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Abstract 
 

We introduce an equilibrium asset pricing model, which we build on the relationship 
between a novel risk measure, the Expected Downside Risk (EDR) and the expected 
return. On the one hand, our proposed risk measure uses a nonparametric approach 
that allows us to get rid of any assumption on the distribution of returns. On the other 
hand, our asset pricing model is based on loss-averse investors of Prospect Theory, 
through which we implement the risk-seeking behaviour of investors in a dynamic 
setting. By including EDR in our proposed model unrealistic assumptions of commonly 
used equilibrium models – such as the exclusion of risk-seeking or price-maker 
investors and the assumption of unlimited leverage opportunity for a unique interest 
rate – can be omitted. Therefore, we argue that based on more realistic assumptions 
our model is able to describe equilibrium expected returns with higher accuracy, which 
we support by empirical evidence as well. 
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1. INTRODUCTION 

 

The most commonly applied asset pricing model, the Capital Asset Pricing Model 

(CAPM) (Lintner, 1965; Mossin, 1966; Sharpe, 1964), defines three sets or areas of 

constraints or boundary conditions: (1) there is a perfect market, which consists of four 

assumptions: (a) investors have constant preferences, (b) are price-takers, (c) are 

perfectly informed and (d) there is no transaction cost; (2) conditions of investors’ 

behaviour: (a) they are rationally risk-averse, therefore they hold efficient portfolios 

defined by Markowitz and (b) due to their rationality and perfect information have 

homogenous expectations; (3) assumptions of investment possibilities: (a) in addition 

to risky portfolios, investors may invest in risk-free assets as well and (b) they can 

borrow infinite amounts at this risk-free rate. Furthermore, the standard regressions 

behind the theoretical model assume that the returns are normally distributed. Using 

our proposed equilibrium asset pricing model that is based on loss-averse investors 

described by Prospect Theory (Kahneman and Tversky, 1979) rather than Expected 

Utility Theory (EUT) (Von Neuman and Morgenstern, 2007) the assumptions of risk-

averse and price-taker investors, normal distribution of returns (thus the required linear 

regression between risk and expected return (Erdős et al., 2011) and unlimited 

borrowing at a unique risk-free interest rate can be omitted. 

In our model based on Kahneman and Tversky’s (1979) Prospect Theory, we apply 

the assumption that in some cases investors define a reference point different from 

zero on their utility curve, resulting in anchoring (Ariely et al., 2003). We show that in 

some cases they do not refuse risk, and moreover they start to follow risk-seeking 

behaviour to an extent, since their expected utility can be maximized with this 

behaviour; thus, the assumption of risk-averse investors cannot be valid. However, we 
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show that this type of behaviour can be implemented in standard asset pricing without 

any problems, which yields that the inclusion of risk-seeking investors does not change 

the conclusion of equilibrium models. We approximate the perceived risk by a novel 

measure, the Expected Downside Risk (EDR), which is based on Value-at-Risk 

(Campbell et al., 2001; Jorion, 2007) and Conditional Value-at-Risk (Rockafellar and 

Uryasev, 2000). Through this method we can define the expected loss below the 

expected return weighted by its probability. The results we present in this paper are 

significantly different from those of well-known models that approximate expected 

return by standard deviation, such as Modern Portfolio Theory (Markowitz, 1959). 

Although the mean-variance optimization is valid under ellipctical distributions as well 

(Chamberlain, 1983) and the normality condition has already been omitted in some 

regressions (such as the Markowitz 2.0 model based on Conditional Value-at-Risk 

(Kaplan, 2012) or Iglesias (2015)), these models still require unrealistic assumptions 

and miss a coherent and general approach to modern asset pricing, which we aim to 

introduce with our approach. In the followings we implement the risk-seeking behaviour 

in an EDR expected return environment by combining the risk-seeking behaviour and 

our proposed risk meausre. 

Furthermore, we show the effect of limited borrowings, where different leverage 

constraints and interest rates are applied for every single investor. Hence, a more 

realistic and precise way to explain the individual optimization method is defined,  

which yields the unnecessity of the assumption of unlimited leverage opportunity for a 

unique risk-free rate. 

Subsequent to describing the individual optimization the aggregation method is 

discussed (i.e. how the market sets the expected return of a given asset). Here we 



 4 

include price-maker investors as well, who may have a significant effect on price 

formation by block transactions or in illiquid market segments. 

Finally, we provide a pricing equation that approximates the expected return by EDR 

and compare it against alternative risk measures. 

The paper is structured as the following: section 2 discusses risk-seeking behaviour 

and its implications in asset pricing models, then our proposed risk measure is defined 

in section 3. In section 4 these two are combined together and risk-seeking behaviour 

is shown in an EDR setting. Section 5 is related to restricted borrowing limits and their 

effect on portfolio choice. Section 6 implements all the previous findings in one model 

and describes the formulation of the expected return including the pricing equation. 

Finally, the paper ends with a brief conclusion. All sections are divided into theoretical 

and empirical subsections where empirical evidence is provided to facilitate 

understanding the main ideas and to support the theory. 

 

2. THE CAUSE OF RISK-SEEKING BEHAVIOUR 

 

2.1 Risk aversion or loss aversion 

According to Expected Utility Theory (EUT) (Von Neuman and Morgenstern, 2007), 

perceived utility is a concave function of total wealth. This leads to the law of 

diminishing marginal utility, which means that the marginal utility that a person derives 

from consuming each additional unit of a product declines. According to the theory, 

this utility perception causes risk aversion, meaning that a mathematically fair 

investment with equal expected gain and loss would have a negative effect on 

expected utility.  
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There are two main risk aversion factors applied in economic theory: constant absolute 

risk aversion (CARA) and constant relative risk aversion (CRRA) (Pratt, 1964). The 

first one describes the risk premium necessary to invest in a mathematically fair 

investment, which does not depend on the reference wealth. The second one states 

that risk aversion changes with the change of wealth in a constant way, meaning that 

reference wealth multiplied by CARA is constant over time for each investor. Both 

measures have advantages and disadvantages over the other; however, in the case 

of small changes of wealth, we can use both of them for any investor. According to 

Markowitz (1959), either examining the utility curve for CARA or for CRRA, the 

approximation of the utility of investment F(U(F)) using a Taylor series is defined as:  

 

    𝑈(𝐹) ≅ 𝐸(𝐹) − 0.5𝑎𝜎2     (1) 

 

where U(F) is the expected utility of an investment F, E(F) its expected value, α the 

Arrow-Pratt measure of constant absolute risk aversion and σ2 the variance that 

measures the risk of investment F. This is a key step in our model since there is a 

debate going on about which utility function to use in Prospect Theory. Although 

Kahneman and Tversky (1979) propose applying a power function similar to the one 

used in the CRRA approach, numerous studies show that an exponential function 

performs better (Smidts, 1997) or at least equally well (Beetsma and Schotman, 2001). 

Since CARA is independent of wealth, it makes it easier to describe the risk attitude of 

a given investor; therefore, we apply its corresponding exponential utility function in 

our model. 

By accepting the assumptions that σ2-E(r) variance-expected return efficient 

combinations can be described with a concave curve with positive slope – or in the 
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case of unlimited borrowings with constant slope – and that investors are risk-averse 

(hence their CARA is positive, thus their utility curve is convex and monotonically 

increasing), optimal choice can be defined for any investor. 

However, according to the Prospect Theory of Kahneman and Tversky (1979), 

investors do not behave this way, and their actions cannot be explained by Expected 

Utility Theory (EUT). The authors underline that investors’ decision-making process is 

based not solely on economic rationality but subjective elements as well, which 

motivates them to behave in a way that would be completely irrational in standard 

economic theories. According to Shefrin (2002), these behavioural patterns are 

heuristic-driven biases and frame dependencies. There are numerous heuristics that 

play important roles in decision-making, such as representativeness (that is, people 

overestimate the frequency of events surrounding them and they apply stereotypes in 

their decisions), availability bias (that is, people rely too heavily on their own 

experience, and easily available information) or – most importantly in this paper – 

anchoring (that is, people make reference points and adjust new information according 

to them). These subjective elements cause biases in investors’ expected probabilities, 

therefore they overestimate (and overreact to) rare events and underestimate 

(underreact to) frequent events. 

Based on the heuristics mentioned above, Kahneman and Tversky develop a model 

that – in spite of EUT, which defines utility as the function of total wealth (the absolute 

way) – measures utility through the change of wealth (in a relative way), which prove 

to be a more precise method to describe investors behaviour. According to their theory, 

positive changes of wealth can be described with a function similar to the EUT utility 

function (which is concave and has monotonic growth), hence the law of diminishing 

marginal utility (Gossen, 1854) stays intact. However, in the case of negative changes 
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of wealth (losses), although investors keep being risk-averse in normal cases (since 

their reference point returns to zero and the slope of the curve on the loss side is on 

average 2.25 times the slope on the gain side, thus their utility decreases 2.25 times 

more for x loss than it increases for x gain), this utility function becomes convex. 

Therefore, they define an S-shaped value function (utility curve) (Figure 1). This value 

function, however, could make current asset pricing models useless by introducing the 

anchoring heuristic (i.e. including previous outcomes in utility perception) as risk-

seeking behaviour emerges this way and optimization with positive CARA is no longer 

available (i.e. no optimal portfolio with finite risk is present). 

