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corneas 

Short title: CorVis ST parameters and biometric data  

 

Abstract 

 

Purpose: To analyze the correlations between ocular biomechanical and biometric data of the eye, measured by 

Scheimpflug-based devices on healthy patients. 

Subjects and methods: Three consecutive measurements were carried out using the CorVis ST device on healthy 

eyes and the 10 device-specific parameters were recorded. Pentacam HR-derived parameters (corneal curvature 

radii on the anterior and posterior surfaces; apical pachymetry; corneal volume; corneal aberration data; depth, 

volume and angle of the anterior chamber) and axial length (AL) from IOLMaster were correlated with the 10 

specific CorVis ST parameters.  

Results: Measurements were conducted in 43 eyes of 43 volunteers (age: 61.24±15.72 years). The 10 specific 

CorVis ST data showed significant relationships with corneal curvature radii both on the anterior and posterior 

surface, pachymetric data, root mean square (RMS) data of lower-order aberrations, and posterior RMS of 

higher-order aberrations and spherical aberration of the posterior cornea. Anterior chamber depth showed a 

significant relationship, but there were no significant correlations between corneal volume, anterior chamber 

volume, mean chamber angle or AL and the 10 specific CorVis ST parameters. 

Conclusions: CorVis ST-generated parameters are influenced by corneal curvature radii, some corneal RMS data, 

but corneal volume, anterior chamber volume, chamber angle and AL had no correlation with the biomechanical 

parameters. The parameters measured by CorVis ST seem to refer mostly to corneal properties of the eye. 

Keywords: anterior segment parameters, biomechanics, CorVis ST, Ocular Response Analyzer  

 

 

INTRODUCTION 

 

The diagnostic techniques presently used in ophthalmological practice measure the static parameters of the 

anterior segment of the eye. There are currently two devices capable of in vivo measurements of the ocular 

biomechanical data since the cornea has been identified with viscoelastic properties [1]. One is the Ocular 

Response Analyzer (ORA, Reichert Ophthalmic Instruments, Depew, New York, USA), which is a dynamic 

bidirectional applanation device [2,3]. The other tool, called CorVis ST (Corneal Visualization Scheimpflug 

Technology, CorVis ST, Oculus Inc., Wetzlar, Germany), also uses a high-intensity air impulse for biomechanical 

measurements, but applies a high-speed Scheimpflug camera to detect changes of corneal shape. The CorVis ST 
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and ORA also analyze corneal deformations due to a high-intensity air puff applanation, but the parameters 

obtained by these two devices cannot be compared with each other.  

In the case of ORA, corneal hysteresis (CH) and corneal resistance factor (CRF) are the two main data, but now, it 

is possible to reach a more detailed analysis and new data set of the deformation signal waveform, aimed at 

further refining the evaluation of ocular biomechanical data. In the case of CorVis ST, several new parameters 

will probably appear regarding the deformation graph, and will perhaps yield some additional information and 

data about ocular biomechanics.  

With these two devices, an emphasis has been placed on the biomechanical measurements of the cornea in the 

diagnosis of glaucoma [4] and in diagnosis and monitoring of keratectasia [5,6], refractive surgeries [7,8] and corneal 

collagen cross-linking therapies [9,10]. In vivo measurement of biomechanical data has a declared and important 

aim, namely to differentiate between normal and abnormal corneas. For example, Wang et al. demonstrated 

differences in CorVis ST data between normal and keratoconus group [77], moreover Long et al. showed 

differences in some specific CorVis ST parameters between normal and dry eyes [79]. 

A relatively small number of papers deal with the relationship between the anatomical parameters of the eye 

and biomechanical data. Some papers suggest that parameters of ORA are correlated with some anterior 

segment parameters [13-21]. Our aim was to investigate the relationship between the specific parameters 

determined by CorVis ST and anterior segment’s anatomical and biometric data obtained by Scheimpflug 

imaging.  

 

 

SUBJECTS AND METHODS 

 

Our examinations were carried out on healthy eyes, with normal anterior and posterior eye segment examined 

at slit-lamp. Exclusion criteria were any anterior segment disease, any intraocular- or refractive surgery and 

contact lens wearing in the medical history. Besides, exclusion criteria were any type of glaucoma, or refractive 

error of more than ±0.5 D. All of the examinations were carried out at the Department of Ophthalmology, 

University of Debrecen, Debrecen city, Hungary. 

