overfitting the number of principal 

components/latent variables (LVs) have to be determined cautiously. The optimization is 

carried out by the minimization of RMSECV, however, it is not sufficient to recognize 

overfitting. Our previous study [56] pointed out that overfitting is more effectively tackled 

when the search for the optimal LV numbers is not solely performed according to the 

minimum of RMSECV. It is also advised to keep in mind that the number of LVs should not 

greatly exceed the (known) number of components in the calibration samples. Considering all 

these factors, two latent variables were used in the PCR and PLS model of carvedilol system 

and this way the RMSE values were reduced to 2% (see Table 2). However, to analyze 

impurities in the samples (i.e. achieve better predictions for small concentration levels for 

each component), more accurate models are required. It also has to be mentioned that strong 

nonlinearity was observed related to the accuracy of estimations in the residual plots (Fig. 

7.b).

PHARM-TM was quantified by using 3 LVs. The PLS model with mean centering was 

capable of decreasing the RMSEs of imipramine by partially diminishing the bias induced by 

normalization. Nevertheless, the errors of determination were still rather high (about 6-8%) 

due to a certain degree of nonlinearity remaining, which had to be reduced.

3.3 Variable selection methods

When applying variable selection methods, it should be kept in mind that a band in the 

spectrum includes more than one variable; hence groups of adjacent variables (wavenumbers) 

should be treated together. This was set by using a pre-defined size of variable windows 

instead of single variables. Different window sizes were tested and the optimum was 

determined based on the RMSECV values. Interval PLS and PLS-GA methods resulted in the 
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best predictions for CRYST-PM when the window size was set to contain 25 variables (it 

equals approximately 36 cm-1 in this case). After the model construction, the RMSEP values 

were calculated. When window sizes of 10 or 5 were used, RMSEP exceeded RMSECV, 

indicating that narrow window sizes cause overfitting (see Fig. 5). It was found that there are 

more combinations of wavelength intervals which characterize the model system equally well 

(RMSE values equal in their first decimal); in other words, iPLS algorithm found different 

local minimums of RMSECV. 

Genetic algorithms aided PLS-GA method was performed applying RMSECV as the fitness 

function. The mutation rate, i.e. the probability of the mutation during the double cross-over 

was set to 0.5% and the population size of 64 was applied. The algorithm stopped when the 

convergence criterion of 50% or 200 generations were reached. These parameters were 

optimized empirically based on previous study [56], however it was found that they have 

much less impact on the RMSE values than the window size. The run of PLS-GA was 

monitored through diagrams (Fig. 6) showing the evolution of RMSECV values in the 

function of the number of applied variable windows in a particular generation (Fig. 6.a) as 

well as in the function of the generations (Fig. 6.b). Fig. 6.b depicts how the algorithm 

approaches a minimum value of RMSECV and Fig. 6.c presents that the number of variable 

windows is reduced by the end of the process. The final result of the variable selection is 

illustrated in Fig. 6.d, where the chosen variable windows of the last generation are depicted 

on the frequency of their occurrence. Consecutive runs and repeated analyses showed that 

certain variable windows were frequently selected. The PLS models built by these runs 

equally resulted in improved model goodness. No significant difference was identified 

between the repeated GA runs, thus only the results of one calculation is detailed in Table 2.

Additionally, it is important to note that the most intensive bands were discarded by all GA 

runs, which can be explained by the massively nonlinear or overlapping behavior of these 
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peaks. Hence this result is an important argument against the application of univariate 

methods, even if selective bands seem to be suitable to distinguish particular components. The 

iPLS and PLS-GA models of CRYST-PM provided error of determination of approximately 

1% with moderate level of nonlinearity (Fig. 7.c).

The use of variable selection methods led to positive effects in the PHARM-TM results as 

well. The variable selection affected the RMSEs of each component to a different extent, 

which made the comparison of the models more complex. Most of the selected variable 

windows included the peaks of imipramine, while the wide bands of the excipients were 

selected less frequently. Accordingly, the greatest improvement in the goodness of prediction 

was reached in the quantification of imipramine. The best iPLS and PLS-GA models provided 

quantification of each component with an error around 5% (see Table 3). If the accuracy of 

quantification of a particular component was improved individually in PHARM-TM the 

concentration estimation of the other two components tended to deteriorate. Comparing iPLS 

and GA-based algorithm we found no significant differences in the best possible accuracy. It 

always depends on the problem at hand to decide which model is required to work with (e.g.

if mapping one particular component was of interest, or the spatial distribution of all 

ingredients are of equal importance). In the present study, those models were considered as 

best, which served the optimum for all three components.