 

Figure 1: Utility curve in Prospect Theory 

 

 

Source: Kahneman and Tversky (1979, p.279) 

 

2.2 The emergence of risk-seeking 

The Kahneman and Tversky (1979) model enables analysis of single period choices. 

According to their theory, the investor makes its choice from the zero reference point 
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every time; however, in reality this is not always true. As Shefrin (2002) argues, the 

heuristic-driven biases, for different reasons – such as the anchoring effect (adjusting 

to a reference situation), the inclusion of sunk costs or the disposition effect (where 

investors give up properly managing their portfolios after a massive loss and do not 

sell) – may motivate investors to fix a reference point other than zero on their value 

function and hold that at their next decision. This dynamic approach, similarly to the 

loss aversion of the static approach in Prospect Theory, shows that mathematically fair 

investments with greater volatility may provide expected utility growth; therefore, 

investors maximizing the variance of the chosen fair investment – up to an optimal, 

risk-neutral state – may increase their utility gain for a fixed expected return. Hence, 

this is by definition risk-seeking behaviour, which can be seen in Figure 2 where we 

use the exponential utility function for CARA (1 − 𝑒−𝑎𝑥). Here, we would like to add 

that later in Section 3.1, the results of our detailed empirical analysis on the VIX 

confirms that this risk-seeking behaviour is valid not only for tail risk but on the whole 

domain of losses, and therefore, it drives asset prices generally including tail risk 

calculations as well as the expected return. The calculation of the latter utility function 

is based on the equation 

 

 1 − 𝑒−5𝑥 + 2.25(1 − 𝑒5(−0.05)) = −2.25(1 − 𝑒5(−0.05)) + 2.25(1 − 𝑒5(−0.05−0.05−𝑥)) (1) 

 

where α = 5 is an average level of constant absolute risk aversion and x = -5% is the 

negative starting return indicating the reference point after a 5% loss. Based on the 

Monte Carlo approximation results for x, investors are risk-seeking in this case, until 

they are able to reach the x=7.18% return on the positive side. Here, we have to 

mention that the modified exponential function has a finite slope at zero, hence, not 
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every (α;x) combination has a real solution for eq. (1). Less risk-averse investors (with 

low α) tend to become risk-seeking after huge declines in wealth as well but the 

maximal amount of loss (-x) inducing this phenomenon decreases as risk aversion 

increases. 

 

Figure 2: Fair investment after previous loss 

 

Notes: Figure 2 indicates the reference point change in dynamic utility perception subsequent to a loss. The 
horizontal and vertical axes stand for the wealth and value function changes respectively, where U indicates the 
utility function. The previous loss equals to -5%, whereas the mathematically fair investment with which investors 
become risk-neutral gives either 12.2% or -12.2% in addition to the –5% loss. 

 

However, those who become risk-seeking maximize their risk (here the variance) for a 

given expected return until the utility growth due to the positive wealth change is 

greater than the utility loss due to negative wealth change. At this point they become 

indifferent to risk (i.e. the utility growth and loss of a further change in risk are equal). 

Depending on the initial portfolio this state differ and constitute together the risk-neutral 

curve that can be defined using the following method. We create a mathematically fair 

investment consisting of (x + y) gain and (-x - y) loss both with 50% probability. The 

reference point is (-x). The investor keeps following risk-seeking behaviour until the 

utility growth and loss become equal, therefore: 
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   𝑈(−𝑥) − 𝑈(−2𝑥 − 𝑦) = 𝑈(𝑦) − 𝑈(−𝑥)    (2) 

 

By defining the utility on the negative side as a function of its positive equivalent, we 

can replace the utility for x < 0 with U(x) = - 2.25 U(-x), and we get:  

 

  −2.25𝑈(𝑥) + 2.25𝑈(2𝑥 + 𝑦) = 𝑈(𝑦) + 2.25𝑈(𝑥)   (3) 

 

therefore 

 

   𝑈(𝑦) = −4.5𝑈(𝑥) + 2.25𝑈(2𝑥 + 𝑦).    (4) 

 

We can define an alternative version of eq. (4) by: 

 

    
2.25[2𝑈(𝑥)+𝑈(𝑦)−𝑈(2𝑥+𝑦)]

1.25
= 𝑈(𝑦)    (5) 

 

One can see from this equation that due to the law of diminishing marginal utility 

[2U(x)+U(y)-U(2x+y)]>0, therefore, U(y) and y have to be positive in order to find a 

solution for the equation. The exact shape of the utility function can define the precise 

solution. 

As for the variance of this investment, starting from the -x reference point choosing the 

mathematically fair investment with (x+y) amplitude, we can define: 

 

 𝜎2 =
[𝑦−(−𝑥)]2+[−2𝑥−𝑦−(−𝑥)]2

2
= 

(𝑦+𝑥)2+(−𝑥−𝑦)2

2
=

2(𝑥+𝑦)2

2
= (𝑥 + 𝑦)2  (6) 
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Furthermore, by assuming an alternative version of this investment with a positive 

expected return, we get similar results. Here, we keep the -x reference point but instead 

of 0, an investment with an expected return of 0<c1<x is analyzed. In the followings we 

show that for an investment with the c1 expected return after -x loss (that is, having the 

(-x+c1) reference point), the variance has to decrease in order to have the same utility 

change – in absolute terms – for both negative and positive wealth changes. The slope 

of this decrease can be defined by analyzing the precise utility function defined in eq. 

(5). 

In order to find a solution for the equation between utility gains and losses we define 

the following situation. Given a mathematically fair investment with c1 expected return 

combined with the original reference point of -x the new reference point becomes (-

x+c1). As mentioned above, the amplitude, having been (x+y) before, has to decrease 

by -c2 in order to keep the equality between utility differences caused by gains and by 

losses, therefore 

 

 𝑈(𝑦 − 𝑐2) − 𝑈(−𝑥 + 𝑐1) = 𝑈(−𝑥 + 𝑐1) − 𝑈(−2𝑥 + 2𝑐1 − 𝑦 + 𝑐2)  (7) 

 

Converting the negative side to its positive equivalent again we get  

 

  𝑈(𝑦 − 𝑐2) = 2.25𝑈(2𝑥 − 2𝑐1 + 𝑦 − 𝑐2) − 4.5𝑈(𝑥 − 𝑐1)   (8) 

 

Through eq. (8), it is clear that in the case of c1=0 we get the same result as eq. (4) 

(thus c2=0) and if c1=x, then 

 

    𝑈(𝑦 − 𝑐2) = 2.25𝑈(𝑦 − 𝑐2)     (9) 
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Due to the multiplier 2.25, eq. (9) can be solved if and only if both sides are 0, therefore, 

y=c2. According to eq. (4): 

 

0 = 2.25[𝑈(2(𝑥 − 𝑐1) + 𝑦 − 𝑐2) − 2𝑈(𝑥 − 𝑐1) − 𝑈(𝑦 − 𝑐2)] + 1.25𝑈(𝑦 − 𝑐2)  (10) 

 

We define the relation between c1 and c2 by using eq. (10) as a function. Assuming 

that the utility curve is a standard exponential function for constant absolute risk 

aversion that is (1 − 𝑒−𝑎𝑥), we substitute the following: x=c, y=d will be constant, while 

c1=x and c2=y will be the main variables. Eq. (10) is now rewritten: 

 

 2.25(1 − 𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦)) − 4.5(1 − 𝑒−𝑎(𝑐−𝑥)) − 1 + 𝑒−𝑎(𝑑−𝑦)   (11) 

 

The total derivative of this function by variable x is: 

    

𝑑(2.25(1−𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦))−4.5(1−𝑒−𝑎(𝑐−𝑥))−1+𝑒−𝑎(𝑑−𝑦))

𝑑𝑥
= −2.25𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦) (

𝑑𝑎

𝑑𝑥
(−(2𝑐 + 𝑑 −

2𝑥 − 𝑦)) − 𝑎 (2
𝑑𝑐

𝑑𝑥
+

𝑑𝑑

𝑑𝑥
−

𝑑𝑦

𝑑𝑥
− 2)) + 4.5𝑒−𝑎(𝑐−𝑥) (−(𝑐 − 𝑥)

𝑑𝑎

𝑑𝑥
− 𝑎 (

𝑑𝑐

𝑑𝑥
− 1)) +

𝑒−𝑎(𝑑−𝑦) (−(𝑑 − 𝑦)
𝑑𝑎

𝑑𝑥
− 𝑎 (

𝑑𝑑

𝑑𝑥
−

𝑑𝑦

𝑑𝑥
))        (12) 

 

Since we know that according to eq. (10) this function has to be zero for all changes 

of x, its derivative also has to be zero. df/dx can be written as 

 

𝑑𝑓

𝑑𝑥
= −2.25𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦) (𝑎

𝑑𝑦

𝑑𝑥
+ 2𝑎) + 4.5𝑎𝑒−𝑎(𝑐−𝑥) + 𝑎

𝑑𝑦

𝑑𝑥
𝑒−𝑎(𝑑−𝑦) = 0  (13) 
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Thus, we can describe the relation between x and y as dy/dx: 

 

  
𝑑𝑦

𝑑𝑥
=

4.5𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦)−4.5𝑒−𝑎(𝑐−𝑥)

𝑒−𝑎(𝑑−𝑦)−2.25𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦)     (14) 

 

According to our Monte Carlo approximation for (𝑑 − 𝑦) using (𝑐 − 𝑥) = [0.01; 1] and 

𝑎 = [0.5; 10] 
𝑑(𝑑−𝑦)

𝑑(𝑐−𝑥)
, 

𝑑(𝑑−𝑦)

𝑑(𝑐−𝑥)
> 0 for each solution, hence if the expected return x 

increases, y has to increase according to eq. (14) and thus the volatility of (𝑑 − 𝑦) +

(𝑐 − 𝑥) declines. In the case of small changes the same results apply for the power 

function used for CRRA as well. 

