
Chapter 9

Optical waveguide-based biosensor for label-free
monitoring of living cells

N. Orgovan1,2, B. Szabó1,2 and R. Horvath1

Abstract

Here, we briefly discuss the past, present, and possible future of label-free optical
biosensors in cell research, especially focusing on the kinetic monitoring of cellular
adhesion. Currently available optical biosensors possess outstanding potentials still
not rightfully recognized and still waiting to be fully exploited in the field of cell
science. Thus, during the description we give special emphasis to the advantages
that the state-of-the-art optical cell-based biosensors possess as compared to
microscope- or force measurement-based techniques widely used to characterize
cell adhesion. To name here only a few, they enable label-free detection close to a
planar sensor surface, have high sensitivity, and generate superior quality kinetic
data. Such information-rich kinetic data, in turn, can be analyzed in-depth and
comparatively. To exemplify the importance of in-depth kinetic analysis, we
review a recent study, in which the Epic Bench Top high-throughput optical bio-
sensor was used to measure the dependence of cancer cell adhesion kinetics on the
surface density of integrin ligands. Based on the kinetic data, a model enabling the
label-free determination of the dissociation constant of the adhesion ligands bound
to their native cell membrane receptors has been constructed. Perspective of the
technology is briefly discussed.

9.1 Label-free optical biosensors in cell adhesion research

Cell adhesion is a fundamental biological process during which a cell anchors itself to
a suitable surface and spreads on it, obtaining a well-spread morphology characteristic
to the cell type. Cell adhesion plays cardinal roles on the level of individual cells – e.g.
in intracellular signaling [1, 2], migration [3], proliferation [4], differentiation [5],
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gene expression [6], and in general, cell fate determination [7] – as well on the
level of multicellular organisms – e.g. in cell–cell communication [8], immune
function [9, 10], cancer development [11, 12], or in the initiation and pathogenesis of
bacterial [13] and viral diseases [14]. For decades the phenomenon of cell adhesion
has thus been enjoying the ever-increasing scientific interest of various inter-
disciplinary fields, including materials science, pharmacology, biophysics, and more,
both in basic and applied research. This prominent attention has stimulated many
technological developments which gave rise to new techniques or modified already
existing ones, all to enable a more detailed characterization of cell adhesion. Based on
the approach they use, these can be classified into three main groups.

First, a class of techniques attempts to characterize cell adhesion in the most
direct manner: by quantifying cell-exerted forces. Some of these techniques measure
the adhesion force by actually detaching the cell from its substrate (e.g. flow chamber
[15, 16], variants of atomic force microscopy [17, 18], or micropipette [19]), while
others characterize cell-exerted forces through the cell-caused deformations of an elastic
substrate (variants of cell traction force microscopy and their predecessors [20, 21]).

In contrast, another class of techniques focuses on the visualization and/or
tracking of the cell and its adhesion-associated subcellular structures (e.g. those of
filamentous actin, or focal adhesion components) [22]. Visualization is performed
under a microscope (e.g. wide-field, confocal, electron, or total internal reflection
microscope), which is subsequently followed by in-depth image analysis [22].