3.4 Methods for handling nonlinearity

In the residual plots of CRYST-PM, nonlinearity was still observed (Fig. 7.a-c), hence 

regression methods for handling nonlinearity were required to achieve even better fit. pPLS 

models were built by testing different degrees of a polynomial function of PLS scores. A 

model using the second power caused the lowest RMSECV, (Fig. 8) thus, this model was 

considered as optimum. The previously observed parabolic -nature of residuals (for linear 
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models) were completely eliminated (Fig. 7.d). When building a PLS model with higher 

powers of scores the RMSECV increased to such an extreme extent that suggested the model 

to be overfitted. 

Locally weighted regression was applied in the principal component space (number of LVs 

set to two) with a tricubic weight function. In the optimization step the number of adjacent 

points had to be defined: i.e. how many consecutive observations should be considered in a 

local model? This number was appointed from 2 to 36 (the total number of calibration points) 

for LWR models to search the optimum. The lowest detected RMSECV in the regression 

model were found when approximately the half of the calibration points was set as adjacent as 

Fig. 9 shows. At 4 adjacent points another local minimum can be found. It is not unusual as 

three observations were applied per concentration level. The local models were improved 

significantly considering the fourth point. Fig. 9 also depicts that even if all points are 

included (as adjacent), lower error can be achieved by the LWR model than by the 

conventional linear PLS model. Comparing to the PLS-GA the performance of pPLS is 

similar in Table 2. In this case variable selection eliminated the nonlinearity almost perfectly, 

thus the application of nonlinear methods is not necessarily required. However, to find the 

best calibration model, it can be useful to test which method handle the nonlinearity better and 

provides better quantification.

Support vector regression (SVR) was carried out by transforming the data into a higher 

dimension space by a Gaussian kernel function. As SVR models can be easily overfitted, 

careful optimization was required. In the first step, the algorithm was allowed to optimize the 

three parameters (γ, C, ε) to find the minimum of RMSECV. This optimization determined 33 

support vectors (from the total number of 36), which indicates a “very curly” regression 

function and is thus most likely overfitted. Changing the value of ε, which in fact only slightly 

influenced the RMSECV, allowed us to reduce the number of support vectors to 7. As a result 
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of this manual optimization, a γ-C-ε combination was found that it obtained a low RMSECV 

by keeping the number of support vectors low (and thus the regression function smooth and 

reliable, corresponding to the principle of parsimony) and could be used for prediction 

(RMSEP was 1.13%) at the same time.

In the course of quantification of PHARM-TM, different degree of nonlinearity was observed 

(Fig. 4) in the residual plots of the different components. This made the application of the 

methods for handling nonlinearity more complicated. The nonlinear nature was the most 

significant in the case of imipramine, which is the consequence of the main factor that the 

spectrum of the API was the most biased by the normalization (as previously mentioned). 

During the application of methods for reducing nonlinearity the task is to find a function that 

characterizes the nonlinearity of each component at the same time. As LWR and SVR cannot 

be interpreted with more than one dependent variable at the same time (meaning that a 

separate model would have to be built for each component) these methods could not be used 

in that manner as the reference methods. For these reasons in the case of PHARM-TM, only 

pPLS is discussed in this study and is compared to the other methods.

Second power found to be optimal when pPLS with 3 latent variables and different degrees of 

polynomial functions were tested. This resulted in reduction of the nonlinearity and the errors 

of API determination decreased by one percent (RMSEP 2.93). However, this model 

improved the quantification of excipients only slightly (keeping the errors of determination 

around 6 %) when nonlinearity was not significant.

3.5 Comparison of the models 

The aforementioned comparisons after the model building process were based on the root 

mean square errors and on the coefficients of determination. A more advanced approach to 

compare the models is provided by the Sum of ranking differences (SRD) method [51,52]. In 
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this study the actual concentrations as well the means of concentrations estimated by the 

different models were selected as references. In this way, SRD proved to be able to indicate 

sensitively if a model was unable to discriminate correctly among the adjacent concentration 

levels due to inaccurate estimation. Hence the method was especially useful for the evaluation 

of the CRYST-PM’s models. SRD was not applied on the PHARM-TM results as the 

locations of investigated concentrations were so different from each other, that the use of SRD 

for the concentration values made no sense.