Turning back to our original variable system (x,y,c1,c2), we find that in the case of 

0<c1<x this risk-seeking behaviour exists and the interval for variance-expected return 

combinations is known. Furthermore, the shape of the transition function is described 

by eq. (14). 

Summarizing the above-mentioned derivation, we show that starting from the variance-

expected return combination (0;x) (the minimum of the interval) and ending at the 

combination ((x+y)2;0), investors maximize the variance until they reach the “optimal” 

choice, the risk-neutral curve, which can be seen in Figure 3. We underline that this 

risk-neutral function is monotonically decreasing; therefore, according to eq. (14), as 

the expected return of the investment (c1) increases, the variance (c2) has to decrease. 

Hence, instead of investment A, an investor would choose investment A' with the same 

expected return and higher variance, which is completely irrational in standard 

equilibrium models. The milestone paper of Thaler and Johnson (1990) also confirms 

these results where we see a good example of investors becoming risk-seeking 
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subsequent to losses if breaking even is possible, which latter is practically always 

valid in the case of capital markets. 

 

Figure 3: Risk-seeking until risk neutrality 

 

Notes: Figure 3 represents the optimization of risk-seeking investors. They maximize utility by increasing risk (thus 
decreasing EDR) until they reach the risk neutral point A’. Depending on the initial portfolio choice alternatives of 
A’ constitute the risk-neutral curve. 

 

As our result is derived in a variance-expected return system, it can be implemented 

in standard equilibrium models as we show in the next section. However, standard 

asset pricing models require symmetrically distributed returns, which is clearly not the 

case in the real markets. Therefore, in Section 3 we propose a model applying 

Expected Downside Risk (EDR) as risk measure, which allows us to describe the same 

situation with an alternative approach that is able to manage any type of return 

distribution.
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2.3 Implementation in standard models 

In order to place the above-mentioned behaviour in asset pricing theories we combine 

the results of Expected Utility Theory (EUT) and Prospect Theory (PT). These two 

theories – although based on different assumptions – have many similar properties. 

Although EUT examines the utility of total wealth and PT explains the change of utility 

for gains and losses, both utility functions are concave and strictly monotonically 

increase on the positive side. We assume that the utility function described by PT is 

actually the same as the EUT function from the reference wealth W = 1. Therefore, the 

behaviour of completely rational investors, who are not influenced by different 

heuristics (such as the anchoring effect) and are perfectly informed, can be described 

by both EUT and PT. These market participants have risk-averse behaviour; therefore, 

the base model of CAPM, Modern Portfolio Theory (MPT) (Markowitz, 1959), can 

sufficiently explain their preferences. 

However, risk-seeking behaviour can also be implemented in MPT using the following 

method. We have already shown that risk-seeking always has a limit where it reaches 

risk neutrality and this converges to zero variance with the growth of expected return 

(since it decreases monotonically in a variance-expected return system). This risk-

neutral curve (RNC) consists of points where investors are risk-neutral, where their 

utility depends only on the expected return of investments and it is not influenced by 

risk (here variance). Therefore, investors choose the portfolio with the highest possible 

return on their RNC. As this curve crosses the MPT defined curve of efficient portfolios, 

the efficiency frontier (EF) – by definition the portfolio with the highest expected return 

at a given risk level – also the optimal choice – is exactly the intersection of these two 

curves illustrated in Figure 4. Thus, risk-seeking behaviour has no effect on the efficient 

portfolios of standard equilibrium models; therefore, it can be implemented in asset 
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pricing regressions. However, we have to take into consideration that it may change 

the overall volatility of markets if the efficiency frontier is an endogenous variable as 

well (which we show in Section 5). 

 

Figure 4: Implementing risk-seeking 

 

Notes: Figure 4 shows the optimization of risk-seeking investors. They maximize utility by increasing risk (thus 
increasing variance) until they reach the risk neutral point A’ then, as the only determinant of utility is the expected 
return on the risk-neutral curve, they pick the highest reachable portfolio, which turns out to be exactly the cross-
section of the risk-neutrality curve and the efficiency frontier. 
 
 

2.4 Evidence of risk-seeking behaviour in empirical data 

The existence of risk-seeking behaviour in everyday life is shown in examples of 

Shefrin (2002) and Thaler and Johnson (1990). Furthermore, we provide some 

evidence as well in the following.  

We analyze daily returns of the Standard and Poor’s 500 Index from 1950 to 2013 and 

find strong evidence that supports our results of risk-seeking behaviour described 

above. Regardless of the time, the negative return in period t causes higher volatility 

in t+1. We divide our experiment into monthly and weekly analysis. We assume that 
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two distinct effects generate the volatility change in period t+1. First, a massive gain or 

loss in t affects next period volatility due to the behaviour shown above (Black, 1976; 

Bollerslev, 1986; Engle, 1982; Christensen et al., 2015; Zhou and Nicholson, 2015); 

second, the gains or losses in interval t+1 also influence volatility due to equilibrium 

pricing. With this method we can rule out the possibility that the volatility change is only 

due to the price movements in the same period or vice versa. We find that extreme 

previous period return has a greater effect on current volatility than the return in the 

same period. 

In our analysis, massive loss is defined as return below the 10% percentile and 

massive gain as return above the 90% percentile of the density function. We find that 

in the case of a massive weekly loss, the increasing effect on next period volatility is 

higher than in the case of monthly loss; however, both are significant. We argue that 

this effect is due to the availability heuristic – which drives investors to rely more on 

recent information – which causes previous weekly returns to have a stronger influence 

than previous monthly returns. 

Table 1 shows that after a monthly price fall, the results are only significant if the next 

month has a negative return (thus the S&P 500 is in a downtrend); however, the 

aggregate monthly results are also significant. In the case of a weekly price fall, 

regardless of the trend over the next week, volatility increases significantly. 
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Table 1: Effect of price jumps and price falls on volatility 

 

Notes: We used the daily historical data from the S&P 500 Index for the period of January 2, 1950 to May 6, 2013. 
We define price falls as a monthly (or weekly) return below the 10th percentile of the monthly (or weekly) return 
distribution and price jumps as monthly (or weekly) returns above the 90th percentile of the monthly (or weekly) 
return distribution. Uptrend means that the next period has a positive return, while downtrend stands for a negative 
return. Monthly (or weekly) volatilities are based on daily returns and their change is calculated using logarithmic 
return. The averages presented are the mean weekly and monthly volatility changes over the previous period in the 
indicated sub-cases and the p-values stand for the respective Student’s t-test for them with the null of the average 
being zero. 

 

According to our model, this phenomenon can be explained by the risk-seeking effect 

after losses. Since the Standard and Poor’s 500 Index is a value-weighted index, it 

reflects the changes in asset allocation. In the case of price falls, investors suffer from 

losses and turn to riskier investments. They substitute their less risky portfolio elements 

with riskier ones, thus the increased demand for risky investments elevates their price 

and market capitalization, while the opposite happens for less risky ones. This way the 

weights of riskier investments in the S&P 500 increase; therefore, their price 

movements and volatility will contribute to the index more, increasing the volatility of 

the S&P 500 itself as well. These results are confirmed by literature on mutual fund 

activity as well, according to which a negative relationship was found between returns 

and subsequent money inflows (Warther, 1995; Goetzman and Massa, 1999; Edelen 

and Warner, 2001) and between contemporaneous inflow of equity and bond funds 

(Goetzmann et al., 2000). 

average p-value

Volatility change after price jump in monthly uptrend -0.65% 0.4316

Volatility change after price jump in monthly downtrend 3.36% 0.3294

Volatility change after price fall in monthly uptrend -6.99% 0.0663

Volatility change after price fall in monthly downtrend 33.91% 0.0001***

Volatility change after price jump in weekly uptrend -2.61% 0.2158

Volatility change after price jump in weekly downtrend 9.44% 0.0502

Volatility change after price fall in weekly uptrend 26.76% 0.0000***

Volatility change after price fall in weekly downtrend 37.03% 0.0000***

Avg vol change after price jump monthly 0.61% 0.4309

Avg vol change after price jump weekly 1.98% 0.2550

Avg vol change after price fall monthly 12.10% 0.0078**

Avg vol change after price fall weekly 31.38% 0.0000***
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3. EXPECTED DOWNSIDE RISK (EDR) AS RISK MEASURE 

 

Since the introduction of the expected return-variance relationship in MPT and the beta 

in the CAPM, numerous attempts have been made to offer an alternative risk measure. 

