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Abstract 15 

 16 

Complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) belong to 17 

the family of beta2 integrins and are expressed mainly by myeloid cell types in humans. 18 

Previously, we proved that CR3 rather than CR4 plays a key role in phagocytosis. Here 19 

we analysed how CD11b and CD11c participate in cell adhesion to fibrinogen, a 20 

common ligand of CR3 and CR4, employing human monocytes, monocyte-derived 21 

macrophages (MDMs) and monocyte-derived dendritic cells (MDDCs) highly 22 

expressing CD11b as well as CD11c. We determined the exact numbers of CD11b 23 

and CD11c on these cell types by a bead based technique, and found that the ratio of 24 

CD11b/CD11c is 1.2 for MDDCs, 1.7 for MDMs and 7.1 for monocytes, suggesting that 25 

the function of CD11c is preponderant in MDDCs and less pronounced in monocytes. 26 

Applying state-of-the-art biophysical techniques, we proved that cellular adherence to 27 

fibrinogen is dominated by CD11c. Furthermore, we found that blocking CD11b 28 

significantly enhances the attachment of MDDCs and MDMs to fibrinogen, 29 

demonstrating a competition between CD11b and CD11c for this ligand. On the basis 30 

of the cell surface receptor numbers and the measured adhesion strength we set up a 31 

model, which explains the different behavior of the three cell types. 32 

 33 

Introduction 
34 

 35 

Monocytes, macrophages and dendritic cells are phagocytes, which are able to 36 

adhere to extracellular matrix components (e.g. fibrinogen) via different integrin 37 

molecules. Integrins are heterodimeric transmembrane glycoproteins consisting of a 38 

non-covalently coupled alpha and beta chain [1]. These molecules mediate several 39 
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functions that are associated with cytoskeleton rearrangements, including cell-to-cell 40 

and cell-ECM contacts, proliferation, phagocytosis and transendothelial migration of 41 

immune cells [1-4]. The most abundant integrins expressed by cells of the monocytic 42 

linage are complement receptors (CR) CR3 (CD11b/CD18) and CR4 (CD11c/CD18), 43 

which are members of the β2 integrin family. The main natural ligand of CR3 and CR4 44 

is iC3b, the inactivated fragment of C3, the central complement component [5], 45 

however, they bind several other molecules in common, like fibrinogen, ICAM-1, factor 46 

X, etc. [6-11].  47 

In humans, CR3 and CR4 are simultaneously expressed in monocytes, 48 

macrophages, dendritic cells, neutrophil granulocytes (PMNs) and NK cells. Since the 49 

main ligand of CR3 and CR4 is identical, the study of the individual function of these 50 

integrins is challenging. In contrast to the human system, murine CD11c/CD18 51 

expression is mainly limited to dendritic cells, therefore CR4 can be used to identify 52 

this cell population.  Furthermore the function as well as signal transduction mediated 53 

by mouse CR3 can be separately studied [12-15]. Results obtained in studies on 54 

mouse CD11b/CD18 however cannot be simply translated to the human system, due 55 

to the previously mentioned differences between the two species.  Our goal is to 56 

dissect and determine the individual functional properties of human CR3 57 

(CD11b/CD18) and CR4 (CD11c/CD18). 58 

Earlier we demonstrated that CR3 plays a key role in the phagocytosis of iC3b-59 

opsonized microbes by human MDDCs, while their maturation and inflammatory 60 

cytokine production is not influenced by iC3b or CD11b specific antibody [16, 17]. We 61 

also examined the role of CD11c/CD18 in the complement mediated phagocytosis of 62 

MDDCs, and found it dispensable in this process, proving that the function of CR3 and 63 

CR4 is not identical. The aim of the present work is to determine the participation of 64 
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CR3 and CR4 in a different function linked to β2 integrins; namely cellular adhesion. 65 

The absolute numbers and the conformational state of CR3 and CR4 expressed by the 66 

cells were assessed and the adherence of normal human monocytes, MDDCs and 67 

MDMs to fibrinogen was investigated. The strength and the kinetics of adherence were 68 

estimated using classical and state-of-the-art biophysical methods. Our results provide 69 

further evidence that human CR3 and CR4 are involved in different cellular functions - 70 

despite their capacity to bind the same ligands. 71 

 72 

Results 73 

 74 

Absolute number and conformation analysis of 75 

CD11b/CD18 and CD11c/CD18 on monocytes, MDMs and 76 

MDDCs 77 

Our aim was to compare the role of CD11b and CD11c in adhesion to fibrinogen 78 

on monocytes, MDMs and MDDCs. To achieve this goal, first we had to assess the 79 

exact number of the receptors expressed by the cells, which has not been determined 80 

in a comprehensive manner so far.  To this end we used Qifikit (Dako), a bead based 81 

flow cytometric technique, which enables the determination of absolute receptor 82 

numbers. Although monocytes, macrophages and dendritic cells are thought to 83 

express CD11b and CD11c in similarly high amounts, precise numbers assessed by 84 

us show significant differences. The number of CD11b molecules on the cell surface 85 

is 247174+/-21281 for MDDCs, 309753+/-62045 for MDMs and 49831+/-7810 for 86 

CD14+ monocytes.  Assessing CD11c expression we detected 203996+/-24623 for 87 

MDDCs, 185357+/-40160 for MDMs and 6972+/-2972 for CD14+ monocytes (Fig 1A). 88 
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We also calculated the CD11b:CD11c ratio on these cell types, and found 1,2 for 89 

