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Abstract

The triangle graph of a graph G, denoted by T (G), is the graph whose
vertices represent the triangles (K3 subgraphs) of G, and two vertices of
T (G) are adjacent if and only if the corresponding triangles share an edge.
In this paper, we characterize graphs whose triangle graph is a cycle and
then extend the result to obtain a characterization of Cn-free triangle
graphs. As a consequence, we give a forbidden subgraph characteriza-
tion of graphs G for which T (G) is a tree, a chordal graph, or a perfect
graph. For the class of graphs whose triangle graph is perfect, we verify a
conjecture of the third author concerning packing and covering of triangles.
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1 Introduction

In a simple undirected graph G, a triangle is a complete subgraph on three
vertices. The triangle graph of G, denoted by T (G), is the graph whose vertices
represent the triangles of G, and two vertices of T (G) are adjacent if and only
if the corresponding triangles of G share an edge. This notion was introduced
independently several times under different names and in different contexts [16,
22, 8, 4]. One fundamental motivation is its obvious relation to the important
class of line graphs.

In a more general setting, for a k ≥ 1, the k-line graph Lk(G) of G is a graph
which has vertices corresponding to the Kk subgraphs of G, and two vertices are
adjacent in Lk(G) if the represented Kk subgraphs of G have k − 1 vertices in
common. Hence, 2-line graph means line graph in the usual sense, whilst 3-line
graph is just the triangle graph, which is our current subject.

Beineke’s classic result [5] gave a characterization of 2-line graphs in terms of
nine forbidden subgraphs. This implies that 2-line graphs can be recognized in
polynomial time. In contrast to this, as proved very recently in [2], the recognition
problem of triangle graphs (and also, that of k-line graphs for each k ≥ 3) is NP-
complete. In the same paper [2], a necessary and sufficient condition is given
for nontrivial connected graphs G and H to ensure that their Cartesian product
G�H is a triangle graph.

Further related results have been obtained by Laskar, Mulder and Novick [11].
They prove that for an ‘edge-triangular’ and ‘path-neighborhood’ graph G (that
is when the open neighborhood of v induces a non-trivial path for each vertex v ∈
V (G)), the triangle graph T (G) is a tree if and only if G is maximal outerplanar.
Also, they raise the characterization problem of a path-neighborhood graph G
for which T (G) is a cycle ([11, Problem 3]). As an immediate consequence of
our Theorem 4, we will answer this question; moreover we will give a forbidden
subgraph characterization of graphs whose triangle graph is a tree.

Triangle graphs were studied from several further aspects; see e.g. [3, 4, 8, 12,
13, 14, 17, 18, 19].

1.1 Standard definitions

Given a graph F , a graph G is called F -free if no induced subgraph of G is iso-
morphic to F . When F is a set of graphs, G is F-free if it is F -free for all F ∈ F .
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On the other hand, when we say that a graph F is a forbidden subgraph for a
class G of graphs, it means that no G ∈ G may contain any subgraph isomorphic
to F .

As usual, the complement of a graph G is denoted by G. The nth power of a
graph G is the graph Gn whose vertex set is V (Gn) = V (G) and two vertices are
adjacent in Gn if and only if their distance is at most n in G. Moreover, given
two graphs G1 = (V1, E1) and G2 = (V2, E2), we use the notation G1 ∨ G2 for
the join of G1 and G2, that is a graph with one copy of G1 and G2 each, being
vertex-disjoint, and all the vertices of G1 are made adjacent with all the vertices
of G2. In particular, the n-wheel Wn (n ≥ 3) is a graph K1∨Cn (where, as usual,
Kn and Cn denote the n-vertex complete graph and the n-cycle, respectively).
An odd wheel is a graph Wn where n ≥ 3 is odd; and an odd hole in a graph is an
induced n-cycle of odd length n ≥ 5, whereas an odd anti-hole is the complement
of an odd hole.