Amongst the most important ones we find Value-at-Risk (Holton, 2003), which gained 

popularity amongst quantitative financial professionals in the late ’80s (mainly due to 

the crisis in 1987). This measure provides an entirely new method to calculate the true 

risk of derivatives, options and other nonstandard financial assets as it shows the 

maximal value that investors can lose with a predefined confidence interval (or 

probability), which is based on the true density function of these investments. Although 

it exhibits many advantages over volatility and beta, it misses the important 

characteristics of subadditivity and convexity (Rockafellar and Uryasev, 2000). 

Conditional Value-at-Risk (CVaR) is introduced to solve the problems of subadditivity 

and convexity, which makes CVaR one of the most precise risk-measuring techniques 

today (Krokhmal et al., 2002). However, the predefined significance level in CVaR also 

exhibits some disadvantages in quantitative methods. Choosing the optimal level of α 

is difficult and influences heavily the investment choice in modeling. This problem with 

the subjective confidence level has been questioned in Huang et al. (2012) as well, 

however, their proposed risk-measure, the extreme downside risk comes with two 

possible flaws: first, it is based on extreme value theory, therefore, its fitted distribution 

may not represent the true behaviour of asset prices; second, its left tail index is difficult 

to interpret for the average investor, and therefore, it may not account for the true 

premium required. The performance measure Omega (Keating and Shadwick, 2002) 

avoids the subjectivity problem by measuring the ratio of the expected abnormal return 

below and above zero; however, its use in equilibrium modeling is fairly moderate since 



 20 

investors are rather interested in downside risk and expected return. Alternative 

measures similar to ours are semi-variance (Markowitz, 1968) and its standardized 

version, the downside beta (Estrada, 2007), which consider only the downside-risk of 

returns, however, these measures cannot be fully implemented in equilibrium asset 

pricing under the assumption of expected utility theory and again their relevance in the 

risk premium is questionable due to their complexity. We apply Expected Downside 

Risk as risk measure with which we can eliminate the above-mentioned 

disadvantages. 

Our definition of EDR is based on VaR and CvaR, which are discussed in Appendix 1 

in detail. Similar to Omega, semi-variance and downside beta, EDR does not apply 

any subjectively fixed α percentile to measure tail risk but is defined as a risk measure 

that covers the loss function on the whole domain, although, in contrast to Omega, we 

examine losses relative to the expected return (E(r)) instead of zero. In other words, 

we define Expected Downside Risk as the negative Conditional Value-at-Risk for α 

significance level, where VaRα(x) is the expected return. This is shown in eq. (15), 

where the EDR of investment x is described: 

 

  𝐸𝐷𝑅(𝑥) = 𝑝(𝑟(𝑥) ≤ 𝐸(𝑥))−1 ∫ 𝑟(𝑥, 𝑦)𝑝(𝑦)𝑑𝑦
𝑟(𝑥,𝑦)≤𝐸(𝑟(𝑥))

,  (15) 

 

where 𝑟(𝑥, 𝑦) stands for the return distribution of portfolio x, p(y) for the probability 

density function and E(x) for the expected return. We illustrate the EDR-E(r) system in 

Figure 5. Since EDR measures the whole downside risk and considers return above 

zero as well, we may discover some investment opportunities that reflect well the 

positive time preference of investors. This phenomenon is due to the fact that 

consumption in the present causes higher utility growth for investors than the same 
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consumption in the future; therefore, they require compensation in the future in 

exchange for lending money (thus utility) in the present. Hence, investments may exist 

where EDR(x) exceeds 0 because their risk is so low that the average of negative 

returns in absolute meaning is smaller than the expected return itself. Even if the 

investment turns out to have a lower return than the expected one, the Expected 

Downside Risk is positive; that is, the investor realizes a positive expected return even 

if the return falls short of the expectation. This can be interpreted as the risk-free return 

defined in standard equilibrium asset pricing models; however, in reality, none of them 

are entirely risk-free. Therefore EDR(x) is always lower than E(r). This can be 

illustrated by the line with s=1 slope in the EDR-E(r) coordinate system. None of the 

portfolios can reach the area below this line. 

We illustrate the system of {EDR(x),E(r)} pairs in Figure 5 to the right. The weights and 

the values of the pairs are calculated by Monte Carlo simulation with the following data 

and parameters. We use historical, annual returns from 1993 to 2014 of 22 different 

assets: 20 randomly sampled shares, the 3-month Treasury bill and the value-weighted 

equity index of the Center for Research in Security Prices (CRSP). During the 

simulation 10,000 randomly weighted portfolios are generated and for every portfolio 

we calculate the average (expected) annual return, variance and the EDR. In Figure 5 

the horizontal axis shows the Expected Downside Risk, while the vertical axis indicates 

the expected return. The efficiency frontier (the highest expected return for every EDR 

value) is very similar to the one in the MPT (to the left in Figure 5) since it is concave, 

although its slope is decreasing instead of increasing. So, the optimization with 

indifference function (which is convex in MPT) seems to have a unique solution for 

EDR equilibrium as well. 

 



 22 

Figure 5: The Markowitz (left) and the EDR-E(r) system (right) 

 

Notes: Figure 5 indicates indicates simualted variance - expected return (left) and EDR - expected return (right)  
pairs. The simulated portfolios contain 10000 randomly weighted portfolios of 22 different assets from 1993 to 2014: 
20 randomly sampled individual shares, the value-weighted CRSP equity index and the T-bill with three-month 
maturity.  

 

In Figure 6 we show the difference between applying normal or Gaussian PDF and 

using historical distribution of the returns in EDR calculation to underline the 

importance of empirical risk measures. For investments with low expected return, 

historical distribution seems to have a lower risk than the estimation with normal PDF, 

while for those with high expected return the risk is higher using empirical data, the 

latter of which reflects the fat-tail distribution of returns. The former phenomenon is due 

to the fact that less risky investments (e.g. government bonds) have highly skewed 

distribution, thus their expected return is well above the median; therefore, the loss 

integrating interval to E(r) is wider than in the case of normal distribution, where it would 

be exactly the median. The Student’s t-test with the null hypothesis of the difference 

being zero is rejected at extremely low p-values (less than 0.0000), hence, applying 

the historical distribution indeed matters. 
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Figure 6: The effect of true distribution relative to normal  

 

Notes: Figure 6 indicates EDR (horizontal axis) and E(r) (vertical axis) pairs using Gaussian and historical 
distribution of yearly returns of 10000 randomly weighted portfolios containing the annual returns of 22 different 
assets from 1993 to 2014: 20 randomly sampled individual shares, the value-weighted CRSP equity index and the 
T-bill with three-month maturity.  
 

Although numerous techniques exist to solve the minimization problem for CVaRα(x) 

(e.g. Krokhmal et al., 2002), which can easily be applied to EDR(x) as well, our main 

goal is not to describe these methods or the calculated efficiency frontier but to 

combine them with the utility measure in Prospect Theory, hence, to describe the 

optimal choice of investors with precise quantitative analysis. 

 

3.1. Testing the probability level of EDR 

We assume that the Volatility Index of S&P 500, the VIX, also commonly known as the 

“fear index,” reflects well investors’ reaction to price changes. If the VIX changes much, 

it means that investors’ reaction to the given price movement is fairly strong, or they 

are influenced heavily by the given change in prices. 

We examine the price changes of the S&P 500 Index from 1990 to 2013 (using the 

same data as in 2.4), and then compare this to the changes of the VIX Index in the 

same period. Our results confirm that changes in EDR are a really important factor for 
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investors; thus, the risk premium correlates strongly with our risk measure. The results 

show that the 5% α – usually chosen for Conditional Value-at-Risk – is not appropriate; 

however, using higher levels of α produces higher predictive power to describe 

investors’ decisions. 

In our test we examine the changes of the VIX for every α percentile of the distribution 

of S&P 500 daily returns. We apply a t-test to examine whether the changes of the VIX 

Index are significant. The p-values of the changes are presented in Figure 7. 

 

Figure 7: Student-t values for changes of VIX 

 

Notes: The graph above indicates the p-values of Student’s t-tests with the null hypothesis that contemporaneous 
changes of VIX conditional on quantiles of S&P500 returns indicated on the horizontal axis are equal to zero. 

 

According to the left side of the curve, increasing the α percentile initially raises the 

prediction power, thus returns higher than the 5% percentile of the distribution also 

play an important role in investors’ decision. Although we find the p-value reaching its 

minimum at the 40% percentile where it is 1.96∙10-208 , raising α further to the E(r) 

percentile (at 49%), which we also use for EDR, we get 8.1∙10-188 for the p-value, which 

is clearly not far from its minimum and is very significant. Therefore, we may state that 

the interval of the return distribution used for EDR calculation, hence EDR itself too, 
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does have an effect on investors’ decision and seems to be a good risk measure. Here, 

we add that comparing p-values of such magnitude may seem irrelevant to the reader, 

however, these extermely low values are due to the high number of observations. 