MDDCs 1,7 for MDMs and 7,1 for monocytes. Namely, the relative amount of CD11c 90 

to CD11b is the highest in the case of MDDCs intermediate on MDMs and the lowest 91 

on monocytes. This suggests that the functions mediated by CD11c are the most 92 

instrumental in the case of MDDCs.  93 

Since ligand binding by integrins is under conformational regulation, and only 94 

the open form is known to be active [18], next we examined the conformational state 95 

of the receptors. Monocytes, MDDCs and MDMs were stained at 4oC or 37oC with 96 

mAb24 that recognizes the active conformation of CD18, the common β2 chain in CR3 97 

and CR4. We found that all cell types are able to bind mAb24 at 37oC, and to a smaller 98 

extent at 4oC. The difference was statistically not significant in neither of the cases 99 

when analysed by paired t-test. Nevertheless these data clearly show that CR3 and 100 

CR4 are in a conformation capable of ligand binding on the surface of monocytes, 101 

MDDCs and MDMs (Fig 1B). 102 

 103 

Fig 1. Expression and conformation of CD11b and CD11c. (A) The exact amount 104 

of CD11b and CD11c on the surface of monocyte-derived dendritic cells (MDDC), 105 

monocyte-derived macrophages (MDM) and monocytes were determined using Qifikit 106 

(Dako) as described in Materials and methods. Data presented are mean +/-SD of 107 

three independent donors’ results. (B) Cells were stained with monoclonal antibody 108 

mAb24 that is specific for the high affinity conformation of CD18. Relative mean 109 

fluorescence intensity (RMFI) was calculated in each case by comparing the signal of 110 

mAb24 stained cells to isotype matched control antibody stained cells (RMFI=MFI 111 

mAb24/MFI isotype control). At 4oC RMFI values were around 1 (monocytes: 0,60+/-112 

0,22; MDDC: 1,50+/-0,20; MDM: 0,97+/-0,91), meaning that cells do not have active 113 



6 
 

β2 integrins on their surface. At 37oC all cell types bound mAb24 (RMFI for monocytes: 114 

2,05+/-0,93; MDDC: 5,07+/-3,15; MDM: 1,87+/-1,42) showing that β2 integrins were in 115 

a conformation capable of ligand binding on their surface. Data presented are mean 116 

+/-SD of three independent donors’ results. 117 

 118 

 119 

Analysis of adhesion to fibrinogen using classical methods 120 

To study the individual role of CD11b/CD18 and CD11c/CD18 in the adhesion 121 

to fibrinogen we blocked either CD11b or CD11c by ligand binding site specific 122 

monoclonal antibodies. Unspecific binding of the antibodies was prevented by adding 123 

FcR blocking reagent to all the samples (including controls), and the number of 124 

adhered cells was determined as percentage of untreated control samples. 125 

Furthermore, treatment with isotype matched control mAbs did not interfere with the 126 

adhesion of each cell type to fibrinogen. As shown in Fig 2A, blocking CD11c 127 

decreased the number of adhering MDDCs and monocytes significantly, and slightly 128 

(not significantly) blocked the adherence of MDMs. Blocking CD11b had no effect on 129 

MDMs and MDDCs, however decreased the number of adhered monocytes slightly 130 

(not significantly). 131 

 Next we aimed to determine how blocking of CD11b/CD18 or CD11c/CD18 132 

receptors affects the properties of adhesion to fibrinogen. To this end we analysed the 133 

contact area of the differently treated MDMs, MDDCs and monocytes by confocal 134 

microscopy. Actin cytoskeleton and nuclei were stained, and 0,42 µm optical sections 135 

of the contact zone were analysed. Fig 2B shows that blocking CD11b on MDMs 136 

results in larger contact areas, while blocking CD11c decreases them compared to 137 

untreated samples. In the case of MDDCs inhibition of CD11b induced a more 138 
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polarized and slightly larger contact surface, while anti-CD11c treated cells showed a 139 

round shape, but similar contact area to control cells. Monocytes are smaller than 140 

MDMs and MDDCs, therefore their contact zone is also smaller, as seen in Fig 2B. 141 

Blocking of CD11b caused an increased contact area also in the case of monocytes, 142 

in contrast to inhibition of CD11c, which had no effect. 143 

To quantify these observations, we established different categories based on 144 

the contact size of the cells. Namely we defined 3 categories for MDMs and MDDCs 145 

and 2 for monocytes (Figs 3A-C), and determined their proportion. By blocking CD11b, 146 

cells with small contact area almost completely disappeared in the case of MDMs and 147 