Surface-sensitive label-free optical biosensors constituting the third class
of techniques are relative newcomers to cell adhesion science [23]. (Although
impedance-based label-free biosensors can also be used to measure cell adhesion,
space limitations force us to omit them from this discussion. For references, see
[24, 25]). Several members of the family have been shown to be able to measure cell
adhesion, including surface plasmon resonance (SPR) [26, 27], optical waveguide light
mode spectroscopy (OWLS) [28–31], photonic crystal (PC) biosensors [32],
and resonant waveguide grating (RWG, or more commonly recognized as Epic)
biosensors [33, 34]. Albeit they have been on the horizon for a considerable time,
and albeit they offer promising potentials to the field, their introduction to cell
adhesion research has been long delayed. This was partially due to the aversion
that encompassed their unselective detection mechanism [35]; they are sensitive to
any process which is accompanied by refractive index (RI) changes in a thin layer
closest to the sensor surface [28]. For this, they have often been referred as black
boxes, and their signal as being obscure and difficult to interpret [35]. However,
with an appropriate surface chemistry and rigorous experimental controls in hand,
such biosensors can readily and specifically measure the adherency of a population
of cells. Indeed, the biosensor signal integrates changes in both the size of the
sensor area covered by cells and the optical density therein (i.e. it depends on the
density of filamentous actin near the surface, and on the number and size of focal
adhesions), which makes the signal an excellent single measure of cell adherency.
Further reasons for the delay in permeation of optical biosensorics to cell science
have been (i) the lack of high-throughput in the case of the first-generation, and
(ii) the high cost in the case of the second-generation instruments (SPR, OWLS,
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and PC, Epic systems, respectively). Accordingly, first-generation platforms were
not suitable for cutting-edge cell (adhesion) research, since single measurements
conducted hours apart could be hardly compared due to the inter-experimental
variability inherent to living cells. In contrast, second-generation systems were
microplate-based high-throughput biosensors, but the first of their kind was an
expensive platform with integrated robotics, and hence predominantly only some
pharmaceutical companies could afford to buy it.

With the recent commercialization of the small-footprint next-generation optical
biosensor, the Epic BenchTop (Epic BT) [33, 36] (and with the permeation of the
EnSpire benchtop multimodalmicrotiter plate reader, which combines Epic label-free
technology with labeling technologies), we expect the long-stand status quo to
change soon, i.e. the potentials of label-free biosensorics to be rightfully recognized
and exploited in cell science. In particular, Epic BT offers the following set of
advantages: it (i) detects RI changes only in an approximately 150 nm thick layer
closest to a planar sensor surface (which is the most relevant in cell adhesion)
[28, 36]; (ii) produces an integrated signal which is an excellent single measure of cell
adherency [31, 37]; (iii) does not require labeling of any kind to monitor cell beha-
vior; (iv) as a microplate-based system, offers high-throughput detection; (v) yields
superior quality kinetic data, which can be subjected to in-depth kinetic analysis [34].
This latter feature in itself is such that the microscope- or force measurement-based
techniques can hardly compete with. However, it is becoming increasingly evident
that kinetic analysis is the key to a more detailed characterization of the effect of, e.g.
substrate modifications or drug treatments on cellular behavior, including cell adhe-
sion. Given their high sensitivity, surface-sensitive evanescent field-based techniques
can detect not only large-scale, but also tiny variations during adhesion, thus mole-
cular movements and rearrangements in the basal membrane of the adhered cells can
be monitored in real time. These dynamic changes are often termed as dynamic mass
redistribution (DMR) in the literature [23, 33, 38–40]. The conceptually different
types of DMRs are briefly summarized in Figure 9.1.

The forthcoming years may bring further innovations to commercially
available label-free optical biosensors, so they could e.g. (i) measure the adhesion
and signaling of single cells; (ii) combine high-throughput detection with multi-
mode waveguides enabling depth profiling of cell RI variations [30]; or (iii) use
flow-through microfluidics in a high-throughput arrangement [38, 41].

9.2 The Epic Bench Top optical biosensor

The Epic BT system (Corning Incorporated, Corning, NY, USA) is an evanescent
field-based optical biosensor [42] allowing high-throughput label-free detection at
a solid–liquid interface [23, 33, 36, 40]. It accepts 96- or 384-well Society for
Biomolecular Screening (SBS) standard format biosensor microplates. The bottom
of an Epic microplate serves as a planar optical waveguide – i.e. a thin, high
refractive-index, transparent dielectric layer (waveguide layer, made of the
biocompatible material niobium pentoxide [43]) on a thicker substratum. At the
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position of each well, an optical grating is embedded into the waveguide layer to
enable the in coupling of the illuminating light; thus separate biosensors are
created. In coupled light beams undergo total internal reflections at the inner
surfaces of the waveguide layer, and gain a phase shift upon each reflection. The
extent of the acquired phase shift depends on the RI of the medium being closest to
the reflecting surface (because an exponentially decaying electromagnetic field,