Therefore, we argue that the trends are much more relevant than the magnitudes 

themselves. Optimization and evidence for picking a given probability level for our risk 

measure requires comparing such numbers. 

In addition to the aforementioned choice of the applied cutoff level for expected loss 

we provide in the followings a description how EDR affects asset prices and expected 

return and a brief empirical test whether it is able to better capture the expected return 

than its alternatives. 

 

3.2. EDR-based asset pricing 

As we mentioned before, the level of risk aversion of an investor can be defined by a 

unique risk aversion parameter “a” (Pratt, 1964). Since we assume that the Kahneman 

and Tversky utility function has the same convexity on the right side as the expected 

utility function in EUT, the behaviour of an individual can be described in both risk-

averse and risk-seeking cases with the help of this measure. Therefore, our model is 

able to define the optimal choice for every investor with the constraints that the goal is 

utility maximization and the efficiency frontier is known. 

In the case of risk aversion, the approximation of expected utility could be used in our 

model as well, that is 

 

    𝑈(𝐹) ≅ 𝐸(𝐹) − 0.5𝑎𝜎2     (16) 
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First, we use normal distribution as approximation, which allows for tighter conditions, 

however, true distributions can be calculated in the same way. This way we can define 

EDR as the function of expected return and variance:1 

 

    𝐸𝐷𝑅(𝑥) = 𝐸(𝑟𝑥) − 0.8𝜎     (17) 

 

According to eq. (17), we can substitute the volatility (𝜎) with the Expected Downside 

Risk (EDR); therefore, the approximating function (16) can be implemented in the EDR-

E(r) system: 

 

   𝑈 = 𝐸(𝑟𝑥) −
0.5

0.82 𝑎[𝐸(𝑟𝑥) − 𝐸𝐷𝑅(𝑥)]2.    (18) 

 

We can define the slope of the iso-utility function in the EDR-E(r) system as the total 

derivative should be zero, hence 

 

𝑑𝑈

𝑑𝐸𝐷𝑅(𝑥)
=

𝑎

0.82 (𝐸(𝑟𝑥) − 𝐸𝐷𝑅(𝑥)) +
𝑑𝐸(𝑟𝑥)

𝑑𝐸𝐷𝑅(𝑥)
(1 −

𝑎

0.82 (𝐸(𝑟𝑥) − 𝐸𝐷𝑅(𝑥))) = 0.  (19) 

 

Therefore the sensitivity of the expected return for the change of the Expected 

Downside Risk is 

 

  
𝑑𝐸(𝑟𝑥)

𝑑𝐸𝐷𝑅(𝑥)
= −

𝑎

0.82(𝐸(𝑟𝑥)−𝐸𝐷𝑅(𝑥))

1−
𝑎

0.82(𝐸(𝑟𝑥)−𝐸𝐷𝑅(𝑥))
= 1 −

1

1−
𝑎

0.82(𝐸(𝑟𝑥)−𝐸𝐷𝑅(𝑥))
.   (20) 

 

                                                           

1in the case of normal distribution EDR=CVaR0.5= ∫ 𝑟 ∙ (
1

𝜎√2𝜋
𝑒

[𝑟−𝐸(𝑟)]2

2𝜎2 ) 𝑑𝑟
𝐸(𝑟)
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In order to determine the concavity of the iso-utility function we use the second 

derivative, that is 

 

    
𝑑2𝐸(𝑟𝑥)

𝑑𝐸𝐷𝑅(𝑥)2 =
𝑎

0.82

(1−
𝑎

0.82(𝐸(𝑟𝑥)−𝐸𝐷𝑅(𝑥)))
2 .    (21) 

 

This is always positive, hence, iso-utility functions are convex. We distinguish three 

cases, which are 𝐸𝐷𝑅(𝑥) < 𝐸(𝑟𝑥) −
0.82

𝑎
, 𝐸𝐷𝑅(𝑥) = 𝐸(𝑟𝑥) −

0.82

𝑎
, and 𝐸𝐷𝑅(𝑥) > 𝐸(𝑟𝑥) −

0.82

𝑎
. For the first case we have 

 

   1 −
𝑎

0.82 (𝐸(𝑟𝑥) − 𝐸𝐷𝑅(𝑥)) < 0,
𝑑𝐸(𝑟𝑥)

𝑑𝐸𝐷𝑅(𝑥)
> 1.   (22) 

 

For the second case 
𝑑𝐸(𝑟𝑥)

𝑑𝐸𝐷𝑅(𝑥)
 is not differentiable, and the third case implies 

 

   1 −
𝑎

0.82 (𝐸(𝑟𝑥) − 𝐸𝐷𝑅(𝑥)) > 0,
𝑑𝐸(𝑟𝑥)

𝑑𝐸𝐷𝑅(𝑥)
< 0.   (23) 

 

Except for extremely high risk aversion combined with very high expected return, which 

is highly unlikely as described in Appendix 2, the third case applies for real situations 

practically always. Therefore, iso-utility functions have negative slope and are convex, 

hence, optimization methods using the positive sloped and concave efficient frontier 

can determine the optimal choice in the EDR-E(r) system as well. 
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4. RISK-SEEKING BEHAVIOUR IN EDR ENVIRONMENT 

 

Standard asset pricing models based on the assumption of normally distributed returns 

(which overestimate the effect of diversification sometimes and do not consider the 

autoregression of short-term returns) cannot describe precisely risk-seeking behaviour 

when return distribution is asymmetric and fat-tailed. As we have mentioned before, 

the variance-based theory is applicable only in the case of symmetrically distributed 

returns. Therefore, we introduce a parameter that can describe the risk of an 

investment without having to consider its skewness or kurtosis, one that can define the 

risk on both the negative and positive side for any type of distribution. Using Expected 

Downside Risk we get the optimal solution for this problem. 

In order to describe the EDR-based method, first we introduce a Prospect variable 

[Pr(x)]. [Pr(x)] is the opposite of Expected Downside Risk; thus, it measures the 

expected value of the outcomes higher than the expected return. Since 

 

   𝛼𝐸𝐷𝑅(𝑥) + (1 − 𝛼)𝑃𝑟(𝑥) = 𝐸(𝑟𝑥)     (24) 

 

where 𝛼 is the probability that return will be below the expectation, so 𝛼 = 𝑝(𝑟(𝑥) ≤

𝐸(𝑟(𝑥)); therefore, Prospect is defined by: 

 

   𝑃𝑟(𝑥) =
1

(1−𝛼)
[𝐸(𝑟𝑥) − 𝛼𝐸𝐷𝑅(𝑥)]     (25) 

 

Modifying Figure 2 with the Prospect we get Figure 8. 
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Figure 8: Risk-seeking with Prospect 

 

Notes: Figure 8 represents the reference point change in dynamic utility perception subsequent to a loss. The 
horizontal and vertical axes stand for the wealth and value function changes respectively. U indicates the utility 
function, E(r) the expected return and Pr the prospect. The previous loss equals to –x, whereas the mathematically 
fair investment gives either +x+y or –x-y in addition to the –x loss. 

 

This way we can omit the symmetry requirement of distributions since the α-weighted 

average of the Prospect and the Expected Downside Risk always sums up the 

expected return. Therefore, we define every investment as fair investment by 

simplifying the distribution to these two outcomes. So, we omit the main assumption of 

modeling with variance, the requirement of symmetric distribution of returns. 

Figure 9 clearly shows the similarity of risk-seeking in the models based on variance 

and on Prospect. In fact, the only difference is that in the case of using Prospect the 

model has a solution for asymmetric discrete and continuous distributions as well, and 

according to eq. (14) the change of expected return causes an opposite change in the 

value of Prospect. In order to capture the relation we repeat eq. (14): 

 

   
𝑑𝑦

𝑑𝑥
=

4.5𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦)−4.5𝑒−𝑎(𝑐−𝑥)

𝑒−𝑎(𝑑−𝑦)−2.25𝑒−𝑎(2𝑐+𝑑−2𝑥−𝑦)    (14) 
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If we substitute (d-y-(-c+x)) in eq. (14) (which measures the distance between the 

expected value of positive outcomes and the reference point) with 𝑃𝑟(𝑥), we are able 

to implement this situation in the Pr-E(r) system. Based on this substitution, y 

decreases as c decreases, 𝑃𝑟(𝑥) = 𝑑 + 𝑐 − 𝑦 − 𝑥 has to decrease for the increase of 

c and y values since both variables have a negative effect on it. Therefore, we can 

define a risk-neutral curve similarly to the one in the variance-expected return system, 

which is shown in Figure 9. The minimum and maximum points of the interval are Pr=y-

(-x)=x+y for E(r)=0 and Pr=0 for E(r)=x, which is the same as in the model based on 

variance. In fact, Pr could take on values below 0; the only restriction is that it has to 

be above the expected return. Although, in reality, we do not deal with investments like 

this, this case is included in the EDR-E(r) model as well. 