MDDCs, and their proportion decreased in the sample of monocytes. Simultaneously, 148 

the ratio of spread-out cells increased in the case of all cell types, showing that CD11b 149 

acts against spreading. On the contrary, blocking CD11c elevated the ratio of cells with 150 

small contact area in MDMs and the ratio of medium area cells in MDDCs, but had no 151 

effect on monocytes (Figs 3D-F). 152 

 153 

Fig 2. Number and contact zone structure of cells after blocking CD11b or CD11c 154 

with antibodies. Cells were treated with monoclonal anti-CD11b or anti-CD11c 155 

antibodies on ice for 30 min or left untreated for control. The Fc receptor blocking 156 

reagent was used prior adding the antibodies in all samples. Cells were let to adhere 157 

for 30min at 37oC 5%CO2 on plates coated previously with 10µg/ml fibrinogen and 158 

blocked with PLL-g-PEG. After that cells were fixed with 2% paraformaldehyde for 159 

10min, and washed twice with PBS to remove unbound cells. Nuclei were stained with 160 

Draq5 and actin cytoskeleton with phalloidin-Alexa488 probe. (A) The number of 161 

adhered cells was determined by analysing 12 representative fields after each 162 

treatment using Olympus IX81 microscope at 10x magnification. The number of 163 

adherent cells in control samples was taken 100%, and the effect of different 164 
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treatments was compared to it. Mean +/- SD of three independent donors’ results is 165 

shown. Repeated measures ANOVA with Bonferroni post-test was used to determine 166 

significant differences compared to control *=p<0,05 (B) A 0,42 µm slice of the contact 167 

zone was analysed by 60x magnification. Red fluorescence shows cell nuclei (Draq5), 168 

green shows filamentous actin (phalloidine-Alexa488). 169 

 170 

Fig 3. Contact zone size of cells after blocking CD11b or CD11c with antibodies. 171 

Cells were divided into categories based on the size of their contact zones. MDMs (A) 172 

and MDDCs (B) were categorised into the following three groups: small ≤2000 pixel2, 173 

medium 2000-400 pixel2, large ≥4000 pixel2. For monocytes (c) only 2 categories were 174 

established because of their smaller size (small ≤1000 pixel2, large> 100 pixel2).  200 175 

cells were counted for each cell type and each treatment, and the distribution between 176 

the different contact size categories was determined and is shown for MDDCs (D), 177 

MDMs (E) and monocytes (F). Results of one representative experiment of three 178 

independent ones is shown. 179 

 180 

 181 

 182 

Analysis of adhesion force using computer controlled 183 

micropipette 184 

 To further characterise the role of CD11b/CD18 and CD11c/CD18 in cell 185 

adhesion to fibrinogen, we performed state-of-the-art biophysical measurements on 186 

differently treated cells. Cells were let to adhere on fibrinogen coat, and their adhesion 187 

force was assessed by trying to pick them up with a computer controlled micropipette 188 

using vacuum assisted fluid flow. The pick-up process was repeated several times with 189 
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increasing the vacuum, and cells remaining on the surface were counted after each 190 

cycle. Applied vacuum was converted to force (µN) on the basis of computer 191 

simulations, and experimental data are presented as the ratio of differently treated 192 

adherent cells compared to the untreated control. Using this method we observed that 193 

blocking CD11b increased the force of adhesion of MDDCs significantly and elevated 194 

the force of adhesion in the case of MDMs (not significant, Figs 4A and 4B), however, 195 

it significantly decreased the strength of adhesion in the case of monocytes (Fig 4C). 196 

The significant strengthening and decreasing effect was observed among the cells that 197 

adhered the strongest. This is in good concordance with our previous results showing 198 

that anti-CD11b treatment slightly reduces the number of adhesive monocytes (Fig 199 

2A). This treatment also increased the proportion of cells with medium and large 200 

contact area (Fig 3). Blocking CD11c decreased the adhesion force in each cell type, 201 

underlining the importance of this receptor in the process, however the differences 202 

were not found to be significant. 203 

 204 

Fig 4. Force of cell adhesion after blocking CD11b or CD11c with antibodies. 205 

MDDCs (A), MDMs (B) and monocytes (C) were treated with monoclonal anti-CD11b 206 

or anti-CD11c antibodies on ice for 30 min or left untreated for control. The Fc receptor 207 

blocking agent was used prior adding the antibodies in all samples. Cells were let to 208 

adhere for 30min at 37oC 5%CO2 in Petri dishes coated previously with 10µg/ml 209 

fibrinogen and blocked with PLL-g-PEG. After that cells were gently washed twice with 210 

PBS to remove unbound cells. The number of adhered cells was determined in the 211 

field of the microscope and is shown as 0,00µN. The computer controlled micropipette 212 

made serial pick-up processes in the field by using increasing amount of vacuum. A 213 

microscopic picture was taken after each round and the number of remaining cells was 214 

determined. The ratio of adhered cells was determined at each lifting force value by 215 
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dividing the number of adhered cells in the anti-CD11b or anti-CD11c blocked samples 216 

by the number of cells in corresponding control sample. Data presented are mean +/-217 