Fig. 10 shows the comparison of the sums of rankings. The SRD method provided a ranking 

of the models that indicated the overall power of the models. Fig. 10 clearly shows that the 

reference methods, including PCR and PLS, performed the worst in this context (these 

methods were the least able to distinguish between adjacent concentration levels). SRD 

evaluated the iPLS and pPLS models as much better models having low SRD values 

(independently of the used reference). The univariate method led to moderately low SRD 

exceeding the efficacy of some multivariate methods in this context. Consequently, the 

intensity of the peak of 753 cm-1 increases by raising Form I concentration but in highly 

nonlinear way. The result of SRD was validated by comparing the SRD values with Gaussian 

random ranking and leave-many-out cross validation was performed as well. (see 

supplementary material)

3.6 Models applied on Raman-maps

The most accurate models according to the different comparisons were further tested on such 

Raman maps which were not used for either model building or validation. During the model 

building process optimization was performed by the minimization of RMSECV. However, 

having been aware of the fact that RMSECV alone is not suitable to identify overfitting, 

extreme values of parameters was not accepted even if it could have result in lower 
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RMSECV. After the model construction, the relation of RMSECV and RMSEP values was 

monitored to check if the overfitting was avoided successfully. 

Quantifying new samples with known concentrations allowed us to investigate the true 

efficacy of a built model and confirm the successful elimination of overfitting. For this reason 

a Raman map with 101×101 pixels (5×5 mm area) from a sample with 5% carvedilol Form I 

and 95% Form II content was investigated. In the case of the PHARM-TM system, a sample

containing 50% maize starch, 25% imipramine and 25% MCC were Raman mapped in 49×49 

data points (2.4×2.4 mm area).

Prediction of the 5% overall carvedilol Form I content improved compared to the 

conventionally used CLS model by more advanced models. Concentration maps estimated by 

a reference and an advanced method were emphasized and visualized in Fig. 11. Fig. 11.a 

shows that CLS predicted 7.06 %, while LWR provided 5.26% according to Fig. 11.b. Largest 

improvement was observed in latter case. iPLS model provided 5.45%. Although PLS-GA 

model achieved accurate quantification according to the RMSEs it overestimated the overall 

Form I content more than PLS did on the large test map (5.87% with PLS-GA vs 5.76% with 

PLS) suggesting slight overfitting.

During the analysis of the PHARM-TM it was noticed that considerable differences appeared 

in the concentration maps of MCC and imipramine, while the prediction for maize starch was 

not affected strongly by the models. The models with variable selection predicted the actual 

concentration of imipramine outstandingly well but these were less accurate with the 

prediction of the excipients. 

The Raman maps shown in Fig. 11 represent, owing to the applied quantitative chemometric 

methods, real concentrations at each point instead of the so called “spectral concentrations” 

generally used in publications.
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4. Conclusions

Quantification of two-component polymorph mixtures and three-component blends of API 

and excipients was carried out by Raman chemical imaging combined with multivariate 

calibration methods, some of which applied the first time in this field. This work demonstrates 

how accurate quantitative determination can be achieved using regression for handling 

nonlinearity and variable selection procedures compared to the widely used CLS, PCR and 

PLS methods. 

With the aid of the proposed method Raman mapping can be used for determining the real 

quantitative composition of pharmaceutical samples. Furthermore, it enables us to analyze 

extreme low concentrations providing a powerful tool for contaminant analysis of drug 

polymorphs. 

It was found that a variable selection model or a model for eliminating nonlinearity improves 

significantly the analysis of a particular component having the most nonlinear features. 

Nevertheless, the quantification of other components can be improved with these models 

simultaneously. 

The quantitative models shown in this study can become an integral part of a continuous 

pharmaceutical manufacturing process such as controlled crystallization or a content 

uniformity test after tableting, in line with the concept of PAT. For this purpose further 

advanced spectroscopic techniques are needed to be implemented performing truly real-time 

control. For example, transmission Raman spectroscopy is a promising way for shortening 

exposure times, although spatial information is lost in that case. Alternatively, novel 

techniques able to replace the lengthy scanning procedure by simultaneous measurement of 

all points can be developed further [57-59].
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Table 1 CRYST-PM mass ratios and composition of calibration and validation sets

Sample Form I Form II
type of
set

Sample Form I Form II
type of 
set

CAR_1 0% 100% cal. CAR_11 70% 30% cal.

CAR_2 1% 99% cal. CAR_12 85% 15% cal.

CAR_3 2% 98% val. CAR_13 89% 11% val.

CAR_4 3% 97% cal. CAR_14 92% 8% cal.

CAR_5 5% 95% val. CAR_15 95% 5% val.

CAR_6 8% 92% cal. CAR_16 97% 3% cal.

CAR_7 11% 89% val. CAR_17 98% 2% val.

CAR_8 15% 85% cal. CAR_18 99% 1% cal.

CAR_9 30% 70% cal. CAR_19 100% 0% cal.

CAR_10 50% 50% val.

