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Abstract: Constitutive description of deformations in technical textiles mostly requires some 

highly nonlinear material law due to the interaction between the orthotropic yarns and the 

effect of the matrix. Phenomenological models aim to garb the overall (macro level) behavior 

required for engineering purposes. This paper introduces a new, two-dimensional 

phenomenological model for technical textiles accompanied with a data acquiring strategy to 

determine the material parameters involved in the model. It handles the nonlinear stress-strain 

relation observed in uniaxial tests and take the interactions in the two, orthogonal directions 

into account. As we aim to introduce a solution applicable at the service level of the loads, our 

model is inherently elastic, no time dependent or plastic behavior are introduced. The model 

can be solidly fit to the measured data. 

 

Keywords: technical textiles, biaxial test, nonlinear constitutive law 

 

 

1. Introduction 

 

The observed deformation of textile composites under in-plane loading is nonlinear for 

several reasons: geometrical nonlinearity can be associated with the woven microstructure of 

the textile and the yarns contribute in a significant material nonlinearity. Furthermore - for 

specific materials - substantial time-dependent deformations may occur. This paper is 

intended to describe a data acquiring strategy and a novel nonlinear elastic constitutive model 

which takes the interaction between the two orthotropic directions into account. 

 

The new phenomenological model aims to provide a simple and fairly accurate method for the 

structural analysis of textile materials at the service level of the loads. The ultimate failure of 

the structure is not in our interest. The widely used partial (safety) factors for technical 

textiles limit the service stress level to 30-40 % of the ultimate strength of the material. To 

reduce the effect of plasticity and viscous deformations, PTFE coated glass fiber woven 

textile was used in short-time uniaxial and biaxial tests. The glass fiber has an almost linear 

elastic behavior and essentially no viscous deformation at the targeted (moderate) stress level. 

Nevertheless, the measured data reflects the nonlinear effect of the PTFE coating. 

 

Recent methods in the literature are based on the adequate involvement of the material's 

microstructure (Haan[12], Ballhause[4], Durville[10]). They construct the model from 

feasible components at the micro level via detailed constitutive laws of the yarns, the coating 

matrix and the interactions between these elements. The phenomenological model at the 

continuum level is reached via some homogenization technique or an appropriate strain-
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energy function is defined (dell'Isola[15]) that adequately describes the behavior of the fabric. 

Nevertheless, a detailed description of the internal geometry is also essential in this case. A 

shortcoming of such approaches is the high computational cost arising from the detailed 

description. Therefore, these methods are most often impractical for engineering problems. 

 

There are phenomenological methods that describe the overall (macro) nonlinear behavior of 

the continuum by adequate nonlinear functions. Nevertheless, such a non-linear relation can 

be derived for models based on the microstructure mentioned above. However - as long as the 

elastic range is treated - a direct fit for macroscopic data might be preferable, since the 

assessment of numerous material parameters and the detailed geometry (needed for modeling 

at the fabric level) can be omitted. Apparently, there are several, solely macroscopic models 

in the literature. The dense net method uses two independent functions to be fitted to the 

uniaxial measurements in the two orthotropic directions (Ambroziak[1][2]). It uses nonlinear 

functions to represent the different slopes of the stress-strain curves (Chaboche[8], 

Bodner[5]), however it lacks to handle the interaction between the two orthogonal yarn 

directions, practically there is no transversal interaction in the model. Spline methods(Day[9], 

Bridgens[6][7])define the surface for the stress as a function of the two orthogonal 

elongations. By this method an accurate interpolation can be achieved to the measured data 

and the transversal interaction is accounted, too. Nevertheless, the usage of the power 

equations of the spline can lead to divergence in the nonlinear analysis because the power 

equations are hectic for extrapolation. During the nonlinear analysis of membrane extremely 

high strains occur, thus unreliable extrapolation should be avoided. 

 

Our approach can be interpreted as a generalization of the classical elastic constitutive law for 

an orthotropic medium in two dimensions(Lampiere[16], Sipos[18]). To provide a better fit 

with the measured data in uniaxial and biaxial tests, exponential functions are used and the 

interaction of the two directions is modeled with a power function. The new elastic model 

gives a good approximation at the service load level of the structure and presents a proper 

extrapolation to have a stable numerical analysis. This is necessary to avoid the instability in 

the numerical analysis of the structure at stress localization zones (Sadd[17]). 