SD of three independent donors’ samples. Repeated measures ANOVA with 218 

Bonferroni post-test was used to determine significant differences compared to control 219 

at each force. *=p<0,05, **=p<0,01 220 

 221 

 222 

Analysis of adhesion kinetics using optical waveguide 223 

biosensor 224 

 To perform kinetic studies on adherence to fibrinogen, the EPIC label free 225 

optical biosensor was used. This method enables the real-time monitoring of a 100-226 

200 nm width layer over the adhesive surface by analysing the refractive index 227 

alterations in this volume. Cells can reach this area only by adhesion, thereby non 228 

adhering cells are excluded from the measurement. Signal is detected as the shift of 229 

resonant wavelength (Δλ). The higher this shift, the larger area of the sensor is covered 230 

or the stronger the contact between the cells and their substrate. This means that using 231 

this method we detect a combined signal of the number of the adhered cells and the 232 

size and density of their contact area [19, 20]. The experiment was performed on 233 

MDMs, where the expression of CD11b or CD11c was downregulated using RNA 234 

silencing. For control, cells were transfected with negative control siRNA. To avoid the 235 

undesired contribution of unbound antibodies to the optical sensor antibody blocking 236 

was not used in this method. Fig 5A shows a representative graph, where CD11b 237 

silenced cells show higher, and CD11c silenced cells lower signal, as compared to the 238 

control sample. Since cells were let to adhere for 30 minutes in the case of the other 239 

methods used by us, we determined the mean Δλ value for 3 independent experiments 240 
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at the 30th minute of the kinetic experiment. Data obtained confirm our previous 241 

findings, namely, that blocking CD11c decreased the adhesive capacity of the cells 242 

significantly while blocking CD11b elevated it slightly (not significantly) (Fig 5B). To 243 

validate the results obtained with RNA silenced cells, we assessed their adhesion 244 

profile employing two further methods, too. We analysed the actin clusters of the 245 

contact zone in confocal microscope, and found that CD11b silenced MDMs had 246 

stronger actin clusters than the control cells, and significantly more than the CD11c 247 

silenced cells had. The opposite was true for the weak actin clusters; CD11c silenced 248 

cells had significantly more of that than the CD11b silenced cells (Fig 5C). The 249 

computer controlled micropipette confirmed these results (Fig 5D) showing that RNA 250 

silencing caused similar changes in the cells’ adhesive capacity as receptor blocking 251 

with antibodies. 252 

 253 

Fig 5. Adhesion of RNA silenced macrophages. MDMs were differentiated under 254 

conditions where CD11b or CD11c expression was downregulated by receptor specific 255 

siRNA. Control cells were treated with negative control siRNA. (A) Kinetic curves of 256 

adhering cells was recorded by EPIC BT measurement. Change in refractive index and 257 

thereby detected wavelength (Δλ) is plotted against time in the case of CD11b (dashed 258 

line), CD11c (dotted line) or negative control (black line) silenced MDMs of the same 259 

donor. The shaded area around each line shows the deviation between the parallel 260 

samples. One representative measurement out of three independent is shown. (B) 261 

Average+/-SD Δλ of three independent measurements was determined at the 30th 262 

minute of analysis. Paired t-test was used to compare the effect of CD11b or CD11c 263 

silencing compared to control siRNA treated samples. CD11c silencing was found to 264 

decrease Δλ significantly (p<0,5)  (C) Cells were let to adhere for 30min at 37oC 5%CO2 265 

on plates coated previously with 10µg/ml fibrinogen and blocked with PLL-g-PEG. 266 
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Filamentous actin was stained with phalloidine-Alexa488 and contact zones were 267 

scanned for 200 cells with Olympus IX81 confocal microscope using 60x objective. 268 

Pictures were analysed for the amount of strong and weak actin clusters with ImageJ. 269 

CD11b and CD11c silenced cells were compared to negative control siRNA treated 270 

cells. MDMs with reduced CD11b had significantly more strong clusters and 271 

significantly less weak clusters compared to CD11c silenced cells. Results shown are 272 

mean +/- SD of three independent experiments, repeated measures ANOVA with 273 

Bonferroni post-test was used, *=p<0,05, **=p<0,01. (D) The number of cells adhering 274 

with a given force was determined by the computer controlled micropipette. MDMs with 275 

silenced CD11b had significantly more cells that adhered with strong force compared 276 

to negative control siRNA treated cells. Differences in the case of CD11c silencing 277 

were not significant. Results shown are mean +/- SD of three independent 278 

experiments, repeated measures ANOVA with Bonferroni post-test was used, 279 

**=p<0,01, ***=p<0,001 280 

 281 

 282 

Discussion 283 

 284 

The family of β2 integrins consists of four members: CD11a/CD18 (LFA-1), 285 

CD11b/CD18 (CR3, Mac-1), CD11c/CD18 (CR4, p150/95) and CD11d/CD18. The role 286 

of LFA-1 in lymphocyte trafficking is well characterised, however, the role of 287 