While an acyclic graph does not contain any cycles, a chordal graph is a graph
which does not contain induced n-cycles for n ≥ 4. The chromatic number χ(G)
of a graph G is the minimum number of colors required to color the vertices
of G in such a way that no two adjacent vertices receive the same color. A
set of vertices is independent if all pairs of its vertices are non-adjacent. The
independence number α(G) of G is the maximum cardinality of an independent
vertex set in G. A clique is a complete subgraph maximal under inclusion (i.e.,
in our terminology different cliques in the same graph may have different size).
The clique number ω(G) is the maximum number of vertices of a clique in G.
The clique covering number θ(G) is the minimum cardinality of a set of cliques
that covers all vertices of G. A graph G is perfect if χ(G′) = ω(G′) for every
induced subgraph G′ of G.

As usual, the open neighborhood N(v) of v is the set of neighbors of v, whilst
its closed neighborhood is N [v] = N(v) ∪ {v}. In a less usual way, we also refer
to the subgraphs induced by them as N(v) and N [v], respectively.

Throughout this paper, the notation Kn −G will refer to the graph obtained
from the complete graph Kn by deleting the edge set of a subgraph isomorphic
to G. In this way, for instance, K4 −K3 means the claw K1,3.

1.2 New definitions and terminology

In this paper, we use the following special terminology for some types of graphs.

• The elementary types are:
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(a) the wheel W4,

(b) the square C2
n of a cycle of length n ≥ 7.

• The supplementary types are the following ones. (For illustration, see
Fig. 1.)

(A) SA = (VA, EA), where VA = {vi, ui | 1 ≤ i ≤ 4} and

EA = {vivi+1 | 1 ≤ i ≤ 4} ∪ {uivi−1, uivi, uivi+1 | 1 ≤ i ≤ 4}

(subscript addition taken modulo 4).

(B) SB = (VB, EB), where VB = {vi | 1 ≤ i ≤ 5} ∪ {u1, u2, u3} and

EB = {vivi+1 | 1 ≤ i ≤ 5} ∪ {v3v5, v4v1} ∪ {uivi−1, uivi, uivi+1 | 1 ≤ i ≤ 3}

(subscript addition taken modulo 5).

(C) SC = (VC , EC), where VC = {vi | 1 ≤ i ≤ 6} ∪ {u1, u2} and

EC = {vivi+1 | 1 ≤ i ≤ 6}∪{v2v4, v3v5, v4v6, v5v1}∪{uivi−1, uivi, uivi+1 | i = 1, 2}

(subscript addition taken modulo 6).

(D) SD = (VD, ED), where VD = {vi | 1 ≤ i ≤ 6} ∪ {u1, u4} and

ED = {vivi+1 | 1 ≤ i ≤ 6}∪{v1v3, v2v4, v4v6, v5v1}∪{uivi−1, uivi, uivi+1 | i = 1, 4}

(subscript addition taken modulo 6).

We also define two operations as follows.

• Suppose that e = xy is an edge contained in exactly one triangle xyz,
whilst xz and zy belong to more than one triangle. An edge splitting of
e means replacing e with the 3-path xwy (where w is a new vertex) and
inserting the further edge wz.

• Let u and v be two vertices at distance at least 4 apart. The vertex sticking
of u and v means removing u and v and introducing a new vertex w adjacent
to the entire N(u) ∪N(v).1

The inverses of these operations can also be introduced in a natural way.

1‘Vertex sticking’ and its inverse operation were also introduced in [11].
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SA SB

SC SD

Figure 1: The four graphs of supplementary type

• Suppose that xwz and ywz are two triangles in the following position: w
has degree 3, z is the unique common neighbor of w and x and also of
w and y (in particular, x and y are not adjacent), and w and z are the
only common neighbors of x and y. The inverse edge splitting at w means
deleting w and its three incident edges, and inserting the new edge xy.

• Let w be a vertex whose neighborhood N(w) is disconnected. The inverse
vertex sticking at w means deleting w and its incident edges, and inserting
two new vertices u and v in such a way that N(u)∪N(v) = N(w), N(u)∩
N(v) = ∅, and each component of N(w) is either inside N(u) or inside
N(v).
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1.3 Our results

In Section 2, we characterize the graphs whose triangle graph is a cycle (Theorem
4) and then conclude a characterization of path-neighborhood graphs G with
T (G) ∼= Cn for some n. The latter one (Corollary 5) solves a problem raised in
[11].