Sensor surface
Evanescent field

Shape change

Vertical mass redistribution

Horizontal mass redistribution

Mass redistribution in cell groups

Figure 9.1 Schematic illustration of cell activity detection with label-free optical
biosensors. Practically, all types of cellular activities are accompanied
by dynamic mass redistributions (DMRs), which in turn generally
cause a net change in the local refractive index. A detectable change
occurring in the sensing layer of the biosensor (evanescent field,
illustrated as a red layer illuminating only the bottom �150 nm high
portion of cells) provokes a biosensor response (e.g. a spreading curve).
Conceptually, four types of mass redistributions can be distinguished.
Considerable changes in cell shape involve large-scale DMRs in
directions both vertical and horizontal to the planar sensor surface. This
is the case during cell spreading when spherical cells enter the sensing
layer, which is followed by cell attachment to, and cell spreading on
the appropriately prepared sensor surface. In contrast, cells already
spread on the sensor surface can exhibit intracellular DMR which is
dominant in either the vertical or horizontal direction, while the cell
shape does not change considerably. Typically this is the case when
spread cells are stimulated or treated with highly specific effector
molecules. The detection of horizontal DMR within cells requires
a high spatial-resolution biosensor, a kind which is currently not
commercially available. Still, biosensors with modest spatial resolution
are already successfully used to detect larger scale spatial variances
in DMR responses (e.g. when a group of cells respond to a treatment,
others not)
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called an evanescent field, penetrates into a ~150 nm thick layer of the neighboring
medium and probes the local RI [28, 44]). Light beams in coupled by the same
grating interfere with each other, but only positive interference results in wave
guiding. This criterion is met only at a certain illuminating wavelength, called
the resonant wavelength (l). Any process accompanied by RI-variations in the
�150 nm thick layer over the biosensor surface alters the acquired phase shift
when the beams undergo reflections at the waveguide layer–sample interface. This
untunes the resonance but wave guiding can resume at an illuminating wavelength
l
0 6¼ l. The primary signal output by the Epic BT system is the shift of the resonant

wavelength (Dl ¼ l
0 � l) in each well.

In practice, all wells of an Epicmicroplate are simultaneously read out every 3 s
by sweeping the illuminating wavelength through a range of 15000 pm with 0.25 pm
precision [42]. The guided wavelength is outcoupled by the same grating used for
incoupling, and the resonant wavelength distribution within each well is imaged with
a spatial resolution of �90 mm using a complementary metal-oxide semiconductor
(CMOS) camera. The small footprint and tolerance to high temperatures of the Epic
BT allows it to be placed into a non-humidified cell incubator and, therefore, a better
approximation of the in vivo environmental conditions can be provided for the
investigated cells.

9.3 Cell adhesion on tailored surfaces

In a work described previously, we aimed at measuring and characterizing the
dependence of cell adhesion kinetics on the surface density of adhesion ligands in a
label-free manner [34]. As such, the work fitted into a hot multidisciplinary
research topic concerned with the relative relevance of individual substrate prop-
erties in cell behavior determination. Tailoring of a given substrate property –
either biochemical (e.g. the density, orientation, or variability of adhesion ligands)
or physical (e.g. elasticity, hidrophobity AQ1, or topography) – without affecting all the
others is generally a challenging task. Similarly so is the proper and detailed
quantitative characterization of the effects of this modification on cell behavior.

