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Seven synthetic hexaploid wheats (7riticum dicoccum/Aegilops tauschii) were subjected
for investigation. Numerical variation of chromosome number in F, hybrids between three
synthetics and common wheat varieties, was recorded. Hexaploid amphiploids (SHW)
formed gametes with aneuploid chromosome number at a frequency of 13.2 and 14.8% as
male and female parents, respectively. We speculated that the frequency of aneuploids in the
generation might depend on variability of BA'- and D-genomes of synthetic parents, and
could be used for increasing the genetic diversity in common wheat. The HMW-glutenins
analysis divided two lines in SHWS530 and 532 due to different genes present in the
B-genome, and increased them to 9 synthetic lines. The subunits 1Dx1.5+1Dy10 was pre-
dominantly observed in the synthetics. Two other allelic variants 1Dx2+1Dyll and
1Dx4+1Dy10.1 were found in four lines and appeared as new genes in SHW originated
from Aegilops tauschii. The synthetic hexaploid lines could play a significant role as novel
germplasm resources for improving the grain quality of bread wheat.

Keywords: Aegilops tauschii, tetraploid wheat, mitotic chromosomes, glutenins, syn-
thetic amphiploids

Abbreviations: SHW — synthetic hexaploid wheat; HMW-GS — high-molecular-weight
glutenin subunits; IPGR — Institute for Plant and Genetic Resources — Sadovo, Bulgaria

Introduction

Common wheat (Triticum aestivum L., 2n =42, AABBDD) is a globally important food
crop and will become even more significant as the world’s population increases. Domes-
ticated hexaploid wheat has evolved from two spontanecous hybridization events. Tetra-
ploid 7. turgidum wheat (2n = 28, AABB) hybridized with diploid Aegilops tauschii Coss.
(2n =14, DD) followed by spontaneous chromosome doubling is the commonly quoted
concept for the origin of common wheat (Feldman 2001). However, it is widely recog-
nized that only a limited number of individuals of parents were involved in the origin and
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evolution of hexaploid wheat. Thus, the genetic diversity of 7. aestivum is fairly narrow
compared with that of its two donor species, and most of the genetic variation found in
tetraploid wheat and Aegilops tauschii is not available in the present wheat germplasm.

The genetic resources of tetraploid and diploid wheats, including Aegilops species, can
be used as primary resources of elite genes for breeding of modern wheat cultivars. The
production of synthetic amphiploids is an effective and rapid way of introgressing desir-
able traits from related species into domesticated wheats (Goncharov et al. 2007). Using
the genetic resources of wild relatives is the best strategy to improve the quality and
productivity of durum and common wheat. Numerous studies have been carried out to
produce and investigate wheat-alien hybrids in order to clarify the inheritance and gene
control of important traits in segregating populations. Synthetic hexaploid wheats (SHW)
are good example as resulting products of wide hybridization in developing novel
genetic lines and SHW-derived wheat varieties (Plamenov and Spetsov 2011; Li et al.
2014). Genes of interest can be introgressed into common wheat by the ‘bridge’ of re-
synthesized hexaploid or amphidiploids, obtained from crossing the tetraploid wheats
with Ae. tauschii, in a manner analogous to the evolution of hexaploid wheat.

The study aimed to investigate the somatic chromosome number in F, hybrids, ob-
tained by crossing three synthetic wheats (7riticum turgidum ssp. dicoccum/Aegilops
tauschii) with T. aestivum varieties, and identify HMW-glutenin subunits in seven syn-
thetic amphiploids as potential genetic sources for wheat quality improvement.

Materials and Methods

The investigated seven SHW (Nos 32, 106, 107, 530, 531, 532 and 83/27) are presented
in Table 1 [genome formulae followed the classification of Goncharov et al. (2009)].
Wheat variety Bezostaya-1 was used as a check in the protein analysis.

Five Aegilops tauschii accessions were successfully involved in breeding of synthetic
wheats. Mitotic chromosome counting was performed in hybrid seedlings, obtained be-
tween single plants of Nos 530, 531 and 532 and some Bulgarian and Czech bread wheat
varieties. A sample of 50 grains per line was crushed and ground to powder. Extraction of