First, axial lengths (AL) were recorded with signal noise ratio >10.0 with an IOLMaster (software version 

5.4.3.0002, Carl Zeiss Meditec, Jena, Germany), using the average of at least 5 measurements. Subsequently, 

corneal curvature radii (horizontal and vertical radii at the anterior and posterior surfaces), pachymetry (at the 

apex), corneal volume (CV) in a 10-mm diameter area, total root mean square (RMS) of the cornea, representing 

a summation of the corneal shape data, RMS of lower-order aberration (LOA) of the cornea, RMS of higher-order 

aberration (HOA) of the cornea and spherical aberration of the cornea (all aberrations on both the anterior and 

posterior corneal surfaces), anterior chamber depth (according to the definition of Pentacam software, 

“epithelial chamber height”), anterior chamber volume and mean anterior chamber angle were recorded by the 

high-resolution version of Pentacam (Pentacam HR, Oculus Optikgeräte GmbH, Wetzlar, Germany), using auto 
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setting at 25 images/2 seconds mode. Corneal aberrations were evaluated at 8.0 mm pupil setting based on the 

elevation data. These IOLMaster and Pentacam HR derived parameters were referred later as "biometric 

parameters”. 

Finally, three captures were taken for all eyes using the CorVis ST device (software version 1.00r24 rev. 772.). 

The CorVis ST, a non-contact tonometer and pachymeter, also measure 10 device-specific ocular biomechanical 

parameters using a metered, high-intensity air impulse. The Scheimpflug camera captures approximately 140 

frames in an examination period of roughly 30 milliseconds.  In all of the 140 snapshots, taken during the 

deformation process, the software identifies the anterior and posterior contour of the cornea and calculates 

these 10 specific data. The device measures the amplitude of corneal deformation and the time taken to reach 

this applanation. The CorVis ST also monitors the speed of the cornea during the first and second applanation 

phase, the distance of the two corneal apexes at highest concavity time (called the peak distance), the chord 

length (length of the flattened cornea in mm) and a radius value which represents the central concave curvature 

at higher concavity time. Altogether, 10 device-specific parameters, as well as corneal thickness (CT) and 

intraocular pressure based on the first applanation (IOP) are measured by the CorVis ST, referred later as 

"biomechanical parameters” (Figure 1). Patients were seated with their chin on the chinrest and forehead 

against the device. At accurate setting, the air-impulse automatically starts and the data are exported to a 

computer. The means of the three consecutive measurement data were used for further analyses in case of all 

parameters. The measurements were taken by the same investigator and at nearly the same time of day. During 

the time between the captures, the patients could move their heads from the chinrest.  

Statistical analysis was performed using MedCalc for Windows, version 12.2.1 (MedCalc Software, Ostend, 

Belgium) and Microsoft Excel (Microsoft Corp., Redmond, WA) software. Descriptive statistical results were 

written as mean, standard deviation (SD) and 95% confidence intervalls (95 % CI) for the mean. Multiple 

regression analyses were performed with the 10 specific CorVis ST data as dependent variables and the 

anatomical parameters (Pentacam data and axial length) as independent variables, as our aim was to study the 

effect of biometry on Corvis ST parameters. Multiple correlation coefficients were recorded and a P value below 

0.05 was considered statistically significant. Sample size calculation showed that a minimum of 43 eyes were 

required for a correlation coefficient of 0.47 or above with type 1 error of 0.05 and type 2 error of 0.1. All 

patients were informed about the course and the aim of the measurements. The protocol adhered to the tenets 

of the Declaration of Helsinki and was approved by the local Ethics Committee.  
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Figure 1: A demonstrative picture taken by the CorVis ST showing the highest concavity phase of a normal corneal biomechanical 

measurement.  

 

Figure 2: A demonstrative picture taken by the Pentacam HR, showing the corneal aberrometric panel of a normal corneal 

wavefront picture and the Zernike pyramid, from which the root mean square data of corneal lower- and higher aberrations are 

calculated. 
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RESULTS 

 

Our measurements were conducted in 43 eyes of 43 volunteers (mean age: 61.24±15.72 years, range: 22.2-87.3 

years, 16 male and 27 female). IOP was a mean of 15.37±0.97 mmHg, range: 14.0-17.0 mmHg). The device-

specific data obtained with CorVis ST, the corneal and anterior chamber data from Pentacam HR and the axial 

length from IOLMaster are shown in detail in Table 1. 