Given the relative ease it can be accomplished with, many have tuned the sur-
face density of adhesion ligands (especially that of the RGD tripeptide) and inves-
tigated how the cells respond [45–49].Various approaches enable the average surface
density of the RGD motif (arginine-glycine-aspartic acid) – a minimal integrin
recognition sequence present in several key proteins of the extracellular matrix
[50, 51] to be tuned at will [45–49]. However, one of the most intriguing recent
studies has relied on an advanced technique, called block copolymer micelle nano-
lithography, to enable the RGD motifs to be positioned in a strict nanoscale order on
a planar surface [52]. As it has turned out, the degree of ordering has a substantial
impact on cell spreading. Cell attachment and spreading on an ordered nanopattern
of ligands were highly restricted when the ligand spacing was increased beyond ~70
nm. In contrast, randomly distributed ligands with an average interligand distance of
more than 92 nm were still able to promote marked cell spreading [52]. It has been
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claimed that the failure of cell spreading in the former case was due to the overly
large interligand distances restricting effective integrin clustering, and the spreading
observed in the latter case could be attributed to locally higher ligand densities that
are sufficient to promote clustering.

Notwithstanding the impressive work done in the field, it seems like most
investigations got stuck at the level of quantifying cell adhesion and spreading at a
single time point and, therefore, could only imperfectly describe the effect of sub-
strate modifications (e.g., adhesion-enhancing or -inhibitory). The dynamic aspects
of adhesion and spreading have hitherto very rarely been considered [45, 46, 53, 54],
mainly because only few techniques enable these processes to be monitored with
adequate data quality, especially without the incorporation of labels that may
potentially perturb cellular behavior.

9.4 The dependence of cell adhesion kinetics on the surface
density of integrin ligands, as measured with the Epic
BT biosensor

As mentioned earlier, surface-sensitive label-free biosensors are inherently capable of
generating good quality kinetic data. Thus, we used Corning’s next-generation high-
throughput optical biosensor, the Epic BT, to measure the dependence of cell
adhesion kinetics on the average surface density of RGD motifs (for the original report,
see Reference 34). The protocol and workflow for a typical label-free cell adhesion
assay carried out utilizing the high-throughput Epic BT is detailed in a recent book
chapter [55].

To tune the average surface density of RGD motifs, we used two copolymers, the
biologically inactive PLL-g-PEG (poly(L-lysine)-graft-poly(ethylene glycol)), and its
RGD-functionalized counterpart, PLL-g-PEG-RGD. If immobilized on a surface, the
former functions as a protein-resistant and cell-repellent agent [56], while the latter is
selectively recognized by a subgroup of adhesion receptor integrins [57], and thus
induces cell adhesion [48].The copolymers were immobilized on the biosensors (Epic
microplate wells) via room-temperature physisorption from coating solutions. Coat-
ing solutions were obtained by mixing the stock solutions of PLL-g-PEG and PLL-g-
PEG-RGD (both dissolved to a final concentration of 1 mg ml�1) in the desired ratios.
As described earlier [34], the surface density of RGD motifs was tuned by varying the
volume percent Q of the PLL-g-PEG-RGD solution in the mixed solution of copo-
lymers. The average surface density of RGD ligands (nRGD), as well as the average
RGD-to-RGD distance (dRGD�RGD) could be easily calculated using Q and the
molecular quantities characterizing the composition of the copolymers [34, 49].
(When discussing trend-like effects of RGD-tuning, nRGD and dRGD�RGD are freely
interchanged in further text). In the work described in Reference 34, nRGD was tuned
over four orders of magnitude.

Having the surfaces prepared, the microplate wells were given assay buffer
(HBSS with 20 mM HEPES). Next, we established a baseline with the biosensor,
then introduced the suspension of HeLa cells into the wells. All experiments were

168 Nanobiosensors for personalized and onsite biomedical diagnosis

CH009 19 April 2016; 18:29:37

nor
Cross-Out

nor
Cross-Out

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
were

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
[34]

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
[34]



done in triplicates. After 2 h, the biosensor signals saturated and thus the biosensor
experiment was terminated. A single set of obtained signals is shown in Figure 9.2 as
points. As it is seen, surfaces with an average interligand distance of 147 nm were
already able to mildly induce cell adhesion (Figure 9.2). Maximum biosensor
responses (Dlmax) increased as a response to decreasing the interligand distance until
saturation was reached at around dRGD�RGD � 10 nm. The saturation is not sur-
prising considering that the diameter of an integrin in the cell membrane is 8–12 nm
[52], thus ligands closer to each other than this cannot be simultaneously bound.