In Section 3, we prove a forbidden subgraph characterization of graphs G
with Cn-free triangle graphs for any specified n ≥ 3 (Theorem 13). Applying this
result, we give necessary and sufficient conditions for graphs G whose T (G) is a
tree, a chordal graph, and a perfect graph, respectively. In a sense these results
form a hierarchy since every tree is chordal, and every chordal graph is perfect
[7].

In Subsection 3.3 we consider the following old conjecture (usually referred to
as “Tuza’s Conjecture”) of the third author regarding packing and covering the
triangles of a graph. It was formulated in 1981 [20].

Conjecture 1 If a graph G = (V,E) does not contain more than t mutually
edge-disjoint triangles, then there exists E ′ ⊆ E such that |E ′| ≤ 2t and each
triangle of G has at least one edge in E ′.

We prove that Conjecture 1 holds for graphs whose triangle graph is perfect
(Theorem 18).

2 Graphs whose triangle graph is a cycle

In this section, we give a characterization of graphs whose triangle graph is a
cycle. We assume that every edge of G = (V,E) is contained in a triangle, and
there are no isolated vertices. Before stating the theorem, let us prove that the
required property is invariant under the two operations introduced in Section 1.2.

Lemma 2 For a graph G, let G′ be a graph obtained from G by splitting an
edge or sticking two vertices. Then T (G′) is a cycle if and only if T (G) is a
cycle.

Proof. Let first G′ be the graph obtained from G by splitting an edge e = uv to
the path uwv, where e belongs to exactly one triangle uvx. Let t1, t2, . . . , tn be
the triangles in G. Without loss of generality we may assume that t1 = uvx, t2
contains the edge vx and tn contains the edge ux. Hence, by the edge splitting,
two neighboring triangles uwx and wvx arose, where uwx and tn, moreover wvx
and t2 also have a common edge. Then, clearly, t1, t2, . . . , tn is an n-cycle in
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T (G) if and only if the triangles uwx, wvx, t2, . . . , tn of G′ form an (n+ 1)-cycle
in T (G′) in this cyclic order. Therefore, T (G) ∼= Cn if and only if T (G′) ∼= Cn+1.

Let now G′ be the graph obtained from G by sticking two vertices u and v to
a new vertex w, where the distance between u and v is at least four. If a triangle
t of G contains neither u nor v, then t is a triangle in G′. If t is a triangle which
contains u, say t = ux1x2, then wx1x2 is a triangle in G′. The same holds for
triangles containing v. Since u and v are at distance at least 4 apart, no triangle
of G is damaged and no new triangle can arise when u and v are stuck. Moreover,
two triangles share an edge in G if and only if the corresponding triangles have
a common edge in G′. Therefore, T (G) ∼= T (G′). �

Observe that splitting an edge increases the number of triangles by exactly
one, whilst sticking two vertices far enough does not change the number of tri-
angles and the number of edges in a graph but increases edge density. These
observations have the following simple but important consequence.

Corollary 3 (Finite Reduction Lemma) For every fixed n there is a finite
sn such that, starting from any graph whose triangle graph is a cycle, after sn
applications of edge splitting and vertex sticking in any feasible order, the length of
the cycle T (G) of the graph G obtained surely exceeds n. Equivalently, starting
from any G whose triangle graph is a cycle, inverse edge splitting and inverse
vertex sticking can be applied only finitely many times.

If an edge e belongs to exactly one triangle, we call e a private edge (of that
triangle); and if e is contained in exactly two triangles, it is a doubly covered edge.

Theorem 4 Let G be a graph which contains no isolated vertices and whose
every edge is contained in at least one triangle. Then, T (G) ∼= Cn for some
n ≥ 3 if and only if

(i) G ∼= K5 −K3, or

(ii) G is one of the elementary types or supplementary types, or

(iii) G can be obtained from one of the elementary types or supplementary types
by a sequence of edge splittings and vertex stickings.

Moreover, graphs whose triangle graph is an odd hole are characterized by (ii)
and (iii), with properly chosen parity of the number of edge splittings.
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Proof. Clearly, T (K5 − K3) ∼= C3, T (W4) ∼= C4, and T (C2
n)

∼= Cn if n ≥ 7,
moreover the triangle graphs of SA, SB, SC and SD are isomorphic to C8. By
Lemma 2, also the triangle graphs of graphs satisfying (iii) are cycles.