The 10 specific CorVis ST data showed significant relationships with corneal curvature radii both on the anterior 

and posterior surface of the cornea, pachymetric data, RMS data of anterior and posterior cornea, RMS data of 

LOA on the anterior and posterior cornea, and posterior RMS HOA and spherical aberration of the posterior 

cornea. Anterior chamber depth showed significant relationships as well. There were no significant correlations 

between the corneal volume, the anterior chamber volume, the mean chamber angle or the axial length and the 

10 specific CorVis ST parameters (Table 2). 

 

Table 1: Descriptive statistical data obtained by CorVis ST and Pentacam HR in a healthy population (n=43).  

 Mean SD 95% CI 

A1 length (mm) 1,75 0,19 1,69 - 1,81 

A1 time (ms) 7,25 0,34 7,14 - 7,35 

A1 velocity (m/s) 0,15 0,03 0,14 - 0,16 

A2 length (mm) 1,88 0,36 1,77 - 1,99 

A2 time (ms) 21,61 0,38 21,49 - 21,73 

A2 velocity (m/s) -0,34 0,07 -0,36 - -0,32 

Def. amp. max (mm) 1,07 0,11 1,04 - 1,11 

HC time (ms) 16,92 0,43 16,78 - 17,05 

Peak dist. (mm) 3,28 0,81 3,02 - 3,53 

Radius (mm) 7,82 0,92 7,54 - 8,10 

Rh F (mm) 7,72 0,38 7,60 - 7,83 

Rh B (mm) 6,47 0,42 6,34 - 6,60 

Rv F (mm) 7,65 0,37 7,54 - 7,77 

Rv B (mm) 6,22 0,27 6,13 - 6,30 

Pachy apex (µm) 568,86 47,27 554,31 - 583,41 

Cor. Vol. (mm3) 61,28 5,65 59,54 - 63,02 

RMS (CF) (µm) 5,69 4,09 4,42 - 6,96 

RMS (CB) (µm) 1,94 0,87 1,67 - 2,21 

RMS (Cornea) (µm) 5,13 3,41 4,07 - 6,19 

RMS LOA (CF) (µm) 5,42 3,88 4,21 - 6,63 

RMS LOA (CB) (µm) 1,86 0,86 1,59 - 2,13 

RMS LOA (Cornea) (µm) 4,86 3,21 3,86 - 5,86 
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RMS HOA (CF) (µm) 1,67 1,37 1,24 - 2,10 

RMS HOA (CB) (µm) 0,51 0,20 0,44 - 0,57 

RMS HOA (Cornea) (µm) 1,57 1,23 1,19 - 1,95 

Z 4 0 (CF) (µm) 0,69 0,54 0,51 - 0,85 

Z 4 0 (CB) (µm) -0,32 0,13 -0,36 - -0,28 

Z 4 0 (Cornea) (µm) 0,69 0,46 0,54 - 0,83 

ACD (mm) 3,14 0,50 2,99 - 3,29 

C. Volume (mm3) 127,96 43,71 114,16 - 141,76 

C. A. Mean (degree) 30,62 6,95 28,48 - 32,77 

Axial length (mm) 23,26 1,47 22,77 - 23,76 

SD: standard deviation, CI: confidence interval. A1 time: time from starting until the first applanation, A1 length: chord length of 

the first applanation, A1 velocity: speed of the first applanation, A2 time: time from starting until the second applanation, A2 

length: chord length of the second applanation, A2 velocity: speed of the second applanation, Def. amp. max: maximum amplitude 

at the apex (highest concavity),  HC time: time from starting of air-puff until highest concavity (HC) is reached, Peak dist: distance of 

the two apex at highest concavity, Radius: central concave curvature of the cornea at the time of the HC. Rh: horizontal radius of 

curvature of the cornea, Rv: vertical radius of curvature of the cornea, F: front (i.e. anterior surface of the cornea), B: back (i.e. 

posterior surface of the cornea), Pachy apex: corneal thickness at apex measured by Pentacam HR, Cor. Vol.: corneal volume in a 

10-mm diameter area, RMS: root mean square, LOA: lower order aberration, HOA: higher order aberration, Z 4 0: spherical 

aberration, CF: corneal front (i.e. anterior surface), CB: corneal back (i.e. posterior surface), ACD: anterior chamber depth (i.e. 

epithelial chamber height by Pentacam HR), C. Volume: anterior chamber volume, C. A. Mean: mean angle of the anterior chamber. 

