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Abstract

Parkinson’s disease is a worldwide frequent neurodegenerative disorder with increasing incidence.

Speech disturbance appears during the progression of the disease. UPDRS is a gold standard tool for

diagnostic and follow up of the disease. We aim at estimating the UPDRS score based on biomedical

voice recordings. In this paper, we study the hubness phenomenon in context of the UPDRS score

estimation and propose hubness-aware error correction for feed-forward neural networks in order to

increase the accuracy of estimation. We perform experiments on publicly available datasets derived

form real voice data and show that the proposed technique systematically increases the accuracy of

various feed-forward neural networks.

Keywords – artificial neural networks, hubs, regression, Parkinson’s disease, UPDRS, prediction

1 Introduction

Parkinson’s disease (PD) is one of the most important neurodegenerative disorders, with increasing inci-

dence. PD affects 7 to 10 million people worldwide. Clinically PD is characterized by cardinal symptoms:

initially unilateral, asymmetrical resting tremor (shaking of the hand), rigidity and bradykinesia (slow

movement). In addition to these symptoms (motor disturbances) the disorder is associated with non-

motor, neuropsychiatric symptoms, such as cognitive impairment, autonomic dysregulation and sleep

problems (Crosiers et al., 2011).
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The total PD-related costs are estimated as $25 billion per year in the United States alone, while

“medication costs for an individual person with PD average $2,500 a year, and therapeutic surgery can

cost up to $100,000 dollars per patient.”1 As noted by de Rijk et al. (1997) and de Lau and Breteler

(2006), the prevalence increases with the age, and the increasing importance of PD is underlined by the

fact that “most economically developed and many developing countries are experiencing marked demo-

graphic shifts, with progressively larger proportions of their populations entering old age” (Pringsheim

et al., 2014).

The Unified Parkinson’s Disease Rating Scale (UPDRS) is the most commonly used scale in the

clinical study of PD (Ramaker et al., 2002). Roughly speaking, the UPDRS score of a particular patient

describes the severity of the disease in case of that patient (see also Section 2.1 and the references therein

for more details on UPDRS). The UPDRS score may change over time indicating the success of treatment

or the progression of the disease. Ideally, the UPDRS score would be measured regularly and relatively

often in order to provide medical doctors, the patient and his/her relatives with detailed information

about the progression of the disease and to contribute to the patient’s awareness of the disease, which is

one of the most relevant factors influencing the efficiency of the treatment. However, as the assessment of

the UPDRS score requires notable effort and the available capacity of medical personnel is a bottleneck,

under realistic conditions, the total UPDRS score is measured with a relatively low frequency, e.g., at

the beginning of the treatment and after several months.

Little et al. (2009), Tsanas et al. (2010) and Sakar et al. (2013) have shown that the UPDRS score is

related to various characteristics of the voice, thus, at least in theory, it could be estimated based on the

patient’s speech while he/she makes telephone or skype calls using his/her smartphone or tablet. With

our current study, we would like to take a step towards this visionary application which, on the long

term, is expected to allow continuous monitoring of the patient’s UPDRS score and almost immediate

identification of its substantial changes.

One of the major challenges associated with the aforementioned visionary application is the fact

that the exact function describing how the UPDRS score depends on (the combination of) quantifiable

characteristics of speech is unknown. Therefore, state-of-the-art solutions for the estimation of UPDRS

score from voice data, are based on machine learning (Sakar et al., 2013), (Tsanas et al., 2011). Following

the machine learning paradigm, voice data may be collected from a large set of patients which contains

both audio recordings and the patient’s UPDRS score at the time of recording. Such data allows machine

learning approaches to “discover” the dependency between the characteristics of the voice and the UPDRS

score so that the UPDRS score of “new” patients may be estimated based on their speech.

As artificial neural networks (ANNs) are known to be universal approximators (Pang-Ning et al.,

1http://www.pdf.org/en/parkinson statistics
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2006), we base our solution on ANNs. In particular, after studying the hubness phenomenon and the

presence of bad hubs in context of the UPDRS score estimation in Section 3, we propose hubness-aware

error correction for ANNs in order to increase the accuracy of estimation. To the best of our knowledge,

the current work is the first attempt to exploit hubness in context of ANNs. We perform experiments

on publicly available datasets derived form real voice data and show that the proposed error correction

technique systematically increases the accuracy of various feed-forward neural networks.