Given the high resolution of the data set, it could be subjected to kinetic ana-
lysis. All the obtained spreading curves followed a symmetrical sigmoid shape,
which can most easily be described by the logistic (9.1) [58]:

Dl tð Þ ¼ Dlmax

1 þ exp �r t � mð Þð Þ (9.1)

where Dlmax is the signal value at the maximum (plateau) of the spreading curve,
r is the rate constant of spreading, and m is the time at which the ordinate is exactly
Dlmax=2. We used (9.1) to fit each individual data sequence (and not the averaged
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Figure 9.2 Spreading curves (the resonant wavelength shift Dl as a function of
time) provoked by HeLa cells, as was measured with the Epic BT at
different RGD surface densities. The average interligand distances are
indicated on the right side of the figure: cells on higher RGD-density
surfaces induced higher biosensor signals. Dots: individual spreading
curves registered by the Epic BT. Solid curves: fits. Note, that only one
series of curves is shown, and some data and the corresponding fits
have been omitted from this figure to avoid crowding and overlaps.
Figure AQ2is replotted from Reference 34
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curves of triplicates, Figure 9.2), then the fitting parameters (Dlmax and r) of
triplicates were averaged and their mean values were plotted against nRGD and
dRGD�RGD.

r was found to be practically independent of the surface density of RGD motifs
(not shown) [34]. This was in accordance with a previous report [46], where sub-
strata were coated with varying amounts of fibronectin, and the rate of contact area
increase of isotropically spreading fibroblasts was measured with TIRFM. We have
proposed that r most probably depended on the growth of the filopodia governed by
actin polymerization and was therefore naturally independent from nRGD [34].

In contrast to r, the maximum biosensor response (Dlmax) did depend on the
average surface density of RGD motifs(nRGD) (Figure 9.3) [59]. The backgrounds of
this dependency can be understood in the light of previous findings [52, 60].It has
earlier been shown that if the RGD surface density is decreased, cell adhesion
diminishes either abruptly (there is a critical interligand distance) or successively,
depending on whether the RGD motifs are positioned in a strict nanoscale order or at
random. In our case, the nanoscale distribution of the RGD motifs was disordered, but
not completely random: the adsorption of the PLL-g-PEG-RGD molecules corre-
sponded to a random deposition of islands, each with an average of 3 RGD motifs.
Still, this dispersion resulted in a highly disordered RGD-distribution, and thus the
observed successive decrease of cell adhesion with decreasing nRGD is in nice
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Figure 9.3 Maximum biosensor response (Dlmax) as a function of the average
surface density of RGD motifs (nRGD, bottom axis) and as a function of
the average interligand distance (dRGD�RGD, top axis). Error bars
represent the standard deviation from the mean. Figure is AQ3replotted
from Reference [34]
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agreement with expectations [52]. In further accordance with previous findings [52],
we obtained the maximum biosensor response at around an average interligand dis-
tance of 10nm indeed, separation distances smaller than the diameter of an integrin in
the cell membrane (8�12 nm) cannot possibly increase the biosensor response
further.

To further analyze the dependence of Dlmax on nRGD, we assumed that the
receptor–ligand interaction can be described as a monovalent binding reaction [34].
Denoting the surface concentrations of the unbound receptor (integrin), unbound
ligand (RGD), and that of their bound form as R;L and B, respectively, the receptor–
ligand reaction is shown in (9.2):

R þ L
ka

Ð
kd

B (9.2)

According to the kinetic mass action law (KMAL), in equilibrium the attach-
ment and detachment reactions (characterized by two-dimensional rate coefficients
ka and kd, respectively) have equal rates and as shown in (9.3):

Beqm ¼ L0R0

L0 þ 2DKd
(9.3)

Where L0 ¼ L þ B and R0 ¼ R þ B (i.e. R0 ¼ nRGD), and 2DKd ¼ kd=ka is the two--
dimensional dissociation constant. Supposing that Beqm was directly proportional to
the optical response measured at saturation (Dlmax),and fitting the data plotted as
Dlmaxvs.nRGD (Figure 9.4) with (Figure 9.3), we found that 2DKd ¼ 1753 � 243 mm�2.