 

 

 

2. Model development 

 

2.1. Uniaxial behavior 

 

A realistic model should simultaneously explain the material response in uniaxial and biaxial 

tests. First we introduce the terms reproducing the uniaxial behavior. Nevertheless, the 

uniaxial response is tested in the wrap and weft directions of the material. Two typical 

uniaxial tensile test curves are depicted in Fig. 1 and Fig. 2in the warp and in the weft 

directions, respectively.  

 

In all measurements we determine the engineering stress: the strain is related to the original 

length and the stress is calculated by the original area of the cross section. In nonlinear 

calculations usually the Lagrange strain is used with the Second-Piola stress tensor to model 

large strains. In the case of membrane structures higher accuracy is required: the Biot strain 

and Cauchy stress tensors are practical (Hegyi[13][14]). The Biot strain is practically identical 

to the stretch tensor. In the further parameter analysis, we employ this phenomenon. During 
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the analysis of the experimental data the stretch and the engineering stress can be easily 

calculated.  

 

 

 

Figure 1. Measured stress, a typical stress-strain curve of a uniaxial tensile test in the warp 

direction. 

 

 

 

Figure 2. Measured stress, a typical stress-strain curve of auniaxial tensile test in the weft 

direction 
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It is worthy to note, that the stress-strain curves above hints to an inflection point along the 

curve. This feature seems to be typical among technical textiles. To reproduce the inflection 

in the uniaxial response a reasonable choice is a linear combination of two exponentials: 

 

𝜎𝑤 ,0 = 𝑓𝑥1(𝜀𝑤) + 𝑓𝑥2(𝜀𝑤) = 𝑎1𝜀𝑤 1− 𝑒−𝑎3𝜀𝑤
2
 + 𝑎2𝜀𝑤(𝑒

−𝑎4𝜀𝑤
2
),   (3) 

𝜎𝑓 ,0 = 𝑓𝑦1 𝜀𝑤 + 𝑓𝑦2 𝜀𝑤 = 𝑏1𝜀𝑓  1 − 𝑒−𝑏3𝜀𝑓
2

 + 𝑏2𝜀𝑓  𝑒−𝑏4𝜀𝑓
2

     (4) 

 

where σw,0 is the stress in the warp direction, εw is the strain in the warp direction and a1, a2, a3 

and a4are material parameters. Similarly, σf,0 and εf denote the stress and strain in the weft 

direction, respectively. This expression fits well to the measured stress-strain diagrams: 

observe the resemblance of the σw curve in Figure 3(with parameters a1=2,0 –a2=0,5 – a3=0,5 

– a4=10).and the output of the measurements in Figure 1 and Figure 2. 

 

 
 

Figure 3. Calculated stress-strain diagram plotted by exponential functions. 

 

 

2.2. The interaction between the two yarn directions 

 

Any elastic constitutive law should satisfy the energy conservation law. It is well known, that 

this requirement manifests in a symmetric stiffness matrix. In other words, the following 

derivatives must be equal: 

 
𝜕𝜎𝑤

𝜕𝜀𝑓
=

𝜕𝜎𝑓

𝜕𝜀𝑤
.          (5) 

 

where w and fare the stress in the warp and fill directions, respectively. Nevertheless, in the 

general case w and fare functions of two variables, εw and εf . 

 

We seek a form that satisfy Eq. 5,is in accordance with the measured stresses in the biaxial 

tests and the transversal deformations in the uniaxial tests. This latest is an inherent 

consequence of the microstructure of the material. In specific, the yarns of textile composites 
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are woven, they mutually bend each other. The matrix (PTFE in our samples) around the 

yarns are much softer than the yarns itself, thus the matrix contributes to the total 

deformation, too. This special arrangement has a significant effect on the transversal 

deformations.  

 

For uniaxial tests Fig. 4 and Fig. 5depict the measured transversal deformation. 

 

 

 

Figure 4. Transversal deformation, uniaxial test, warp loading. 

 

 

 

Figure 5. Transversal deformation, uniaxial test, weft loading. 