CD11d/CD18 is still unexplored [21]. Although the function of CD11b/CD18 and 288 

CD11c/CD18 is being investigated for long, dissecting their individual role is technically 289 

challenging for many reasons. It is important to emphasize that their expression pattern 290 

is fundamentally different in mice and men. In the mouse CD11b is expressed on all 291 
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myeloid cells, while CD11c is present mainly on dendritic cells. Due to this differential 292 

expression in mice signal transduction via CD11b/CD18 is well characterized [13, 15] 293 

but is not fully known in the case of the other β2 integrins. Activation of β2 integrins 294 

was shown to be linked to Src family kinases Hck and Fgr further leading to Syk 295 

signalling via DAP12, the adaptor molecule in murine neutrophils and macrophages 296 

[13, 14, 22].  297 

 In contrast to mice, in humans CD11b and CD11c are simultaneously 298 

expressed on a wide variety of myeloid cells, as well as on certain populations of 299 

lymphoid cells [8, 23, 24]. What makes their analysis even more challenging is their 300 

overlapping ligand specificity. They have several common ligands, including 301 

inactivated C3b fragment (iC3b), fibrinogen and ICAM-1 [6, 10, 11, 25-27], and due to 302 

this it has been postulated that the function of CR3 and CR4 is similar. Namely, they 303 

mediate adhesion to ICAM-1 and fibrinogen and phagocytosis of iC3b opsonised 304 

particles. However, from an evolutionary point of view it does not seem economical to 305 

express two different receptors with identical functions by the same cell. Moreover, the 306 

intracellular domain of CD11b and CD11c in humans differ in length and amino acid 307 

sequence [1, 24, 28], which suggests functional differences between CR3 and CR4. 308 

Our goal was to dissect the functions of CR3 and CR4 in the human system. 309 

Previously we analysed the iC3b mediated phagocytosis of human MDDCs and 310 

concluded that CR4 does not take part in this process [17]. In the present work we 311 

focused our attention on adhesion, the other main function of β2 integrins. The 312 

importance of this integrin mediated function is clearly seen in the pathologic condition 313 

of lymphocyte adhesion deficiency (LAD) syndromes type I, II and III, where defective 314 

adhesive properties of leukocytes lead to recurrent and severe life threatening 315 

infections [3]. To explore the differences between CR3 and CR4 we tested the 316 
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adhesive capacity of human monocytes, MDDCs and MDMs on fibrinogen coated 317 

surface.  318 

Fibrinogen has medium affinity to both CD11b and CD11c, suggesting that this 319 

ligand binds to both receptors, which might compete for the ligand. Examination of the 320 

affinity of fibrinogen binding to a 200 amino acid long recombinant CD11b I domain 321 

revealed in one study a Kd of 2,2x10-7M [11], while others have shown an affinity of 322 

Kd=2x10-4M [29].  In the case of CD11c a Kd=5x10-5M was determined for fibrinogen 323 

[29]. It has also been shown that both CD11b and CD11c can bind the large variant of 324 

fibrinogen (fibrinogen-420), further supporting the idea of simultaneous and 325 

competitive binding [7].   326 

 Here, using different techniques we show, that CD11c/CD18 is the main 327 

receptor that mediates strong adhesion of MDMs and MDDCs to fibrinogen. We have 328 

to keep in mind that the various methods used in the study reveal different aspects of 329 

adhesion. Namely, the static end-point adhesion assay measures the amount of cells 330 

capable of adhering to the substrate, while the computer controlled micropipette assay 331 

measures the strength of adhesion of the same cells. By blocking CD11c the strength 332 

of adherence was strongly reduced in the case of all analysed cell types, and the 333 

contact area of MDMs was significantly smaller than that of the other cell types. 334 

Surprisingly, blocking CD11b results in an even stronger adhesion of MDMs and 335 

MDDCs, along with a larger and more polarized contact area. These data suggest that 336 

although CD11b/CD18 is able to bind fibrinogen [10, 25], it can have a negative role in 337 

the adhesion of these two cell types. Nevertheless, in the case of monocytes, blocking 338 

both CD11b and CD11c decreased the force of adhesion. To resolve this paradoxon, 339 

we propose the following hypothesis. Adhesion to fibrinogen is dependent on the total 340 

number of CD11b/CD18 and CD11c/CD18 receptors on the cell surface. In a 341 
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preliminary experiment we found that the number of fibrinogen ligands on the adhesive 342 

surface is comparable with the total amount of receptors found on monocytes. Since 343 

there is enough ligand available for both receptors, this suggests that in the case of 344 

monocytes, there is no competition between the two receptors for ligand binding, rather 345 

both take part in the adhesion process equally. This idea needs further support by 346 

analysing the CD11b/CD11c mediated adhesion of neutrophils, which express the two 347 

receptors in similar amounts to monocytes. In previous adhesion studies performed on 348 

monocytes and neutrophil granulocytes, both CD11b and CD11c mediated adhesion 349 

and spreading, suggesting that the adhesion properties of these cell types are similar 350 