 

Figure 9: Risk-seeking in Pr-E(r) environment 

 

Notes: Figure 9 shows the optimization of risk-seeking investors. They maximize utility by increasing risk (thus 
decreasing EDR) untill they reach the risk neutral point A’ then, as the only determinant of utility is the expected 
return on the risk-neutral curve 

 

Although our model is based on Expected Downside Risk, not Prospect, we have 

already defined the relation between the two in eq. (25). Substituting this to eq. (14) 

(where E(r)=x and Pr(x)=d+c-y-x) we get 
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𝐸𝐷𝑅(𝑥) =
𝑥−(1−𝛼)(𝑑+𝑐−𝑦−𝑥)

𝛼
= 𝛼−1((2 − 𝑎)𝑥 + (1 − 𝑎)𝑦 − (1 − 𝑎)𝑐 − (1 − 𝑎)𝑑). (26)  

 

Since (1-α) is positive, one can see that the growth of both x (the expected return) and 

y increases EDR(x); therefore, the risk-seeking phenomenon can be implemented in 

our EDR-E(r) model in the way illustrated in Figure 10, where the risk-neutral curve is 

presented. 

 

Figure 10: Risk-seeking in EDR-E(r) environment 

 

Notes: Figure 10 shows the optimization of risk-seeking investors. They maximize utility by increasing risk (thus 
decreasing EDR) until they reach the risk neutral point A’. Depending on the initial portfolio choice alternatives of 
A’ constitute the risk-neutral curve. 
 

Figure 10 shows clearly that the efficiency frontier of the EDR-E(r) model and the risk-

neutral curve, similarly to the variance-based regression, produce a unique optimum 

again. By accepting that this risk-seeking behaviour exists, investors maximize the risk 

according to eq. (26), and thus minimize the EDR of their investment for every E(r) 

expected return up to the frontier curve. At this point they become risk-neutral; thus, 

their optimal choice depends only on E(r). Therefore, they choose the point with the 

highest expected return on their risk-neutral curve (RNC), which is an efficient portfolio, 
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precisely the intersection of the efficiency frontier of the EDR-E(r) model and the RNC 

as presented in Figure 11. 

 

Figure 11: Risk-neutral curve and efficiency frontier 

 

Notes: Figure 11 shows the optimization of risk-seeking investors. They maximize utility by increasing risk (thus 
decreasing EDR) until they reach the risk neutral point A’ then, as the only determinant of utility is the expected 
return on the risk-neutral curve, they pick the highest reachable portfolio, which turns out to be exactly the cross-
section of the risk-neutral curve and the efficiency frontier. 
 

Hence, our model based on Expected Downside Risk is applicable for risk seekers as 

well and thus we do not have to deny the existence of these investors. If this behaviour 

is limited (and is as shown above), we can implement the phenomenon, and the 

calculation based on the efficient frontier stays intact, the expected return for every 

EDR will be the same as in the case without risk-seeking. 

  

5. THE EFFECT OF LIMITED BORROWINGS 

 

In this section we omit one of the main, although very unrealistic, assumptions of 

standard asset pricing models, unlimited borrowings. CAPM defines the capital market 

line (CML) as the set of efficient investment opportunities, including risk-free and risky 



 33 

assets, that goes to infinity. However, this assumption is fairly unrealistic (Holmes et 

al, 2015). In most of the cases there is no opportunity to invest in such positions. Using 

realistic factors the expected return of portfolios is completely different from that of 

standard regressions. We use the finite borrowing constraint that is available at 

different interest rates. In order to create a leveraged model we create the following 

assumptions, which are more realistic than the ones used in standard models (Black, 

1972; Fama and French, 2004):  

 

 For each investor borrowing is limited (as it is either investment credit or proceeds 

from short sales). In the following, this limit is measured by (1+x) (for example, in 

the case of 2:1 leverage x=1). 

 Every time investors use leverage the lending institution defines a margin that 

involves automatic closing of the position or liquidation if the value of the portfolio 

reaches its m percentage. Analytically this means that the return reaches a (-1+m) 

loss; therefore, r=(-1+m). 

 

Due to these assumptions, investors gain other advantages in exchange for paying the 

interest rate. On the one hand, in the vast majority of contracts, they get insurance “for 

free” due to liquidation at the margin call. In this case, the investors cannot lose more 

than their own invested money; however, it would be possible through a leveraged 

portfolio without marginal requirements. This reduction of risk has no excess cost for 

them; however, they get some of the negative risk eliminated, and thus get a higher 

expected return, as is described in Figure 12 and in the following analytics. 
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Figure 12: Effect of leverage with marginal requirements 

 

Notes: The graphs represents the effect of leverage and margin call: as the leverage increases to (1+x) the expected 
return would increase with it, however, the margin call protects both the investor and the lender from losing more 
than the cutoff level (-1+f), therefore, further increasing the expected return.   

 

𝐸(𝑟)𝐿 = 𝐸(𝑟)𝑃(1 + 𝑥) − 𝑟𝑐𝑥 − 𝑝(𝑟𝑄 < −1 + 𝑚)𝐶𝑉𝑎𝑅𝑄,𝑝(𝑟𝑄<−1+𝑚) − 𝑝(𝑟𝑄 < −1 +

𝑚)(−1 + 𝑚)           (27) 

 

𝐸(𝑟)𝐿 = 𝐸(𝑟)𝑃(1 + 𝑥) − 𝑟𝑐𝑥 − 𝑝(𝑟𝑄 < −1 + 𝑚) ∙ (𝐶𝑉𝑎𝑅𝑄,𝑝(𝑟𝑄<−1+𝑚) − 𝑉𝑎𝑅𝑄,𝑝(𝑟𝑄<−1+𝑚))

            (28) 

 

where: 

 E(r)L is the expected return of L leveraged portfolio with margin requirements 

 E(r)P is the expected return of P unleveraged portfolio 

 (1 + x) is the leverage 

 rcx is the interest rate for borrowing multiplied by the borrowed quantity (the total 

cost of borrowing) 

 p(rQ < −1 + m) is the probability of Q leveraged portfolio without margin 

 requirements generating a return below (-1+m) 

 CVaRQ,p(rQ<−1+m) is the Conditional Value-at-Risk of Q portfolio at p probability 

 VaRQ,p(rQ<−1+m)) is the Value-at-Risk of Q portfolio at p probability 
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Since CVaR≤VaR is always true for fixed distribution and probability and rQ is multiplied 

by (1+x) for x leverage, we get increasing marginal expected return in the case of 

margin requirements instead of constant marginal expected return. So, the relation 

between the leverage of the portfolio and the expected return is not linear, and the 

function describing EDR-E(r) leveraged portfolios 
𝑑𝐸(𝑟)

𝑑𝑥
 is not constant. 

According to this deduction one can create the following leveraged position. If A and B 

are unleveraged portfolios, EDRA=EDRB and E(r)A>E(r)B, A is “more efficient”; 

therefore, it is the optimal choice. However, the reduction effect of margin requirements 

can have the opposite result for leveraged expected returns if A and B have different 

probability distributions. This causes E(r)L;A<E(r)L;B if the return distribution of portfolio 

B has fatter tails. 

 

𝑝(𝑟𝐴(1+𝑥) < −1 + 𝑚)(𝐶𝑉𝑎𝑅𝐴(1+𝑥),𝑝(𝑟𝐴<−1+𝑚) − 𝑉𝑎𝑅𝐴(1+𝑥),𝑝(𝑟𝐴<−1+𝑚)) − 𝑝(𝑟𝐵(1+𝑥) <

−1 + 𝑚)(𝐶𝑉𝑎𝑅𝐵(1+𝑥),𝑝(𝑟𝐵<−1+𝑚) − 𝑉𝑎𝑅𝐵(1+𝑥),𝑝(𝑟𝐵<−1+𝑚)) > [𝐸(𝑟)𝐴 − 𝐸(𝑟)𝐵](1 + 𝑥)

             (29) 

where rB(1+x) is the leveraged expected return of portfolio B using (1+x) leverage and 

no margin requirements. The situation mentioned above is presented in Figure 13 

where A and B are portfolios without leverage, A' and B' are portfolios with (1+x) 

leverage, D is the interest rate paid for borrowing and the 45° dashed line indicates the 

frontier that no portfolio can exist below since EDR ≤ E(r). 
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Figure 13: Effect of different probability distributions on portfolios 

 

Notes: The graph represents two portfolios with different return distribtuions. Due to the limited loss (margin call), a 
portfolio with higher expected loss below the cutoff value could yield better leveraged opportunity while not being 
efficient without leverage. 

 

According to Figure 13, rational investors having risk-averse behaviour may hold 

portfolios that generate less expected return for a given risk with unleveraged 

conditions. Therefore, we accept the fact that investors hold positions that seem to be 

“inefficient” initially may be a rational choice. Furthermore, this phenomenon also 

contradicts the strict dominance of diversification mentioned in standard asset pricing 

theories. While investors can reduce the volatility to a point through diversifying their 

portfolios, the distribution of their returns tends to converge to normal distribution as 

the number of investments grows. Since normally distributed portfolios have much less 

probability at the tails, the positive effect of margin requirements is also decreased. 