 

The trend of the transversal deformations in the uniaxial tests (Fig. 4. and 5.) makes it clear 

that the terms expressing interaction between the two directions cannot be linear. This means, 

a simple orthotropic response is not sufficient in our case. With a slight generalization of the 

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

0
,0

0

0
,0

7

0
,2

6

0
,5

0

0
,7

6

0
,9

6

1
,1

4

1
,2

8

1
,3

4

1
,5

0

1
,5

7

1
,8

6

2
,1

1

2
,2

4

2
,4

9

2
,6

3

2
,7

1

2
,9

1

3
,0

9

3
,2

3

3
,5

0

3
,6

6

w
e

ft
 s

tr
ai

n
 [

%
]

warp strain [%]

warp uniaxial test

-4,5

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

0
,0

0

0
,6

5

0
,4

7

0
,7

3

1
,3

8

1
,1

5

1
,5

9

2
,2

7

2
,2

0

2
,5

8

3
,4

0

3
,3

8

3
,6

0

4
,5

1

4
,6

2

4
,5

9

5
,4

5

5
,8

2

5
,6

8

6
,1

5

6
,9

1

w
ar

p
 s

tr
ai

n
 [

%
]

weft strain [%]

weft uniaxial test



6 

 

orthotropic model one arrives to the following expression (it includes the terms from Eqs. (8) 

and (9)): 

𝜎𝑤 = 𝑎1𝜀𝑤 1− 𝑒−𝑎3𝜀𝑤
2
 + 𝑎2𝜀𝑤 𝑒−𝑎4𝜀𝑤

2
 + 𝑐1𝜀𝑓(𝜀

2
𝑤𝜀2𝑓)

𝑐2 ,   (8) 

𝜎𝑓 = 𝑏1𝜀𝑓  1 − 𝑒−𝑏3𝜀𝑓
2

 + 𝑏2𝜀𝑓  𝑒−𝑏4𝜀𝑓
2

 + 𝑐1𝜀𝑤(𝜀
2
𝑤𝜀2𝑓)

𝑐2 .   (9) 

 

 
 

Figure 6. Calculated transversal deformation for uniaxial loading. 

 

Figure 6 represent the calculated curve of the transversal deformation with parameters a1=1, 

a2=1, a3=1, a4=1, c1=1, c2=0,25. 

 

Note, that c1 and c2 are material parameters. With a1=a3=a4=b1=b3=b4=c2=0 we obtain the 

classical linear model of an orthotropic medium. Nevertheless, the symmetry condition in Eq. 

(5), and thus the energy conservation criteria is satisfied: 

 
𝜕𝜎𝑤

𝜕𝜎𝑓
=

𝜕𝜎𝑓

𝜕𝜎𝑤
= 2𝑐1𝑐2(𝜀𝑤𝜀𝑓)

2𝑐2 + 𝑐1(𝜀𝑤𝜀𝑓)
2𝑐2 .     (10) 

 

Observe the similarity between the measured and computed transversal deformations in 

Figs.4, 5 and 6. 

 

A realistic model should contain a contribution from shear. At this stage of model 

development we neglect that contribution since the shear stiffness of technical textiles is about 

two order smaller respect to the normal stiffness in one of the orthogonal directions (Day[9]). 

Based on our experience, just about 1-2% of the initial slope of the normal strain can be used 

as a good approximation (Hegyi[14]). This observation significantly simplifies the 

experimental work, too.  

 

Our assumption about the magnitudes of shear has another consequence: we take a nearly 

diagonal deformation gradient F associated with the measurements. The Biot strain in this 

special can be approximated as E
Biot

≈U-I=F-I, where U is the unitary matrix from the polar 

decomposition of F and I is the unit matrix in R
2
. It is worthy to note, that with this 

simplification the strain energy associated with the stresses in Eqs. (8) and (9) fulfill material 

objectivity. 
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3. Experimental  

 

3.1. Experimental arrangements 

 

To get proper parameters for the new constitutive law three experiment series were carried 

out: uniaxial tensile tests in warp and weft directions and biaxial tests. To record data, a 

Messphysik ME-46 full image video-extensometer were used in all cases. The measured area 

was a 30×30 mm square in the middle of the specimen. The longitudinal and the transversal 

elongations were measured in all cases. 

 

For the uniaxial test standard specimens were used: their width was 50 mm, the grip distance 

was 200 mm. Displacement test were carried out, the speed of elongation was 0.50 mm/s in 

all tests. The tests terminated after the failure (break) of the specimen and 40% of the ultimate 

load was used for parameter identification. 