2 Background

In order to ensure that the paper is self-contained, we provide the most relevant background information

about the UPDRS in Section 2.1 and review related works in Section 2.2. Finally, in Section 2.3, we give

basic definitions used throughout the paper.

2.1 Unified Parkinson’s Disease Rating Scale

The Unified Parkinson’s Disease Rating Scale (UPDRS) was developed to provide a comprehensive

coverage of the symptoms, in order to allow for clinical examination and follow-up of the progression of

the disease. Today it serves as a gold standard reference scale.

The scale has four parts. Part I (previously titled Mentation) was designed to assess non-motor

experiences of daily living. Part II (previously called Activities of daily living) assesses motor experiences

of daily living. Part III (a.k.a. the Motor part) contains the examination of the patient’s motor skills,

while Part IV (titled as Complications) considers motor complications.

The aforementioned parts of the UPDRS are measured at different frequencies, for example, according

to Goetz et al. (2003), Part III was used in 98% of the cases, whereas Part I was used with a frequency

of 60% only. For more details about the UPDRS score, the reader is referred to (Goetz et al., 2008).

Alteration of the speech is a well-known symptom of PD, about 70% of PD patients exhibit speech

impairment (Hartelius and Svensson, 1994), (Logemann et al., 1978). Speech disturbances are repre-

sented in Parts II and III of the UPDRS. Speech disturbances in PD are characterized by hypophonia,

hypokinetic dysarthria, palilalia and speech dysfluency. With the progression of the disease, due to the

involvement of speech organs, worsening of speech is known. Moreover, “positive effect of L-dopa treat-

ment on speech disorders could be objectively confirmed” (Pawlukowska et al., 2015). In this paper, we

aim to estimate patients’ UPDRS scores from voice measures.
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2.2 Related works

Machine learning techniques are widely applied for medical tasks, see e.g. (Cyganek and Wozniak, 2015),

(Grana et al., 2011) and (Froelich et al., 2015).

As we formalize the task of automated estimation of UPDRS score as a regression task, when reviewing

related works, we focus on regression, which is one of the most prominent fields of machine learning with

various applications in medicine, see e.g. (Celikkaya et al., 2013), (Soyiri et al., 2013). In the last decades,

various regression techniques have been developed ranging from simple linear and polynomial regression

over nearest neighbor regression to more complex models, such as artificial neural networks (ANNs) and

support vector regression, see e.g. (Devroye et al., 1994), (Adamczak et al., 2004), (Basak et al., 2007).

One of the most interesting recent observations is the presence of hubs in various datasets. Informally,

hubs are instances that are similar to a surprisingly high amount of other instances. Unfortunately, some

of the hubs are bad in the sort of sense that they may mislead machine learning algorithms. The presence

of hubs have been studied primarily in context of classification, clustering and instance selection, see

(Radovanović et al., 2010a), (Tomašev and Mladenić, 2013), (Radovanović et al., 2009), (Radovanović

et al., 2010b), (Tomašev et al., 2011), (Tomašev et al., 2015b), (Buza et al., 2011), and (Tomašev et al.,

2015a) for a survey.

To the best of our knowledge, Buza et al. (2015) was the first to study the presence of hubs in regression

tasks. They focused on nearest neighbor regression and considered various applications, whereas in the

subsequent sections of this paper we study the role of hubs in the estimation of the UPDRS score and

propose a hubness-aware enhancement of ANNs.

2.3 Definitions and notations

A dataset D containing n instances is given. In our case, each instance corresponds to an audio recording.

Numeric features describing characteristic properties of the voice are extracted, therefore, each instance

is a vector of such features. Instances are denoted by xi, 1 ≤ i ≤ n. For each instance xi ∈ D, the value

of the continuous target, i.e., UPDRS score, is given and it is denoted by y(xi). We say that y(xi) is

the label of instance xi and D is the training dataset. With regression we mean the task of predicting

(estimating) the label of an instance x′ 6∈ D.

We use d(xi, xj) to denote the distance between two instances xi and xj . In order to study the

hubness phenomenon, we will use the notion of k-nearest neighbors of an instance x′ which is a subset

ND
k (x′) of D so that |ND

k (x′)| = k and

max
x∈ND

k (x′)
d(x′, x) ≤ min

x∈D\ND
k (x′)

d(x′, x).