 

Table 2: Data of multiple regression analyses between the ten specific CorVis ST data as dependent variables and the anatomical 

parameters as independent variables. 

 Multiple correlation coefficient p 

Rh F (mm) 0.774 <0.001* 

Rv F (mm) 0.837 <0.001* 

Rh B (mm) 0.799 <0.001* 

Rv B (mm) 0.755 <0.001* 

Pachymetry (µm) 0.672 0.018* 

Corneal volume (mm3) 0.503 0.400 

RMS cornea F (µm) 0.677 0.019* 

RMS cornea B (µm) 0.788 <0.001* 

RMS LOA cornea F (µm) 0.695 0.011* 

RMS LOA cornea B (µm) 0.786 <0.001* 

RMS HOA cornea F (µm) 0.517 0.370 

RMS HOA cornea B (µm) 0.659 0.032* 

Spherical aberration, cornea F (µm) 0.575 0.175 

Spherical aberration, cornea B (µm) 0.671 0.023* 

ACD (mm) 0.635 0.048* 

Anterior chamber volume (mm3) 0.609 0.110 
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Mean chamber angle (degree) 0.561 0.196 

Axial length (IOLMaster) (mm) 0.585 0.255 

Rh: horizontal radius of curvature of the cornea, Rv: vertical radius of curvature of the cornea, F: front (i.e. anterior surface of the 

cornea), B: back (i.e. posterior surface of the cornea), RMS: root mean square, LOA: lower order aberration, HOA: higher order 

aberration, ACD: anterior chamber depth, p: significance level of multiple regression, *: p value below 0.05 

 

 

DISCUSSION 

 

As the measured biomechanical data characterize not only corneal biomechanics, but rather ocular metrics [22], a 

question is raised as to whether there are any relationships between the biomechanical data and any anatomical 

parameters of the eye. 

The ORA, and more recently the CorVis ST, are capable of measuring ocular biomechanical data using an air 

impulse to deform the cornea. Our aim was to assess the relationship between the specific CorVis ST parameters 

and other biometric parameters of the eye, including the radius values of the corneal curvature, corneal 

thickness, corneal volume, corneal aberrations, anterior chamber depth, anterior chamber volume, anterior 

chamber angle and also axial length of the eye.  

The central corneal thickness was positively correlated with CH and/or CRF in several previous studies [13-

18,23,24,25,26]. In the present study, a significant correlation was found between the apical pachymetric data of 

Pentacam HR and the specific CorVis ST parameters. 

Statistically significant correlation was observed between the CH/CRF of ORA and spur-to-spur distance [19]. The 

CH was found to correlate significantly with superior and inferior angle width in eyes with pigmentary glaucoma 

[20]. Corneal diameter had no significant association with CH and CRF in a large sample study [16], which was 

contrary to the findings of another study [17].  We do not have spur-to-spur or white-to-white data on the present 

patient group; therefore it is now an opened question whether CorVis ST parameters depend on sulcus or 

corneal diameter data or not. 

The radius of the cornea was negatively correlated with CH and/or CRF; more specifically, the steeper the cornea 

was, the larger the CH and/or CRF were [13-16,18,21]. Other authors stated that corneal astigmatism was negatively 

correlated with CH and CRF [17], but in a study with a larger sample, this was not supported [16]. According to the 

data of Lanza et al. [6], obtained by CorVis ST, corneal curvature would have a greater influence on corneal 

deformation than central corneal thickness, especially in diseased corneas. Other authors did not prove a 

keratometric association of these data [23,24]. Our data obtained with a CorVis ST device showed that significant 

correlation exists between the keratometric data and the CorVis ST parameters, so corneal curvature data may 

have a real influence on the measured data. 