 

For the biaxial tests a special equipment was used. It is a kind of pulley system developed by 

the authors(Bakonyi[3], Hegyi[14]). The testing configuration can be seen in Fig.7. An X 

shape specimen is folded through a pulley system: two “legs” are going up and two going 

down to the grips of a standard unidirectional tension testing machine. The pulleys' position 

determines a flat area for the proper measurement. The width of the “legs” are 100 mm, the 

radius at the intersections are 25 mm. Displacement test were carried out, the speed was 0.80 

mm/s in all tests. 

 

 
 

Figure 7. The bidirectional testing equipment. 
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The engineering stress in the optically measured area can be calculated as an average in case 

of the unidirectional test: the measured force of the testing machine is divided by the width of 

the specimen. To approximate the stress for the bidirectional tests a FEM analysis was 

needed. Unit stress were applied at the end of the “legs” of the virtual specimen. The stress 

level varies between 68.2-68.8% of the unit at the edge of the measuring area (Fig.8), so it is 

almost constant. Although it was a linear FEM analysis, we can expect almost the same 

distribution for the real specimen. From the measured force stress can be calculated to the 

“legs” of the specimen and the 68.5% of this stress were taken into account the measured 

area. 

 

 
 

Figure 8. FEM analysis to approximate the stress level in the measured area. 

 

 

3.2. Parameter identification 

 

As it is general in the literature, the material parameters of the model might be approximated 

by a least square minimization from the measured data: 

 

Ω =    𝑠𝑤𝑖 − 𝜎
𝑤 𝜀𝑖

𝑤 ,𝜀𝑖
𝑓
 
 
2

+  𝑠𝑓𝑖 − 𝜎
𝑓 𝜀𝑖

𝑤 ,𝜀𝑖
𝑓
 
 
2

 𝑛
𝑖=0  𝑚𝑖𝑛   (11) 

 

where n is the number of available measurements and swi and sfi denote the measured stresses 

in the warp and weft directions, respectively. The objective function Ω is the linear 

combination of the squared errors in the two directions. A serious shortcoming of such an 

approach is that due to the presence of the exponentials in the model (and the numerous 

material parameters) the objective function is far from being convex, it possesses many local 



9 

 

minima. Even a slight change of the initial guess of the parameters can result in a significant 

shift in the parameter space. This is a widely known problem of regression models with 

exponentials (Golub[11]). 

 

To obtain a reliable method, observe, that the following rearrangement of Eqs. (8) and 

(9)makes the third, interaction term vanishes: 

 

𝑆 ≔ 𝜎𝑤𝜀𝑤 − 𝜎𝑓𝜀𝑓 = 𝑎1𝜀𝑤
2 1− 𝑒−𝑎3𝜀𝑤

2
 + 𝑎2𝜀𝑤

2 𝑒−𝑎4𝜀𝑤
2
 − 

𝑏1𝜀𝑓
2  1− 𝑒−𝑏3𝜀𝑓

2

 + 𝑏2𝜀𝑓
2  𝑒−𝑏4𝜀𝑓

2

  (12) 

 

Nevertheless, a counterpart of S, namely 𝑇 ≔ 𝑠𝑤𝑒𝑤 − 𝑠𝑓𝑒𝑓  can be computed from the 

measured stress (sw and sf) and strain data. To find the minimal deviation between S and T we 

use a MATLAB implementation of the variable projection method (O'Leary[19]).It 

determines all the linear and nonlinear parameters of the exponentials (i.e. a1-a4 and b1-b4) in 

our model. In numerical simulations we found, that this approach is much more robust for our 

data sets than a direct application of the least-square method in Eq. (11). 

 

Having optimal values for the parameters of the exponentials we finally determine the 

parameters c1 and c2in the interaction term. Here least-squares is a perfect choice: we 

substitute the already computed values of a1-a4 and b1-b4 into our model and apply Eq.(11) to 

obtain optimal values for c1 and c2. 

 

Note, that we expect positive reals for all parameters and in advance we expect c2<1 to match 

our observations about the transversal behavior (Fig. 4 and 5). Our scheme produces 

parameters in accordance with these expectations. 