We may omit the upper index D, whenever there is no ambiguity. We note that ties may be broken
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Figure 1: a) The nearest neighbor relationship is asymmetric. Some instances never appear as the first

nearest neighbor of other instances while there are some instances that appear frequently as the first

nearest neighbor of other instances. b) Example used to illustrate error correction.

arbitrarily, i.e., in case if there are several subsets fulfilling the above condition, any of them may be

used as the set of nearest neighbors.

3 Bad Hubs in UPDRS Score Estimation

Informally, hubness in datasets refers to the phenomenon that some instances are similar to surprisingly

large number of other instances. In order to quantitatively study hubness in context of UPDRS score

estimation from voice data, we use the notion of k-nearest neighbors.

Let us first note that the k-nearest neighbor relationship is asymmetric: while each instance x ∈ D

has k nearest neighbors, an instance x′ ∈ D does not necessarily appear k times as one of the k-nearest

neighbors of other instances. This is illustrated in Fig. 1a for k = 1. In order to keep the example simple,

we consider two-dimensional vector data, therefore, instances correspond to points of the plane. In the

context of UPDRS score estimation from speech data, we may imagine a simple scenario in which two

numeric features of the audio signals (such as shimmer and jitter) are extracted and we use only these

two features to represent the data. Each of these features may correspond to one of the horizontal and

vertical axis, thus the audio recordings may be mapped to points in the plane.

In Fig. 1a, there is a directed edge from each instance (denoted by a circle) to its first nearest neighbor.

While each instance has exactly one first nearest neighbor, how many times an instance appears as the

first nearest neighbor of other instances (i.e., the number of incoming edges to an instance) is not

necessarily one. As one can see, some of the instances never appear as nearest neighbors of others and

there is an instance that appears as the first nearest neighbor of three other instances. In particular, the

integer next to each instance shows how many times it appears as the first nearest neighbor of others.

Generally, we use Nk(x) to denote how many times the instance x ∈ D appears as one of the k-nearest
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Figure 2: The distribution of N10(x) in case of motor UPDRS scores of the Telemonitoring dataset for

low error instances (in the left), high error instances (in the middle), and both histograms in the same

plot (in the right). Similar observations can be made for the Multiple Sound Recording dataset and total

UPDRS scores of the Telemonitoring dataset as well. Note that, some of the high error instances appear

as nearest neighbors of many other instances, i.e., there are bad hubs in the data. Remarkably, the

distribution of high error instances is shifted to the right compared with the distribution of low error

instances. This indicates that there are more high error hubs than low error hubs.

neighbors of other instances of D. It is easy to see that the expected value of Nk(x) is E[Nk(x)] = k,

however, the actual value of Nk(x) varies from instance to instance. As it was shown by Radovanović

et al. (2010a), Buza et al. (2011), Tomašev and Mladenić (2013), in many cases, the distribution of

Nk(x) is substantially skewed to the right, i.e., there are a few instances with extraordinarily high Nk(x)

values, furthermore, the skewness increases with increasing intrinsic dimensionality of the data. Usually,

instances having surprisingly high Nk(x) are called hubs, while instanced with exceptionally low Nk(x)

are called anti-hubs. More precisely, we say that an instance x is a hub, if Nk(x) > 2k; while an instance

x is an anti-hub if Nk(x) = 0. The phenomenon that Nk(x) is skewed is called hubness and it is often

quantified by the third standardized moment (skewness) of the distribution of Nk(x).

In order to show that there are instances that may mislead machine learning models, we perform

the following analysis on the Telemonitoring and Multiple Sound Recording datasets, both of them

containing voice data for UPDRS estimation. (The datasets are described in Section 4.1 in more detail.)

We considered both estimation tasks (total and motor UPDRS score) associated with the Telemonitoring

data separately. For each instance x, as error(x), we calculate the average absolute difference between

the label of x (i.e. UPDRS score associated with x) and the labels of those instances that have x as one

of their nearest neighbors. Formally, let

Ix = {xj |x ∈ Nk(xj)}, (1)
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then

error(x) =


1

|Ix|
∑

xi∈Ix

|y(x)− y(xi)| if |Ix| ≥ 1

0, otherwise.