[30-34]. However, MDMs and MDDCs bear far more receptors than the number of 351 

accessible ligands on the surfaces we constructed, thereby CD11b/CD18 and 352 

CD11c/CD18 compete for ligand binding. Our hypothesis raises further questions 353 

about cell adhesion under inflammatory conditions, when the number of ligands is 354 

increased and the amount of receptors also changes [8, 35].  Furthermore the 355 

expression and role of CD11d/CD18 in binding to physiological fibrinogen would be 356 

worth to study in more detail, since this receptor was also suggested to be able to bind 357 

this ligand [36].  358 

Adhesion properties of myeloid cells, especially monocytes and neutrophils, are 359 

of particular importance in several pathologic conditions. They play an important role 360 

in atherosclerosis, where fibrinogen accumulation is detected under the endothelial 361 

layer, furthermore, monocytes were shown to upregulate CD11b and CD11c 362 

expression under hypertriglyceridemic conditions [37, 38] or in rheumatoid arthritis, 363 

where elevated CD11b levels and enhanced adhesive properties of monocytes were 364 

already shown [39]. Another pathophysiologic aspect might be related to the 365 

rs1143679 (R77H) SNP of the ITGAM (CD11b) gene, that is associated with systemic 366 
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lupus erythematosus [40]. In this case impaired function of monocytes and MDMs, 367 

MDDCs and neutrophil granulocytes of the risk allele carrying patients was shown [41-368 

44]. Our results shown here suggest that the impaired function may be not only the 369 

consequence of compromised CD11b, but could also be caused by the enhanced 370 

functionality and ligand binding capacity of CD11c in the absence of its competitor. 371 

This might affect mainly the functions of macrophages and dendritic cells, and thereby 372 

the adaptive immune response generated by these antigen-presenting cells. The 373 

importance of cell adhesion under pathologic conditions is further highlighted by the 374 

role of β2 integrins in forming physiological podosomes and invadosomes of cancer 375 

cells [45-48]. These structures mediate the invasion and migration of transformed cells 376 

by ECM degradation. Moreover it was shown that proteolytic digestion of fibrinogen, a 377 

component of the ECM, enhances its recognition by CD11c on human neutrophils [29].  378 

Our recent findings highlighting the difference between the function of human 379 

CD11b/CD18 and CD11c/CD18 facilitates an even more detailed analysis of the 380 

individual role of these molecules. The state-of-the-art biophysical methods we used 381 

provide a yet unexploited potential for the analysis of cell functions, like adhesion under 382 

steady state and pathological conditions [19, 20, 49]. The possibility of cell type specific 383 

competition or cooperation between CR3 and CR4 raises several questions regarding 384 

integrin functions however the role of additional receptors in adhesion to fibrinogen 385 

cannot be excluded. Still, our results contribute to a better understanding of the distinct 386 

functions of CR3 and CR4. Whether the number and the type of the ligands they bind, 387 

or the ratio of the receptors expressed will determine the outcome of the interaction, 388 

needs further investigation.  389 

 390 

Materials and Methods 391 
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 392 

Ethics statement 393 

The study was conducted in accordance with the ethical guidelines of Declaration of 394 

Helsinki and approved by the Hungarian Medical Research Council Scientific and 395 

Research Committee (ETT TUKEB, permission number: 55627/2012/EKU). Blood 396 

samples were purchased from the Hungarian Blood Transfusion Service, where an 397 

informed written consent was obtained from all the donors. 398 

Isolation of monocytes 399 

 Monocytes were isolated from buffy coat obtained from healthy donors and 400 

provided by the Hungarian National Blood Transfusion Service. Peripheral blood 401 

mononuclear cells (PBMC) were separated by Ficoll-Paque PLUS (GE Healthcare Life 402 

Sciences) density gradient centrifugation and monocytes were isolated negatively by 403 

using the Miltenyi Monocyte Isolation Kit II. 404 

 405 

Generation of monocyte-derived macrophages (MDMs) and 406 

monocyte-derived dendritic cells (MDDCs) 407 

To generate MDMs and MDDCs monocytes were isolated by Miltenyi CD14 408 

MicroBeads to obtain high yield of cells. The isolated cells were cultivated for 5 days 409 

in RPMI-1640 medium (Sigma-Aldrich) supplemented with 10%FCS (Sigma-Aldrich), 410 

and Gentamicin antibiotics (Sigma-Aldrich). To generate MDMs 100 ng/mL rHu GM-411 

CSF (R&D systems) was added to the isolated monocytes. To generate MDDCs 100 412 

ng/mL rHu GM-CSF (R&D systems) and 15 ng/mL rHu IL-4 (R&D systems) were added 413 

to the monocytes [50-52]. Cytokines were supplied on day 3 of differentiation. To 414 

identify differentiated MDMs and MDDCs at day5 of cultivation we checked the cultures 415 
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by flowcytomery: dendritic cells are CD14-, while macrophages are CD14+. 416 