The CRF strongly correlated with corneal spherical-like aberrations, especially in keratoconus patients [27-29]. 

Weak, but significant, negative correlation was described between the CH/CRF and the anterior/posterior 
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elevation [15,27]. The corneal biomechanical parameters of ORA showed a negative correlation with the anterior 

central elevation, a positive correlation with the Q value, but no significant correlations were found between 

CH/CRF and the corneal morphological index on the posterior corneal surface [27]. Zhang et al. suggested that 

higher biomechanical values might be related to central flattening and oblate corneal shape [27]. In a recent 

study, high myopic eyes showed greater second applanation velocity on Corvis ST testing, than emmetropic eyes 

[30]. Moreover, in another study, it was found that highly myopic eyes presented longer deformation amlitude 

and smaller radius of the highest concavity data than do moderately myopic eyes, and the eyes with longer axial 

length tend to have less corneal stiffness and are easier to deform under stress [31]. Another study of Lanza et al. 

[32] concluded that corneal deformation parameters were weakly correlated without statistical significance with 

corneal morphological parameters including central corneal thickness, corneal volume, and simulated 

keratometric vaues or with spherical equivalent.  

In our patients, posterior surface components of corneal RMS, corneal RMS LOA, corneal RMS HOA and spherical 

aberration obtained by Pentacam HR were significantly correlated with the parameters of CorVis ST. All posterior 

surface corneal data [corneal radii, corneal RMS, corneal RMS LOA, corneal RMS HOA, spherical aberration] were 

significantly correlated with CorVis ST parameters, according to our findings. Central corneal thickness and 

corneal RMS data are refers to shape properties of the cornea. We assume that these measurable parameters 

can therefore affect the corneal response to a high-pressure air-puff.  

The Pentacam-derived corneal volume and its distribution can be useful statistical data in the diagnosis of 

keratectasia [33]. Mannion et al. [34] observed that corneal volume was significantly decreased in keratoconus, 

particularly in the central and paracentral area. The correlations between the corneal volume and the CH or CRF 

were significant in all examined zones of the normal eyes [15], and of myopic eyes [27]. In a large sample 

retrospective review by Hwang el al. [16], the authors concluded that the CH was positively associated with the 

corneal volume, but the associations between CRF and the corneal volume were not significant. According to our 

present data, no significant relationship between the corneal volume and the CorVis ST parameters was 

observed. 

In highly myopic eyes, CH and CRF were decreased; Altan et al. concluded that the biomechanical data of the 

cornea could change with increase of the axial length of the eye [35]. In Chinese school children, lower CH had 

been associated with longer AL [25,36]. Chang et al. [37] also studied children and found that the difference in the 

CH between the two eyes of each patient correlated significantly with the difference in the AL between the two 

eyes. The ORA parameters were also negatively associated with AL in a study by Narayanaswamy et al. [18] By 

contrast, other authors concluded that there were no significant associations between ORA measurements and 

AL in children [19,37]. Lim et al. [21] also observed no significant correlation with AL. Regarding CorVis ST 

parameters, we did not find a significant relationship between AL and specific CorVis ST parameters. 

The anterior chamber depth had no significant correlation with CH and CRF [16,24], although in other studies the 

anterior chamber depth was negatively correlated with CH, but there was no significant correlation with CRF 

[18,37]. Other authors judged that both CH and CRF had no correlation with anterior chamber depth [24]. Regarding 
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our present data obtained with CorVis ST, it seems to be that there is a borderline, questionable relationship 

with anterior chamber depth, but no correlation regarding anterior chamber volume or mean chamber angle 

data. 

In summary, CorVis ST-generated parameters characterizing ocular biomechanics seem to be influenced by 

corneal curvature radii on the anterior and posterior surface, corneal RMS data and, of course, corneal 

thickness. The corneal volume, the anterior chamber volume, the mean chamber angle and the axial length had 

no correlation with the 10 specific CorVis ST data. According to our data, it seems that CorVis ST parameters are 

influenced by some anterior segment anatomical data, and it may have a potential role assessing these 

parameters in eyes with altered anterior segment (i.e. refractive errors, keratoconus, narrow angle glaucoma, 

etc.). Further studies are needed to evaluate which specific parameters are related to which anatomical data or 

to viscous or elastic properties of the cornea. 
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