 

The best-fit parameters for the material in our experiments are: a1=7.11, a2=6.97, a3=0.831, 

a4=1.94, b1=1.51, b2=3.07, b3=0.268, b4=0.727, c1=0.537, c2=0.335. It is worthy to note that 

the applied methodology is fairly robust: parameter fit just for the uniaxial or solely for the 

biaxial data result in close parameter values to the ones presented above. The results of the 

parameter fit are represented in Figures9 and 10. 
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Figure 9. The result of the parameter identification for the weft direction. 

 

 
Figure 10. The result of the parameter identification for the warp direction. 
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5. Discussion and verification 

 

To obtain the actual normal stresses from the bidirectional strains Eqs. (8) and (9) are applied. 

In practical numerical analysis of a structure the constitutive law is represented via the 

stiffness or the flexural matrices. A nonlinear constitutive law requires a nonlinear structural 

analysis. There are different strategies for nonlinear structures, for membrane structures the 

Total Lagrange Method (TLM) or the Updated Lagrange Method (ULM) can be regarded as 

typical. 

 

In the case of TLM the deformation is calculated between the un-deformed, stress free state 

and the actual state. The secant of the stress-strain curve can be used: 

 

𝐷 =

 
 
 
 
𝜎𝑤

𝜀𝑤

𝜎𝑓

𝜀𝑤
0

𝜎𝑓

𝜀𝑤

𝜎𝑓

𝜀𝑓
0

0 0 𝐺 
 
 
 

> 0.        (14) 

 

 

In the case of ULM the tangential stiffness matrix can be used: 

 

𝐷 =

 
 
 
 
 
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑤
0

𝜕𝜎𝑓

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
0

0 0 𝐺 
 
 
 
 

> 0.        (15) 

 

According to chapter 2.2 G=(a1+b1)/(2×100)=(7.11+1,51)/(2×100)=0,043 N/mm
2
is used for 

further analysis. 

 

Another important criteria for a stable constitutive material law to have a positive definite 

stiffness matrix: 

 

 𝐷 =  

𝐷𝑤𝑤 𝐷𝑤𝑓 0

𝐷𝑤𝑓 𝐷𝑓𝑓 0

0 0 𝐺

 =   

𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑤
0

𝜕𝜎𝑓

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
0

0 0 𝐺

  > 0,     (11) 

 

where D is the stiffness matrix of the material, Dww, Dff, Dwf and G are the members of the 

stiffness matrix for normal stress, transversal effect and shear, respectively. G is a positive, so 

for positive definiteness it is enough to prove: 

 

𝐷′ =
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
−  

𝜕𝜎𝑓

𝜕𝜀𝑤
 
2

> 0.        (12) 

 

With the identified parameters the D’ function can be drawn as a two-variable function of the 

strains (Fig.11). The surface is above 0 for reasonable strains (the stress is represented in 

percent, and normally the strain is under 4-5% even in the ultimate load level). At larger 

strains and in moderate negative strain D’ is negative. Fig.12 shows the border of the positive 
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region, the zone containing the origin is positive. To have a stable numerical analysis the 

determinant should be controlled, but there is no problem in reasonable strain levels. 

 

 
 

Figure 11. The surface of the D’ function according to the strains. 
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Figure 12. The intersection of the surface of the D’ function with the 0 plan. 

 

Fig. 12 shows, we are close to the border of the positive definite regime along the negative 

side of the axes, and over 5% of biaxial elongation. In classical Finite Element Method it can 

yield to instability, due to the requirement of the inverse of the stiffness. In any case for 

moderate strain the new constitutive model is stable. For extremely large strains the Dynamic 

Relaxation Method provides a proper strategy (Hegyi[13][14]). It does not use the inverse of 

the stiffness so positive definiteness is not an issue. 

 

Both the power function methods(for instance the spline method) and the exponential 

functions we use have disadvantages at large strain. The benefit of the exponential approach 

introduced in this paper is the solid convergence to a slope instead of the hectic behavior of 

the power functions in extrapolation. 

 

7. Conclusion 

 

A new, elastic constitutive law for predicting service stresses of engineering textiles is 

introduced accompanied with a data acquiring strategy from uniaxial and biaxial tension tests. 

The constitutive law accounts for both the nonlinear behavior of the yarns and the geometric 

nonlinearity of the fabric. Exponential functions are used to avoid the divergence of the 

numerical scheme in the nonlinear structural analysis. The new constitutive law fulfills all the 

requirements for a real material: existence of a strain energy function, positive definiteness at 

reasonable strain levels. 
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