Table 2: Performance characteristics of quantitative models of CRYST-PM (bc: baseline 
correction. nm: normalization. mncn: mean centering. SNV: standard normal variate)

Univ. CLS PCR PLS iPLS PLS-GA pPLS LWR SVR

Preprocessing bc. nm bc. nm bc. nm. mncn. SNV
bc. nm.
mncn

bc. nm
bc.nm.
mncn.
SNV

RMSEC 3.20 3.48 1.82 1.68 1.14 1.01 1.06 0.89 1.16

RMSECV - - 4.00 2.16 1.30 1.18 1.67 1.74 1.54

RMSEP 3.16 3.63 1.88 1.91 1.20 1.19 1.24 1.38 1.13

R2
cal 0.9941 0.9931 0.9981 0.9984 0.9993 0.9994 0.9994 0.9996 0.9992

R2
cv - - 0.9912 0.9973 0.9990 0.9990 0.9985 0.9984 0.9987

R2
pred 0.994 0.9921 0.9984 0.9983 0.9994 0.9994 0.9993 0.9992 0.9994
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Table 3: Performance characteristics of quantitative models of PHARM-TM 

Univ. CLS PCR PLS iPLS PLS-GA pPLS

RMSEC
Starch 9.36 6.82 6.03 6.09 4.87 5.62 6.00

Cellulose 60.02 5.76 5.83 5.47 4.67 3.00 3.73
API 11.68 10.04 6.33 5.67 3.46 3.95 5.97

RMSECV
Starch - 8.50 7.77 8.10 6.95 7.69 8.60

Cellulose - 7.11 8.01 7.69 6.54 4.79 6.47
API - 12.60 8.71 8.37 5.61 7.39 7.67

RMSEP
Starch 7.38 6.17 6.48 6.53 5.28 5.37 6.01

Cellulose 18.98 6.71 6.20 5.39 3.95 4.23 6.34
API 15.10 12.51 4.28 3.90 4.37 2.50 2.93

R2
cal

Starch 0.9275 0.9601 0.9674 0.9669 0.9788 0.9718 0.9670
Cellulose 0.2871 0.9712 0.9696 0.9733 0.9805 0.9919 0.9875

API 0.8908 0.9174 0.9641 0.9712 0.9893 0.9861 0.9681

R2
cv

Starch - 0.9406 0.9463 0.9417 0.9570 0.9473 0.933
Cellulose - 0.9573 0.9431 0.9477 0.9617 0.9795 0.962

API - 0.8753 0.9322 0.9374 0.9720 0.9512 0.9473

R2
pred

Starch 0.8178 0.8934 0.8690 0.8648 0.9319 0.8764 0.882
Cellulose 0.3646 0.6952 0.6898 0.7421 0.8601 0.8434 0.713

API 0.9509 0.9000 0.9000 0.9438 0.9602 0.9654 0.9271
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Figure captions

Fig. 1 Ternary diagram of the mixtures of PHARM-TM (filled circles indicate validation 
samples)

Fig. 2 Raman spectra of the two kinds of polymorphs of carvedilol 

Fig. 3 Raman spectra of imipramine active ingredients and the two kinds of excipients 
(microcrystalline cellulose /MCC/ and maize starch)

Fig. 4 Residuals in CLS modelling of PHARM-TM for a) maize starch, b) microcrystalline 
cellulose and c) imipramine

Fig. 5 Model errors achieved with different variable window sizes (number of adjacent 
variables which is treated together) in a) genetic algorithm b) interval PLS for the data set of 
CRYST-PM

Fig. 6 Monitoring plots of a PLS-GA run (CRYST-PM): a) information about the fitness and 
the used window number in the single models, b) converging the values of the best (brownish 
line) and average fitness of the constructed models (blue line) along the generations, c) the 
average window numbers in models, d) the frequencies of each window in the final models

Fig. 7 Trends of residuals for calibration and validation points in CRYST-PM using a) CLS, 
b) PLS, c) iPLS and d) pPLS chemometric methods (arbitrarily fitted red lines demonstrate 
nonlinearity)

Fig. 8 Dependence of root mean square errors of calibration, cross-validation and prediction 
on the polynomial degree of scores in pPLS model of CRYST-PM

Fig. 9 Change of root mean square errors in LWR model depending on the number of local 
points considered

Fig. 10 Percentages of SRD for best models of the examined methods in the case of CRYST-
PM applying actual concentrations as reference (0% indicates the same ranking as the 
reference ranking; 100% belongs to the fully opposite ranking

Fig. 11 Distribution maps of carvedilol mixture containing 5% of Form I quantified by a) CLS 
(7.06%) and b) LWR(5.26%). 
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