The relationship between the two- and three-dimensional dissociation constants is
given in (9.4):

3DKd ¼
2DKd

lc
(9.4)

where lc is a characteristic length of the interacting system, often referred to as
confinement length [61, 62]. We proposed lc to be the average cell-substrate
separation distance [34].The extent of separation is the result of the combined
effect of nonspecific repulsion and specific bonding forces between the cell and the
underlying substrate [61]. Various techniques have been utilized to determine the
separation distance, and the obtained average values are typically in the range of
40–160 nm [63–65]. Lacking more precise information, we assumed an average
separation distance and an equivalent confinement length of lc ¼ 100 nm.

Using (9.4), the estimated value of the three-dimensional dissociation constant is
3DKd � 30 mM. In comparison, aIIbb3 integrins incorporated into a lipid planar
bilayer have shown to have an affinity of 1.7 mM for an RGD-containing linear
peptide (having a very similar amino acid sequence to that used to functionalize the
PEG-chains) [66]. The roughly twentyfold discrepancy between this value and ours
can be attributed to differences between the investigated systems. First, the platelet
integrin aIIbb3 is unlikely to have the exact same affinity for the same linear

Optical waveguide-based biosensor for label-free monitoring of living cells 171

CH009 19 April 2016; 18:29:45

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
10 nm – 

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
can be described as

_orgovaan_
Öntapadó jegyzet
Please insert full stop (.) after equation.

_orgovaan_
Áthúzás

_orgovaan_
Öntapadó jegyzet
please insert comma (,) after equation

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
where

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
, and

_orgovaan_
Öntapadó jegyzet
please insert space between "vs.' and nu_rgd

_orgovaan_
Öntapadó jegyzet
please insert comma after equaion

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
as

_orgovaan_
Áthúzás

_orgovaan_
Beszúrt szöveg
. The

_orgovaan_
Áthúzás



RGD-sequence as the RGD-specific integrins of HeLa. Second, platelet integrins
isolated with a detergent and grafted uniformly into planar lipid bilayers have been
claimed to be all activated, thus showing maximum affinity for their ligands [67].
In contrast, affinity regulation is an intrinsic property of aIIbb3 integrins in
platelets (they are able to switch from a low affinity ‘‘inactive’’ to a high affinity
‘‘activated’’ state upon induction) [68]; thus, they are expected to show a larger dis-
sociation constant (smaller affinity) for a certain ligand when they are in their native
environment compared to when embedded into a model cell membrane system.

In summary, the simplest model described by (9.3) seems to be sufficient to
characterize the integrin–ligand interaction; it fitted our data remarkably well and
yielded a dissociation constant with a reasonable value.

In a recent book chapter [55], we described how the dissociation constant for
the interaction between adhesion ligands and their native cell membrane receptors
can be determined with the help of the Epic BT. Exceeding the limitations of most
of the regular scientific articles, therein we also provide an extensive list of helpful
notes and hints about the technique and all stages of the workflow; a description
that will hopefully prompt and encourage future applications.
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Figure 9.4 The maximum wavelength shift provoked by cells (Dlmax) as a function
of the surface density of RGD motifs (nRGD), and the fit performed to
derive the two-dimensional dissociation constant. Fitting(3) (solid line)
describing the equilibrium of single-step monovalent binding to the
data yielded a 2D dissociation constant of 2DKd ¼ 1753 � 243mm�2

for the binding between integrins embedded in their native (cell)
membrane and the RGD motifs. Error bars on the dots represent
the standard deviation from the mean. Figure is replotted AQ4from
Reference 34
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9.5 Outlook