Table 1. Pedigree of the synthetic hexaploid wheats employed in the study

Breeding No. Pedigree
32 F, (44961/Zagorka®/45432)/Ae. tauschii No 19089
106 F, (44961/Zagorka/45432)/Ae. tauschii No 22744
107 45398/Ae. tauschii No 22744
530 510F, (45390/45398)/Ae. tauschii No 19088
531 S510F, (45390/45398)/Ae. tauschii No 30422
532 510F, (45390/45398)/Ae. tauschii No 22744
83/27 T. dicoccum Khapli-1Il/Ae. tauschii No 001

aBulgarian 7. durum variety; T. dicoccum accessions 44961, 45390, 45398 and 45432 were obtained from the ICARDA,
Syria; Aegilops tauschii accessions 001, 19088, 19089, 22744 and 30422 originated from the IPGR — Sadovo, Bulgaria.
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Table 2. Somatic chromosome number of F, hybrids, obtained by crossing three SHW (Nos 530, 531 and
532) to bread wheat cultivars

Chromosome number
Cross NPC

41 41t 42 42t 43 (6]
Aglika/530-3 12 2 1 7 1 1
Milena/530-1 1 1
Pobeda/530-4 10 10
Antitsa/530-3 6 1 5
Alana/530-1 5 4 1
Sulamit/530-2 1 1
Vlasta/530-4 7 4 3
Slaveya/530-3 7 5 1 1
Vlasta/530-2 9 8 1
Trakiya/530-4 12 12
Svilena/530-4 7 7
Enola/530-3 3 1 2
Polena/530-4-0 11 10 1
Slaveya/530-4 15 15
Milena/532-2 1 1
Slaveya/532-2 3 3
Vlasta/532-6 11 11
Total 121 3(2.5) 1 105 (86.8) 3 8 (6.6) 1
530-3/Korona 4 1 3
530-5-6/Enola 6 6
530-1-2/Karat 7 7
530-4-0-1/Aglika 9 2 7
530-4-2-2/Aglika 12 11 1
531-2-2/Korona 8 1 7
532-1-1/Polena 16 16
532-1-4/Aglika 13 13
532-6-1-1/Meritto 13 5 7 1
Total 88 8(9.1) 75 (85.2) 4 (4.6) 1

NPC — number of plants checked; t — telosome; O — others. Means (in %) of hybrids with 2n = 42 are not statistically dif-
ferent.
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HMW-glutenins was performed on vertical apparatus followed the classical one-dimen-
sional 12% polyacrylamide gel, SDS—PAGE (Singh et al. 1991; Lafiandra et al. 1993).
Universal system for arrangement and numbering of HMW-GS in wheat was employed
and a method for Glu-1 score assessment as a criterion for wheat quality, too (Payne
1987).

The data were statistically evaluated by analysis of variance with #-test using Assistat
version 7.7 beta (www.assistat.com). The genetic diversity at each locus was calculated
using Nei’s index (Nei 1973) and allelic frequencies were determined by summing the
frequencies of alleles in the individual lines, dividing this total by the number of amphi-
ploids.

Results

Chromosome number of hybrids obtained by crossing single plants of SHW530, 531 and
532 with some common wheat varieties, was counted (Table 2). A set of 121 hybrids, re-
ceived from crosses with SHW as pollinators, were checked and 105 (86.8%) proved to
have 42 chromosomes. The rest hybrids exhibited different number of chromosomes: 8
(6.6%) plants contained 43 chromosomes, 3 (2.5%) — 41 chromosomes, and the remain-
ing 5 individuals possessed different number of chromosomes with a telosome. From the
reciprocal combination, 75 (85.2%) plants of 88 investigated hybrids had 42 chromo-
somes. Four (4.6%) plants possessed 43 chromosomes and eight (9.1%) — 41 chromo-
somes. Some other karyotypes contained 40, 41 and 41 chromosomes. The difference
between hybrids with 2n = 42 in the reciprocal crosses was not statistically proven.
Eleven allelic variants of HMW-GS were detected in the synthetics (Table 3 and
Fig. 1). The analysis differentiated two lines in Nos 530 and 532 due to different genes

Table 3. Allelic frequencies of HMW-GS at Glu-1 loci of nine SHW (including two lines in Nos530 and 532)

Locus Allele Subunit Glu-1 quality Number of lines Frequency
score %

Glu-A1 a 1 3 2 22.2
H* =049 X 1.1 - 6 66.6
c Null 1 1 11.1
Glu-B1 b 7+8 3 4 44.4
H* =072 f 13+16 3 1 1.1
17+18 3b 1 11.1
h 14+15 32, 2b 2 222
k 22 1 1 11.1
Glu-D'1 ah 1.5+10 - 5 55.5
H*=0.59 - 2411 - 2 222
— 4+10.1 - 2 222