Furthermore, we analyse the cultures by inverted microscope. Dendritic cells are non-417 

adherent at day5 with several dendrites in contrast to macrophages, which are 418 

attached to the culture plate, and have a rounded shape without dendrites. The 419 

populations were found to be 95%< homogenous in size, granulation and 420 

differentiation stage as determined by flow cytometric measurements. 421 

 422 

Determination of absolute receptor numbers on cell 423 

surface 424 

 Absolute numbers of CD11b and CD11c was determined on the surface of 425 

monocytes, MDMs and MDDCs by using Qifikit (Dako) according to the manufacturers’ 426 

instructions. Briefly, cells were incubated with unlabelled mouse monoclonal antibodies 427 

specific for either CD11b or CD11c at saturating concentrations. After that cells were 428 

labelled with goat-anti-mouse FITC secondary antibody. A calibration curve was 429 

determined using beads that carry defined amount of mouse IgG to specify the 430 

correlation between fluorescence intensity and number of antibodies bound. This 431 

equation was used to determine the number of bound anti-CD11b or anti-CD11c 432 

antibodies on the cells’ surface. The same unlabelled mouse monoclonal antibodies 433 

were used as for receptor blocking in saturating concentration that was previously 434 

titrated by flow cytometry. 435 

 436 

Analysis of integrin conformational state 437 

 Integrins’ ligand binding properties highly depend on their conformation. To this 438 

end we incubated the cells with monoclonal antibody mAb24 (Hycult Biotech) that 439 

recognizes the high affinity conformation of CD18. After that, cell-bound mAb24 was 440 
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labelled with goat-anti-mouse IgG Alexa488 (Molecular Probes, Invitrogen). Samples 441 

were analysed on BD FACS Calibur flowcytometer using CellQuest software for data 442 

acquisition and FCS Express 3.0 software for data analysis. We compared the cells 443 

mAb24 staining in the media used for adhesion at 4oC and 37oC compared to isotype 444 

control staining in each case.  445 

 446 

Blocking of CD11b/CD18 and CD11c/CD18 by antibodies 447 

 The role of CD11b/CD18 and CD11c/CD18 in the adhesion to fibrinogen was 448 

analysed by comparing the adhesive properties of monocytes, MDMs and MDDCs 449 

treated with either anti-CD11b antibody (monoclonal mIgG1 clone TMG6-5, provided 450 

by István Andó at BRC Szeged, Hungary) or anti-CD11c antibody (monoclonal mIgG1 451 

clone 3.9, Biolegend). Both antibodies are specific for the ligand binding domain of the 452 

integrins and were used in sterile, azide-free form at saturating concentration 453 

previously titrated by flow cytometry. Cells were incubated with the receptor-specific 454 

antibodies for 30min at 4oC and used in adhesion studies without washing. Since 455 

unoccupied integrins are known to recycle to the cell surface, and would decrease the 456 

efficiency of blocking, unbound antibodies were not washed away. Cells were 457 

incubated in the presence of FcR blocking reagent (Miltenyi Biotech), and the effect of 458 

receptor specific antibodies was compared to untreated samples that were incubated 459 

only with FcR blocking reagent.  460 

 461 

RNA silencing in macrophages 462 

 RNA silencing was performed according to the method of Prechtel [53]. We used 463 

commercially available predesigned Qiagen (Germany) AllStar Negative control siRNA 464 

and Qiagen Genome Wide predesigned siRNA for CD11c (Hs_ITGAX_6) and CD11b 465 
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(Hs_ITGAM_5). Cells were transfected on day3 and day5 of differentiation with 20µg 466 

siRNA to generate CD11c silenced, CD11b silenced or negative control silenced 467 

MDMs at day6. The expression of CD11c and CD11b was analysed on day6 by 468 

cytofluorimetry and subsequent experiments were carried out on the same day. 469 

 470 

Analysis of adhesion by confocal microscopy 471 

 Wells were coated by 10μg/ml fibrinogen in phosphate buffered saline solution 472 

(PBS) for 1 hour at 37oC. After that wells were washed 2 times with PBS and free 473 

surfaces were blocked with synthetic copolymer poly(L-lysine)-graft-poly(ethylene 474 

glycol) (PLL-g-PEG, SuSoS AG) for 30min at RT. After washing 2 times with PBS, 475 

5x104 cells in RPMI1640-10%FCS were immediately transferred to the wells and let to 476 

adhere for 30min at 37oC in a CO2 incubator. After the incubation samples were fixed 477 

by 2% paraformaldehyde (Sigma-Aldrich) for 10min and unbound cells were removed 478 

by extensive washing 2 times with PBS.  479 

 The number of adhered cells was determined by staining the nuclei with Draq5 480 

(BioLegend) diluted 2000x in PBS and incubated for 15min at RT. Samples were 481 

analysed by Olympus IX81 confocal microscope (10x objective) and FluoView500 482 

software. 4 representative fields were scanned in each well of triplicate sample, thereby 483 

the number of adhered cells was determined in 12 parallel fields for each treatment by 484 