As a continuation of the experimental work described earlier and published
previously (see Reference 34), we wish to further exploit the potentials of the Epic
BT. Accumulating preliminary data show that cell adhesion and spreading do not
always follow trivial kinetics (i.e. cannot be described by a symmetrical sigmoid).
For the first time this became evident in the case of drug-treated cells. For example,
varying concentrations of a small molecule adhesion inhibitor severely altered the
kinetics of cell spreading, while the maximal biosensor responses were completely
unaffected by it. Surprisingly, spread cell morphology showed a striking depen-
dence on the concentration of the same drug in the assay medium, but nonetheless,
the biosensor responses at saturation were the very same, i.e. they were independent
of the presence of the drug [69]. In a separate study, we monitored the adhesion and
spreading kinetics of unstimulated, untreated human primary monocytes, dendritic
cells, and macrophages. The biosensor signal invoked by these immune cells
followed nontrivial, non-monotonic kinetics [70], which was unexpected, because
if untreated and unperturbed, all the other tested cell types induced a biosensor
signal which could be described with a symmetrical sigmoid [29, 58].

All these findings emphasize the fundamental importance of kinetic monitoring
in cell (adhesion) studies. Using more sophisticated models, kinetic data analysis
may then shed light on the governing and limiting intracellular processes during cell
adhesion.
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[40] R. Schröder, J. Schmidt, S. Blättermann, et al., ‘‘Applying label-free
dynamic mass redistribution technology to frame signaling of G protein-
coupled receptors noninvasively in living cells,’’ Nat. Protoc., vol. 6, no. 11,
pp. 1748–1760, Nov. 2011.

[41] N. Orgovan, D. Patko, C. Hos, et al., ‘‘Sample handling in surface sensitive
chemical and biological sensing: a practical review of basic fluidics and
analyte transport,’’ Adv. Colloid Interface Sci., vol. 211C, pp. 1–16, Sep. 2014.

[42] A. M. Ferrie, Q. Wu, and Y. Fang, ‘‘Resonant waveguide grating imager for
live cell sensing,’’ Appl. Phys. Lett., vol. 97, no. 22, p. 223704, Nov. 2010.

[43] Y. Fang, ‘‘Label-free biosensors for cell biology,’’ Int. J. Electrochem.,
vol. 2011, pp. 1–16, 2011.

[44] J. J. Ramsden, S. Y. Li, E. Heinzle, and J. E. Prenosil, ‘‘Optical method
for measurement of number and shape of attached cells in real time,’’
Cytometry, vol. 19, no. 2, pp. 97–102, Feb. 1995.

[45] C. A. Reinhart-King, M. Dembo, and D. A. Hammer, ‘‘The dynamics
and mechanics of endothelial cell spreading,’’ Biophys. J., vol. 89, no. 1,
pp. 676–689, Jul. 2005.

[46] B. J. Dubin-Thaler, G. Giannone, H-G. Döbereiner, and M. P. Sheetz,
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‘‘Label-free profiling of cell adhesion: determination of the dissociation
constant for native cell membrane adhesion receptor-ligand interaction,’’ in
Label-Free Biosensor Methods in Drug Discovery, Y. Fang, Ed. Springer,
2015, pp. 327–338.

[56] G. L. Kenausis, J. Vo, D. L. Elbert, et al., ‘‘Poly(L-lysine )-g-poly(ethylene
glycol) layers on metal oxide surfaces: attachment mechanism and effects of
polymer architecture AQ5on resistance to protein adsorption,’’ pp. 3298–3309, 2000.

[57] M. Barczyk, S. Carracedo, and D. Gullberg, ‘‘Integrins,’’ Cell Tissue Res.,
vol. 339, no. 1, pp. 269–280, Jan. 2010.

[58] A. Aref, R. Horvath, and J. J. Ramsden, ‘‘Spreading kinetics for quantifying
cell state during stem cell differentiation,’’ J. Biol. Phys. Chem., vol. 10,
no. November, pp. 1–7, 2010.
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