#Branland and Dardevet 1985.
"Bahraei et al. 2004.
*Index for genetic diversity (Nei 1973).
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presented at the Glu-B1 locus, and increased them to 9 synthetic lines. Three of the vari-
ants were at the Glu-A1 locus, five-in Glu-B1 and three-in Glu-D'I. At the Glu-A1 locus,
the composition of alleles were only contributed by x-type subunits, viz. 1Ax1, 1Ax1.1
and Null, which are controlled by Glu-Ala, Glu-Alx and Glu-Alc. The x allele was the
most frequent (encoded for subunit 1.1) in six genotypes, followed by « allele and ¢ allele.
Five allelic variants were detected at the G/u-B1I locus. The most frequent was b allele,
controlled the pair 7 + 8 in four genotypes, followed by # allele, responsible for subunits
14 + 15 in two synthetic lines.

From all HMW-GS variants, the D-genome alleles are essential for wheat dough and
flour properties. The Glu-D'I locus was contributed by three alleles with the combination
of three x-type and y-type subunits (Table 3). The x-type subunits included 1.5, 2 and 4
variants, whereas the y-type subunits exerted the composition of 10, 10.1 and 11. The
most frequent subunit pair 1Dx1.5 + 1Dy10 encoded by allele Glu-D1ah, was observed in
five synthetic amphiploids including SHW32 and 106, which have the same female hy-
brid parent (Table 1, Fig. 1).

Discussion

SHW and their synthetic derivative lines have been used as a means of introducing novel
genetic variation into bread wheat (MclIntyre et al. 2014; Rasheed et al. 2014). Beneficial
SHW traits, such as large grains and high tiller number, were transferred into Sichuan
varieties (Li et al. 2014; Ma et al. 2014). Mestiri et al. (2010) analyzed first generations
of synthetic allohexaploids and found progenitor-dependent meiotic irregularities, such
as incomplete homologous pairing, resulting in univalent formation and leading to aneu-
ploidy in the subsequent generation. High variation of chromosome number in newly
synthesized hexaploid wheats were also recorded by Niwa et al. (2010). We investigated
somatic chromosome number in 209 hybrids between Nos 530, 531 and 532, and 15
bread wheat cultivars. It is known that bread wheat varieties usually form gametes with
21 chromosomes. Thus, some of the synthetic plants as male or female in crosses, pro-
duced gametes with different chromosome number, at a frequency of 13.2-14.8%. We
speculated that the frequency of aneuploids in the generation might depend on variability
of BAY- and D-genomes of synthetic parents, and could be used for increasing the ge-
netic diversity in hybrid populations.

No y-type subunits at the Glu-A1 locus were found, although some authors reported
their associations with good bread-making quality in wheat (Rasheed et al. 2012). Subu-
nits 1.5 + 10 was discovered in SHW by William et al. (1993) and proved to have signifi-
cant influence on bread-making traits (Tang et al. 2008).

Giraldo et al. (2010) analyzed 165 Spanish wheat landraces and found four, nine and
three subunits at the Glu-41, Glu-B1 and Glu-D1 loci, respectively. Subunits 1.1, 14 + 15,
22, 1.5+10,2+ 11 and 4 + 10.1, found in this study, were not among them. Yasmeen et
al. (2015) analyzed 242 lines of wheat, including landraces from the provinces of Punjab
and Baluchistan, as well as the commercial varieties of Pakistan, and observed rare and
uncommon variants in the Glu-B1 locus. Five subunits, reported in this study, including
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the three pairs in the Glu-D'1, were not detected by the authors. Ribeiro et al. (2013)
studied the Portuguese wheat Barbela and reported a new x-type HMW-GS encoded at
the Glu-A1 locus that was named /A4x!. 1., while Ravel et al. (2014) discovered Glu-B1-1
protein 22 in Fruh-weizen (13310) wheat accession. We investigated nine SHW and re-
ported 11 subunits (3 at the Glu-D'/ locus) as compared to Rasheed et al. (2012) analyz-
ing ninety-five Elite-1 synthetic hexaploid wheats (7Triticum turgidum/Aegilops tauschir)
with 22 glutenins (13 at the Glu-D!'I locus). Five subunits (1.1, 14+ 15, 22, 2+ 11 and
4+10.1) reported here, were not present in the Elite-1 subset. Two of them, the pairs
2+ 11 and 4+ 10.1, encoded at the Glu-D!I locus, are the HMW-GS published for the first
time.

Trait variation in the SHW lines may contribute beneficial grain quality to modern
wheat cultivars through introgression of novel allelic diversity.
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