ImageJ software. 485 

 To analyse the contact zone of the cells actin cytoskeleton was stained with 486 

phalloidin-Alexa488 (Molecular Probes, Invitrogen). The probe was 100x diluted in 487 

PBS-0,1% Triton-X (Sigma-Aldrich) and cells were stained for 5min at 37oC and after 488 

that washed 3 times with PBS. Samples were analysed by Olympus IX81 confocal 489 
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microscope (60x objective) and FluoView500 software. Pictures were further analysed 490 

by ImageJ software. 491 

 492 

Analysis of adhesion with the computer-controlled 493 

micropipette  494 

Single cell adhesion force was analysed with an imaging-based automated 495 

micropipette (CellSorter) as described previously [49, 54]. Briefly, Petri dishes were 496 

coated by 10μg/ml fibrinogen in phosphate buffered saline solution (PBS) for 1 hour at 497 

37oC. Dishes were washed 2 times with PBS and the surface was blocked with the 498 

synthetic copolymer poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG, SuSoS 499 

AG) in order to inhibit non-specific cell adhesion for 30 min at RT. After washing the 500 

Petri dish again with PBS, 7,5x104 cells in RMPI-10% FCS were placed onto the coated 501 

surface. Cells were incubated for 30 minutes at 37°C in 5% CO2 atmosphere.  Cultures 502 

were washed 3-4 times with Hanks’ Balanced Salt solution with sodium bicarbonate 503 

without phenol red buffer (HBSS, Sigma) to remove floating cells. Region of interest 504 

(ROI) of the Petri dish was scanned by a motorized microscope (Zeiss Axio Observer 505 

A1) equipped with a digital camera (Qimaging Retiga 1300 cooled CCD). Cells were 506 

automatically recognized by the CellSorter software. To minimize the duration of the 507 

measurement, the shortest path of the micropipette was calculated by software [55]. 508 

Individual cells were visited and probed by the glass micropipette. Micropipette with an 509 

aperture of 70 µm approached the surface to a distance of 10 µm. Vacuum was 510 

generated in a standard syringe connected to the micropipette via a high speed 511 

normally closed fluid valve. To probe cell adhesion the valve was opened for 20 ms 512 

generating a precisely controlled fluid flow and corresponding hydrodynamic lifting 513 

force acting only on the targeting cell. The hydrodynamic lifting force was calculated 514 
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by running computer simulation solving the Navier-Stokes equation in a geometry 515 

corresponding to the experimental setup [49]. After each cycle of the adhesion force 516 

measurement the ROI of the Petri dish was scanned again, and the vacuum was 517 

increased to the next level. The micropipette visited again each location determined 518 

after the initial scan. Suction force was increased as long as most of the cells were 519 

removed. We counted the number of cells in the images before and after each cycle of 520 

the adhesion force measurement and calculated the ratio of still adhering cells of the 521 

population placed onto the surface at the beginning of the experiment. 522 

  523 

Analysis of adhesion by EPIC BT biosensor measurement 524 

Kinetic of the adhesion was measured on the Corning EPIC biosensor as described 525 

previously in details [20]. Briefly, each well of a standard microtiter plate contains an 526 

optical grating at its bottom which permits the illuminating light to be incoupled in the 527 

waveguide. Light beams in the waveguide interfere with each other; destructive 528 

interference precludes wave guiding, while constructive interference leads to 529 

resonance and to the excitation of a guided light mode. The latter can be achieved only 530 

at a discrete illuminating wavelength, called resonant wavelength (λ). The guided light 531 

mode generates an exponentially decaying evanescent field in a 100-200 nm thick 532 

layer over the sensor, which probes the local refractive index (RI) at this interface. Any 533 

process accompanied by RI-variations in this layer (bulk RI change, molecular 534 

adsorption, cell spreading, or dynamic redistribution in the cells) untunes the 535 

resonance by altering the phase-shift of the propagating light when it is reflected from 536 

the interface (leading to destructive interference at the original resonance wavelength). 537 

The primary output of the EPIC sensor is then the shift of the resonant wavelength, Δλ. 538 

Wells were coated by 10μg/ml fibrinogen in phosphate buffered saline for 1 hour at 539 
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37oC. After that wells were washed 3 times with PBS and free surfaces were blocked 540 

with synthetic copolymer poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG, 541 

SuSoS AG) for 30min at RT. After washing 3 times with PBS, 2x104 cells in RPMI-542 

10%FCS were immediately transferred to the wells and the registration of the Δλ was 543 

continuously monitored throughout the experiment (120min). 544 

 545 

Statistical analysis 546 

Two-way ANOVA with Bonferroni post-test or paired t-test was used to determine 547 

significant differences between the differently treated groups, p<0,05 was considered 548 

significant. In each case a minimum of 3 independent donor’s data were analysed549 

  550 
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