Therefore, it is not enough to sacrifice everything to diversify without considering any 

other parameters; one has to analyze the optimal choice in regard to the effect of 

leverage and the liquation at the margin call. 
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These parameters can take on values from a wide range; however, with the necessary 

information, the regression is very precise. In order to describe the behaviour of 

“investors we use,” the “a” Arrow-Pratt measure of risk aversion (CARA) can be defined 

through various methods such as questionnaires and observation tests (Barsky et al., 

1997; Hanna and Lindamood, 2004). Information technology today allows this 

parameter to be measured continuously for each investor by monitoring transactions; 

therefore, correction can be made at any time. The optimal choice also depends on 

the possibilities investors may have; therefore, our model uses the calculated EDR-

E(r) pairs, their distributions to adjust the leveraged efficiency frontier, the borrowing 

constraint and the interest rate for each investor. In our regression the iso-utility 

functions (using “a” CARA) and the efficiency frontier (using x leverage limit, rC interest 

rate and EDR-E(r) pairs), thus the optimal choice in their tangent point, can be defined 

for every investor. Figure 14 illustrates the choices where A, B and C are unleveraged, 

A', B' and C' are leveraged positions, O is the optimal choice and D is the interest rate 

(which is risk-free, thus EDR=E(r)=rc). For different leverage possibilities or interest 

rates, investors’ preference may change. In this case, Efficiency frontier 2 included 

both A and B portfolios but not C; however, for an investor with Efficiency frontier 1, A' 

and C' are efficient and B' is not. 
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Figure 14: Individual optimization with leverage constraints 

 

Notes: The graph represents three portfolios with different return distribtuions. As in Figure 13, the efficiency frontier 
may change as the leverage differs. Furthermore, combining the frontier with the highest reachable isoutility curve 
yields the optimal portfolio choice. 
 

6. EXPECTED RETURN 

 

6.1. Formation of the expected return 

Until this point we assumed that investors are price-takers, thus one can invest in 

portfolios with constant, exogenous EDR-E(r) parameters. However, in the previous 

section we showed that available portfolios (and thus the efficiency frontier) can be 

fairly different for various investors, especially if we accept that some of them have the 

possibility of investing in highly leveraged positions. Therefore, hereafter we define 

individuals as price-maker participants of the market, although their effect on prices 

may differ significantly. 

Institutions (such as brokerage firms) that have access to investors’ trading data are 

able to estimate their behaviour based on historical actions. They can define their 

clients’ risk aversion, their CARA and their utility function. In fact, every single 
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parameter is known to make estimations on future EDR-E(r) pairs. These 

approximations are assigned to each investor to define their optimal choices. 

Furthermore, by aggregating these choices they can estimate the aggregate expected 

return of the market (which moves the prices). However, in order to have an 

aggregation, these institutions have to have a model to describe the relation between 

different required returns assigned to a given EDR. Distinct groups of investors may 

have different return requirements (especially due to leverage and interest rate 

differences); however, since every publicly traded asset has a unique price, these 

required returns have to add up to a unique expected return based on a function. 

Although the main purpose of this paper is not to define this precise function, in order 

to approximate a regression we use the value-weighted aggregating function. Thus, 

we add up each investor’s required return with weights equal to their invested value to 

get a unique expected return. 

This weighted aggregation function is based on macroeconomic demand and supply 

functions, where the price assigned to a portfolio is defined by the current aggregated 

supply and demand on the investment opportunity. Since databases enable analysis 

of who wants to make transactions at the current price with what volume and what the 

required return of the given investor is, the future price (current price multiplied by the 

required return) and the future volume of each investor can be defined. This way the 

aggregated supply (AS) function is known. According to Fama (1991), investors insist 

on smoothing their consumption over time; therefore, it seems to be realistic to assume 

that their incoming cash flows are balanced and continuous due to diversification. 

Furthermore, if the future cash flows are assumed to be fixed (which seems to be true 

according to the efficient market hypothesis by Fama (1970), in which prices reflect all 

the available information), the aggregated demand (AD) grows at the same pace as 
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AS, which is the required return of investors. This means that in the discounted cash 

flow pricing method the exponent of the cost of alternative choice gets smaller over 

time. Combining the functions mentioned above we create the AS-AD system in our 

model, hence, one can approximate future prices of assets and their expected returns. 

An illustration of this approximation is shown in Figure 15, where the initial (t0) AS and 

AD functions are increased by continuous return over time (represented on axis “t”). 

The functions used are PS=2Q and PD=5-2Q, however, applying different ones does 

not change the results as long as aggregate supply and demand are increasing and 

decreasing functions of price respectively. We fix the continuous return at 20% in order 

to be expressive, hence, the exponential growth over time can clearly be seen. 

 

Figure 15: The formation of the expected return 

 

Notes: The simulated data represents the evolution of the price P as the function of aggregate demand and 
supply Q and time t. The increasing price shows the effect of the expected return over time. 
 

We underline that this type of approximation of the expected return is very sensitive to 

the input data; therefore, the wider the sample is, the more precise the regression will 

be. The necessary data can be extracted by analyzing the actions of clients in financial 

institutions or brokerage services; however, using our model at national level (such as 



 41 

under the supervision of the Securities and Exchange Commission) or at international 

level (for example, with the administration of the International Monetary Fund (IMF) or 

the European Central Bank (ECB)) could produce fairly precise approximations of 

future prices of capital markets. 

 

6.2. Empirical evidence for the EDR-E(r) relationship  

Although, due to the lack of individual data, we cannot precisely define the aggregating 

function a brief empirical comparison with alternative risk measures can be made for a 

representative investor. Assuming that risk-free rate does not vary significantly and 

leverage limit is a function of risk expected return can be fitted on risk measures such 

as variance or EDR. The former assumption is necessary to define a unique constant 

in the regression, while the latter is required to be able to control for the selection of 

portfolios. An example for the latter would be a pattern that investors who are provided 

higher leverage limits choose portfolios with lower risk (hence lower variance or higher 

EDR) (see Appendix 3). Therefore, less risky assets are purchased by investors with 

higher leverage opportunities and higher risk-aversion, hence the price of assets is not 

determined by the correlation with a unique market portfolio but depends on the 

correlation with the reference portfolio. However, this reference is conditional on the 

leverage limit and risk-aversion, therefore, by assuming that capital markets include a 

diverse set of investors, no unique systematic risk (i.e. CAPM beta) exists as it is 

different for every single investor. Therefore, we argue that the risk premium should be 

described with the total risk and hence we apply the EDR measure. 

In Table 2 we provide the empirical results of our illustration of EDR-based asset 

pricing. Here the overlapping yearly returns of the 340 S&P500 members traded both 

in 2009 and 2014 are applied in a linear estimation of the expeted return. The risk 
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measures used are β, σ, semi-variance (σ-), downside beta (βD) and EDR. The pricing 

equation of the EDR is estimated as 

 

𝐸(𝑟) = 0.15 + 0.56 ∙ 𝐸𝐷𝑅.     (30) 

 

Table 2: Linear estimations of the expected return 

Risk measure Coefficient p-value R-squared 

Volatility -0.1110 0.0466 0.01 

Semi-variance -0.9198 0.0167 0.02 

Beta -0.0181 0.0000 0.06 

Downside Beta -0.0217 0.0006 0.03 

EDR 0.5655 0.0000 0.62 

 

Notes: Overlapping yearly returns on the 09/10/2009 to 09/10/2014 are applied. The coefficient indicates that of the 
applied risk-measure, p-value stands for its Student’s-t test with the null of the coefficient being zero and the R-
squared represents the coefficient of determination of the OLS estimations including a constant as well. 

 

As this  paper is a theoretical one, we consider these results promising based on the 

R2 values and significance levels, however, due to limitation in length, we plan to 

discuss the detailed empirical test of the model in another paper. 

 

7. CONCLUSION 

 

Our proposed model yields novel results in four main fields of asset pricing. Firstly, we 

introduce a novel risk measure, Expected Downside Risk. Based on Conditional Value-

at-Risk it keeps the advantages, such as subadditivity and convexity, but omits the 

disadvantages, such as subjectivity and the nongeneral approach to return 

distributions. This similarity is important since CVaR has gained high popularity in 

financial risk management nowadays (Bank for International Settlements (BIS), 2012), 

and therefore, switching to EDR could easily be done as they use very similar 



 43 

calculation methodology. Secondly, by combining Prospect Theory with Expected 

Utility Theory, our model is able to describe risk-seeking and risk-averse behaviour in 

one regression. Thirdly, we point out that the unlimited leverage assumption of existing 

equilibrium models can cause significant bias in asset price prediction. Using an 

alternative approach, our model may lead to more precise and unbiased estimations. 

And fourthly, through the aggregation function of individual required returns, the price-

maker activity of investors can be modeled. Although, due to the lack of individual data, 

this function has not been tested in detail in this paper we provide a brief empirical 

estimation of the expected return with the use of aggregated data. There have been 

numerous attempts to describe this aggregating with market microstructural (Brennan 

and Subrahmanyam, 1996; Garman, 1976) or behavioural financial approaches 

(Shefrin and Statman, 1994), which, combined with our ideas, could pave the way for 

future research. Furthermore, we underline here that these theories mainly focus on 

the short-term changes of prices while, in the long term, our approximation of expected 

return at an aggregate level through EDR seems to work well in practice as individual 

effects are canceled out. 