(2)

After calculating the above error for each instance, we ordered the instances according to their errors

and selected 25% of the instances having highest error, and another 25% having lowest error. We call

these instances high error instances and low error instances. Throughout the analysis, we used k = 10

and the Euclidean distance over all biomedical voice features present in the datasets. Figure 2 shows the

distributions of N10(x) for low and high error instances of the Telemonitoring dataset in case of motor

UPDRS scores. In the figure, horizontal axis corresponds to N10(x) while the height of the column shows

how many instances have that particular value of N10(x).

As one can see, the distributions of N10(x) are notably skewed. Most importantly, some of the high

error instances appear as nearest neighbors of many other instances. In particular, as we defined hubs

as instances that appear as nearest neighbors of more than 2k instances, we may observe that there

are hubs among the high error instances. We use the term bad hubs to refer to hubs among high error

instances. Additionally, let us note that the distribution of high error instances is shifted to the right

compared with the distribution of low error instances. This indicates that there are more bad hubs than

low error hubs (or good hubs).

Hubs tend to be located in dense regions of the data space, according to recent results, they may even

serve as cluster centers (Tomašev et al., 2015b). Under the assumption that the model will be applied

to instances originating from the same (or at least similar) distribution as the distribution from which

the training data originates, it is essential for any regressor to perform well on instances being “close

to” hubs, because much of the new/test instances are expected to be located exactly in these regions,

i.e., in the proximity of hubs. Therefore, in the next section, we devise a mechanism that is able to

compensate for the detrimental effect of high error instances, including high error instances located at

“central” positions, i.e., bad hubs.

3.1 Hubness-aware Artificial Neural Networks

Next, we describe error correction, a mechanism that can be used to improve the performance of ANNs.

We define the corrected label yc(x) of an instance x as

yc(x) =


1

|Ix|
∑

xi∈Ix

y(xi) if |Ix| ≥ 1

y(x), otherwise,

(3)

where Ix denotes the set of instances that have x as one of their k-nearest neighbors, see Eq. (1) for

the formal definition of Ix. We propose to use the corrected labels instead of the original labels while
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training ANNs. Although, our current work focuses on ANNs, we note that, in principle, the above error

correction technique may be used with various other regressors as well.

Using the example in Fig. 1b we illustrate how the corrected labels are calculated. In Fig. 1b training

instances are denoted by circles. They are identified by the symbols x1...x7. The numeric value next

to each instance shows its label. In order to keep the example simple, we use k = 1 to calculate the

corrected labels of training instances. For training ANNs, the corrected label of all the training instances

need to be calculated, however, we only present the calculations for x4 and x5 as the procedure is the

same in case of the other instances as well. Concretely, the corrected labels of x4 and x5 are:

yc(x4) =
1

2
(39.5 + 19.8) = 29.65, yc(x5) =

1

3
(20.1 + 24.7 + 16.4) = 20.4.

4 Experiments

In this section we present the results of our experimental evaluation of the proposed approach on two

real-world speech datasets associated with UPDRS scores as prediction target.

4.1 Datasets

The Parkinsons Telemonitoring dataset (Tsanas et al., 2010; Little et al., 2009) “is composed of a range

of biomedical voice measurements from 42 people with early-stage Parkinson’s disease recruited to a

six-month trial of a telemonitoring device for remote symptom progression monitoring.”2 In total, the

data contains 5875 instances. Both motor (i.e., part III) and total (i.e., all the four parts) UPDRS scores

as well as temporal information (i.e., on which day the measurements were taken) are available. We use

motor to denote the experiments when the motor UPDRS score was used as target, analogously, total

denotes the experiments when the total UPDRS score was used as target.

We performed experiments on the Parkinson Speech Dataset with Multiple Types of Sound Recordings

as well, to which we refer as multi for simplicity (Sakar et al., 2013). This dataset contains 1040 instances.

Both datasets are available in the UCI Machine Learning repository (Bache and Lichman, 2013). In

case of both datasets, we used jitter and shimmer features.

4.2 Experimental Protocol

We performed experiments according to the patient-based 10×10-fold cross-validation protocol, i.e., in

each round of the 10×10-fold cross-validation, all the instances belonging to the same patient either

appear in the train or test split. This simulates the medically relevant scenario in which historical data

is used to train the model which is then applied to the estimation of UPDRS scores of new patients.

2http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
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As temporal information was available in the Telemonitoring dataset, an additional estimation task

that may be associated with the data is to estimate the change of UPDRS score relative to its initial

value. As it may be highly relevant to identify substantial changes in the UPDRS score of a patient

as early as possible, we also evaluated the proposed technique in the UPDRS score change estimation

context. These experiments are denoted as change motor and change total respectively.