Moreover, we argue that equilibrium pricing should not be driven by factors with no 

fundamental background (although some of them may provide significant results for 

given periods) but should be based on well-defined theories. Our model proposes a 

method for asset pricing based on investors’ preferences, hence, it explains the 

differences between expected returns with the diversity of groups investing in the given 

assets. Therefore, two distinct assets with equal volatility may provide different 

expected returns due to the difference in investors’ opportunities and preferences. 

Although this means that expected return is not solely based on volatility, instead of 

including irrelevant factors in asset pricing models, future research on the topic should 
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focus on which group of investors’ trade the assets that have different characteristics 

and on what the reason is behind their choice. 

Potential ways of future research could cover a detailed empirical analysis of the EDR-

E(r) relationship and the comparison of its predicting power with alternative risk 

measures, where polynomial regressions could be tested as well. Another field of study 

would be the individual portfolio choice of investors either by analyzing the individual 

choice of the participants of capital markets or by testing whether the difference 

between the portfolio risk of investors accessing high and low leverage is significant 

(as suggested by Appendix 3). A third potential topic could be related to exmperimental 

analysis of investors’ portfolio choice subsequent to gains or losses. Finally, as in-

sample tests of EDR indicate extremely high goodness-of-fit relative to the alternatives, 

further in- and out-of-sample prediction models of the proposed risk measure could be 

tested as well using GARCH-type, VAR or other autoregressive models. 
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Appendix 1 

 

The VaR for a fixed α% shows the value that with (1-α)% probability the return of an 

investment will be above. An alternative explanation is that VaRα is the α percentile of 

the density function of return. By defining f(x,y) as the function of loss where x is a 

chosen portfolio and y is a random variable, the probability of f(x,y) not exceeding a ζ 

value (loss) is ψ: 

 

    𝜓(𝑥, 𝜁) = ∫ 𝑝(𝑦)𝑑𝑦
𝑓(𝑥,𝑦)≤ζ

    (A1.1) 

 

Assuming a fixed x portfolio, this equation is the same as the cumulative distribution 

function of the f(x,y) loss function in ζ . According to this function, the Value-at-Risk 

(VaRα) is: 

 

    ζ
α

(x) = min{ζ ∈ R: 𝜓(𝑥, 𝜁) ≥ 𝛼}   (A1.2) 

 

meaning the first point on the cumulative distribution function of the return of the x 

portfolio with greater cumulative probability than α. CVaRα can be described with the 

same technique: 

 

   𝜑𝛼(𝑥) = (1 − 𝛼)−1 ∫ 𝑓(𝑥, 𝑦)𝑝(𝑦)𝑑𝑦
𝑓(𝑥,𝑦)≥𝜁𝛼(𝑥)

  (A1.3) 

 

where 𝑓(𝑥, 𝑦) ≥ 𝜁𝛼(𝑥) is (1-α) according to the definition of VaR, hence it becomes the 

denominator. The interpretation of eq. (A1.3) is that VaRα(x) is the α percentile of the 
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f(x,y) loss function, while CVaRα(x) is the probability-weighted average (expected 

value) of losses greater than VaR. Therefore, CVaRα(x)≥VaRα(x) is always true 

(Rockafellar and Uryasev, 2002). 
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Appendix 2 

First, in order to precisely simulate risk aversion, we have to take into consideration 

that the modified utility curve may have other risk aversion coefficients by measuring 

the changes of wealth instead of the total wealth. Hence, we follow the method of 

Barsky et al. (1997) but instead equating 

 

0.5𝑈(𝑥𝑊) + 0.5𝑈(2𝑊) = 𝑈(𝑊)   (A2.1) 

 

we measure 

 

𝑈(−(1 − 𝑥)𝐸(𝑟)) = 𝑈(𝐸(𝑟)).   (A2.2) 

 

Plugging in the modified utility function we get 

 

2.25𝑈(1 − 𝑒−𝑎(1−𝑥)𝐸(𝑟)) = 1 − 𝑒−𝑎𝐸(𝑟),   (A2.3) 

 

and thus we get the risk aversion coefficient as 

 

𝑎 = ln
1.25

𝑒−𝐸(𝑟)(𝑒1−𝑥−1)
.     (A2.4) 

 

Table A/1 represents the results of our Monte Carlo estimation for the risk aversion 

coefficients where the rows and columns stand for the expected return and the x values 

used by Barsky et al. respectively. 
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Table A/1 Risk aversion coefficients of the modified utility function 

x/E(r)  50% 66.70% 80% 90% 92% 95% 

1% 0.665896 1.16164 1.740915 2.485312 2.718606 3.203772 

2% 0.675896 1.17164 1.750915 2.495312 2.728606 3.213772 

3% 0.685896 1.18164 1.760915 2.505312 2.738606 3.223772 

4% 0.695896 1.19164 1.770915 2.515312 2.748606 3.233772 

5% 0.705896 1.20164 1.780915 2.525312 2.758606 3.243772 

6% 0.715896 1.21164 1.790915 2.535312 2.768606 3.253772 

7% 0.725896 1.22164 1.800915 2.545312 2.778606 3.263772 

8% 0.735896 1.23164 1.810915 2.555312 2.788606 3.273772 

9% 0.745896 1.24164 1.820915 2.565312 2.798606 3.283772 

10% 0.755896 1.25164 1.830915 2.575312 2.808606 3.293772 

11% 0.765896 1.26164 1.840915 2.585312 2.818606 3.303772 

12% 0.775896 1.27164 1.850915 2.595312 2.828606 3.313772 

13% 0.785896 1.28164 1.860915 2.605312 2.838606 3.323772 

14% 0.795896 1.29164 1.870915 2.615312 2.848606 3.333772 

15% 0.805896 1.30164 1.880915 2.625312 2.858606 3.343772 

16% 0.815896 1.31164 1.890915 2.635312 2.868606 3.353772 

17% 0.825896 1.32164 1.900915 2.645312 2.878606 3.363772 

18% 0.835896 1.33164 1.910915 2.655312 2.888606 3.373772 

19% 0.845896 1.34164 1.920915 2.665312 2.898606 3.383772 

20% 0.855896 1.35164 1.930915 2.675312 2.908606 3.393772 

 

It is clear that the results, although somewhat different, are not that far from those 

measured by Barsky et al. The risk aversion coefficients are thus in the same order of 

magnitude and can be used for describing portfolio choice. 

Therefore, based on these coefficients, we are able to apply the 𝐸𝐷𝑅(𝑥) +
0.82

𝑎
< 𝐸(𝑟𝑥) 

constraint of eq. (23) to the simulation presented in Figure 5, where 𝑎 = 3 is used.  
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Figure A/1 Slope of the iso-utility curve 

 

 

Even by considering this extremely risk-averse case of 𝑎 = 3, portfolios can be found 

below the constraint, hence, marginal iso-utility curves at these points have negative 

slope and thus optimal choice can be found. 
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Appendix 3 

 

Without the loss of generality the assumption can be made that the efficiency frontier 

σ-E(r) pairs are described by a concave power function. Let us define this function as 

 

𝐸(𝑟) = (𝜎 − 𝛽)𝛼 + 𝛾: 𝛽 > 0, 0 < 𝛼 < 1 .   (A3.1) 

 

The utility maximizing investor then has the problem of 

 

max
𝜎,𝐸(𝑟)

𝑈  𝑠. 𝑡.  𝐸(𝑟) = (𝜎 − 𝛽)𝛼 + 𝛾,    (A3.2) 

 

which yields the solution of 

 

𝑑𝑈

𝑑𝜎𝑜𝑝𝑡
− 𝜆𝛼(𝜎 − 𝛽)𝛼−1 = 0,    (A3.3) 

 

𝑑𝑈

𝑑𝐸(𝑟)𝑜𝑝𝑡
+ 𝜆 = 0,    (A3.4) 

 

𝜎𝑜𝑝𝑡 =
𝛼(𝜎𝑜𝑝𝑡−𝛽)

𝛼−1

𝑎
,    (A3.5) 

 

where 𝜎𝑜𝑝𝑡 stands for the portfolio risk at the optimum. We also know that the leveraged 

position can be defined as 

 

𝐸(𝑟)𝐿 = 𝑟𝑓 + 𝐿(𝐸(𝑟) − 𝑟𝑓); 𝜎𝐿 = 𝐿𝜎,  (A3.6) 
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where L stands for the leverage (e.g. L=1 with no leverage). The latter gives the 

solution of 

 

𝜎𝐿,𝑜𝑝𝑡 =
𝛼(𝜎𝑜𝑝𝑡−𝛽)

𝛼−1

𝐿𝑎
.    (A3.7) 

 

The difference between the leveraged and unleveraged optmization is shown in Figure 

A/2, where equations (A3.5) and (A3.7) are represented by the cross-sections. The 

solid, dashed and dotted lines stand for the left hand side of equation (42) and the right 

hand sides of equations (A3.5) and (A3.7) respectively. The parameters are fixed at 

{α,β,a,L} = {0.5,0.1,4,2}. 

 

Figure A/2 Slope of the iso-utility curve 

 

 

The analytical and graphical interpretations indicate that investors accessing higher 

leverage limit or being more risk-averse (i.e. a is high) choose portfolios with lower risk 

that is 𝜎𝐿,𝑜𝑝𝑡 < 𝜎𝑜𝑝𝑡. 