In all the above experiments, features were normalized by subtracting their mean and dividing by

their standard deviation. Mean and standard deviation were calculated on the training subset of the

data (therefore, the normalization was performed in each round of the 10×10-fold cross-validation).

In our experiments, we used the implementation of ANNs from the Weka software package (Witten

and Frank, 2005). In particular, we used feed-forwarld ANNs trained with backpropagation with learning

rate of 0.3, and momentum of 0.2, while the number of training epochs was set to 500. In order to show

that the proposed approach is indeed able to improve the performance of neural networks, we used

neural networks of the same structure both with and without the error correction technique described

in Section 3.1. While performing error correction, we used the Euclidean distance and k = 10 as the

default k-value in order to calculate the nearest neighbor relationship. Error correction was performed

only on the training set, i.e., in both cases (with and without error correction) we aimed to predict the

same target.

We use a comma separated list of integers to denote the structure of ANNs: each item of the list

corresponds to one of the hidden layers and it denotes the number of neurons in that layer. For example,

“Net-5,5” denotes an ANN with two hidden layers each of them containing 5 neurons. We performed

experiments with ANNs of six different structure: one hidden layer with 5, 10 and 20 neurons and two

hidden layers with 5, 10 and 20 neurons each.

4.3 Performance Metrics

We measured the performance of our approach and the baselines in terms of mean absolute error (MAE)

and root-mean-square error (RMSE):

MAE =
1

|Dtest|
∑

xj∈Dtest

|ŷ(xj)− y(xj)|, RMSE =

√√√√ 1

|Dtest|
∑

xj∈Dtest

(
ŷ(xj)− y(xj)

)2
,

where Dtest and |Dtest| denote the test set and its size respectively, ŷ(xj) denotes the label predicted for

instance xj , while y(xj) denotes the true label of instance xj . We used paired calibrated t-test proposed

by Bouckaert (2003) at significance level of 0.05 to examine if the ANNs with error correction statistically

significantly outperform ANNs without error correction. For simplicity, we only report results for MAE,

but we note that we observed similar trends for RMSE as well.
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Table 1: Mean absolute error averaged over 10×10 folds with (+EC) and without error correction (–EC).

The MAE-value is underlined, if the difference is statistically significant.

model motor total multi change motor change total

+EC –EC +EC –EC +EC –EC +EC –EC +EC –EC

Net-5 7.206 7.669 9.477 10.080 13.944 14.139 3.150 3.445 3.830 4.117

Net-10 7.232 7.687 9.504 10.056 13.968 14.548 3.148 3.469 3.827 4.127

Net-20 7.276 7.822 9.594 10.065 14.104 14.505 3.136 3.440 3.824 4.109

Net-5,5 7.220 7.558 9.451 10.035 13.764 14.114 3.103 3.473 3.716 4.022

Net-10,10 7.239 7.572 9.476 10.025 13.797 14.145 3.104 3.451 3.718 4.004

Net-20,20 7.266 7.589 9.452 10.014 13.852 14.260 3.106 3.434 3.712 4.013

4.4 Results

In each of the 5 different contexts (i.e., motor, total, multi, change motor and change total), we examined 6

types of neural networks, this gave in total 30 experiments. In each of these 30 experiments, we compared

neural networks using error correction (+EC) and neural networks without (−EC) error correction.

Table 1 summarizes the results. We report MAE averaged over 10×10 folds. As one can see, the

proposed error correction mechanism systematically improves the quality of UPDRS score estimation.

In particular, in all of the aforementioned 30 experiments, the neural networks with error correction

outperformed the neural networks without error correction. The improvement is statistically significant

in 24 experiments.

As noted previously, error correction may be used with various models. Therefore, we examined the

effect of error correction on other regression techniques as well. Fig. 3.a shows the performance of various

models in case of estimating the motor UPDRS score with and without error correction. In particular,

we consider: (i) Net-5, feed-forward artificial neural network with one hidden layer containing 5 neurons,

(ii) k-NN, k-nearest neighbor regression with k = 10, (iii) M5P regression trees from the aforementioned

Weka machine learning library and (iv) SVM, support vector regression with linear kernel. As one can

see, error correction is able to improve the performance of these models as well.

As described above, in order to perform error correction, k-nearest neighbor relationships are com-

puted first. Fig. 3.b shows the performance of Net-5 when performing error correction with various

k-values. As one can see, error correction systematically improves the performance of the model for all

the examined k values, while k values between 5 and 10 are preferable.
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Figure 3: a) Performance (MAE) of various models when predicting the motor UPDRS score with

(+EC) and without (−EC) error correction. b) Performance of Net-5 with error correction (+EC) using

various k-values, and without error correction (−EC).

5 Discussion

During spontaneous usage of tablets, smartphones and laptops, these devices are able to capture un-

precedented amount and variety of data about their users. The gathered information may range from

the dynamics of typing recorded while the user writes short messages or e-mails, over voice recordings

performed during phone or skype calls, to GPS coordinates and social connectivity features (such as how

many people the user regularly writes messages to). It is hypothesized that such information might be

related to various disorders or predict unexpected changes of the user’s health conditions (Estrin, 2013).

Given the relatively high and increasing computational power of smartphones and tables, processing and

analysis of the data collected during spontaneous usage became technologically possible. This is expected

to give rise to visionary healthcare applications that support medical doctors in diagnostic decisions and

treatment of diseases.

While much of the research focuses on understanding the background of PD, see e.g. (Zimprich et al.,

2003) and (Balicza et al., 2012), in this paper, we focused on the estimation of UPDRS score from

biomedical voice measurements. Due to the fact that the user’s voice can be simply recorded during

spontaneous interactions with tablets or smartphones, we strongly hope that our paper is a step towards

the usage of tablets and smartphones in the strict follow up of PD. Such visionary applications, once

they will be realized, will not only allow for cheap and continuous monitoring of patients’ status, but the

resulting data is expected to increase the patients’ and their relatives’ awareness of the disease which is

one of the key factors of successful treatment of the disease.

We hope that, on the long term, similar approaches will be used for diagnosis and monitoring of other

diseases as well. For example, Estrin (2013) reported that reduction of hearing abilities could be detected

by examining the volume at which the user listened to music on his smartphone. This increased the

patient’s awareness of the disease, and convinced the patient to turn to medical doctors for examination.
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Dementia and cognitive impairment, see e.g. (Bereczki and Szatmári, 2009), is another domain in which

telemonitoring systems might be advantageous on the long term.

Regarding the limitations of our study we have to mention that it is likely that the accuracy of

UPDRS score estimation needs to be increased further for successful applications. Therefore, incorpo-

ration of further data mining techniques, such as monotonization (Horváth et al., 2011) and monotone

models (Horváth and Vojtáš, 2006) and the adaptation of hybrid solutions (Woźniak et al., 2014) might

be advantageous. We also mention that the proposed error correction technique may contribute to avoid

overfitting to hub instances having non-representative labels. In contrast, conventional regularization

techniques focus on model complexity and treat all the instances equally important. More detailed study

of the relation between regularization and error correction is left for future work.

The data recorded during spontaneous usage of smartphones and tablets was originally not designed

for diagnostic purposes, therefore, even the most useful pieces of the data can only be expected to be

weakly correlated with medically relevant conditions. Note, however, that a combination of weak features

may serve as a reasonable predictor even if the features are weak predictors separately and, by training

neural networks, the machine is expected to learn the appropriate combination of those individually

weak predictors. On the other hand, medical doctors are expected to play a crucial role in the correct

interpretation of the data and potential additional examinations. The overall workload of medical doctors

will not necessarily decrease: although continuous telemonitoring might replace some of the scheduled

face-to-face meetings between patients and doctors, due to the continuous monitoring of UPDRS score

or other conditions, and possible false alarms generated by automated recognition systems, patients may

ask for more appointments with medical doctors.

6 Conclusions

In this paper, we focused on the automated estimation of UPDRS score based on biomedical voice

measures. This is a crucial component of telemonitoring systems for PD patients. We studied the hubness

phenomenon in context of the UPDRS score estimation and proposed a hubness-aware error correction

for artificial neural networks. We performed experiments on publicly available real-world datasets and

showed that the proposed technique systematically improves estimation accuracy as measured by MAE

and RMSE.
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aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by

pearson’s correlation. Neuroscience Letters, 502(3):225–229, 2011.

Lena Hartelius and Per Svensson. Speech and swallowing symptoms associated with parkinsons disease

and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica, 46(1):9–17, 1994.
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