Now, assume that for a graph G = (V,E), fulfilling the conditions of the
theorem, its triangle graph T (G) is a cycle Cn. If an edge e ∈ E is contained
in more than two triangles, then those triangles induce a complete subgraph of
order at least 3 in the triangle graph. Hence, if the latter is a cycle, then there
cannot be more than three triangles, thus T (G) = C3 and G ∼= K5 −K3.

On the other hand, if a triangle has no private edge then the degree of the
corresponding vertex in T (G) will be at least three, which contradicts the as-
sumption that T (G) is a cycle.

From now on, assume that G ≇ K5 − K3 and consequently, each triangle
has precisely one private edge and exactly two doubly covered edges. Moreover,
we will suppose that the inverse operations of edge splitting and vertex sticking
cannot be applied to G. (Due to the Finite Reduction Lemma above, we may
assume this without loss of generality.) It will suffice to prove that such non-
reducible graphs necessarily belong to an elementary or a supplementary type.

Claim 1. For every vertex v ∈ V the neighborhood N(v) is a path or a cycle;
and in the latter case we have G ∼= W4.

Proof. First, assume for a contradiction that v is a vertex such that N(v) is not
connected. Let N1 be a component of N(v), and set N2 = N(v)−N1. Let G

′ be
the graph obtained from G by deleting v and introducing two new vertices v1 and
v2 adjacent to the vertices in N1 and N2, respectively. In G′ the distance between
v1 and v2 is at least 4. Therefore, the inverse operation of vertex splitting can
be applied to G, which is a contradiction. Consequently, each set N(v) induces
a connected graph.

If a vertex u ∈ N(v) had more than two neighbors in N(v), then the edge vu
would belong to more than two triangles, which contradicts our present assump-
tion. Hence, for every v ∈ V and every u ∈ N(v), the degree degN(v)(u) is at
most two. Since N(v) is connected, this implies that N(v) must be a path or a
cycle. If N(v) ∼= Cn, then N [v] ∼= Wn and T (Wn) ∼= Cn. Therefore, G ∼= Wn, and
since it is assumed that G cannot be reduced by inverse edge splitting, G ∼= W4

must be valid. ♦

Therefore, consider only the case where G ≇ W4 and N(v) is a path for every
v ∈ V . Partition the edge set of G as E = F ∪H where F is the set of doubly
covered edges and H is the set of private edges of triangles.
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If t1, . . . , tn are the triangles in the assumed cyclic order, then we use the
notation F = {f1, . . . , fn} where fi = E(ti) ∩ E(ti+1), and denote by hi the
private edge of ti. Hence E(ti) = {fi−1, fi, hi} (subscript addition is considered
modulo n). The graphs GF = (V, F ) and GH = (V,H) contain no triangles. It
is worth noting that the original graph G can be obtained from GF if, for every
1 ≤ i ≤ n, the non-common ends of fi and fi+1 are connected by an edge (which
is just the private edge hi+1 in G).

Claim 2. The graph GF of doubly covered edges is a hairy cycle (a cycle with
any number of pendant vertices attached to its vertices).

Proof. Let every vertex v ∈ V be associated with the set I(v) of indices of doubly
covered edges incident to v:

i ∈ I(v) ⇐⇒ fi is incident to v.

By definition, every index 1 ≤ i ≤ n is contained in exactly two sets I(v).
Since F contains exactly two edges from each triangle, every vertex of G is inci-
dent with at least one edge of F and hence, no I(v) is empty. The fact that fi
and fi+1 share a vertex for every 1 ≤ i ≤ n, implies that for every i there exists
a vertex v such that {i, i+ 1} ⊆ I(v). The connectivity of GF also follows.

Now, consider a vertex v ∈ V , say of degree d. By Claim 1, its neighborhood
N(v) induces a path Pd = u1u2 . . . ud in G. Any two consecutive vertices of Pd

together with v form a triangle. Hence, the doubly covered edges incident to v
are exactly vu2, vu3, . . . , vud−1, and the d−1 triangles just mentioned correspond
to consecutive vertices in the cycle T (G) ∼= Cn. It also follows that the index set
I(v) of v contains d− 2 consecutive integers (viewing 1 as the successor of n).

By these facts we obtain that the set of vertices which have at least two
incident doubly covered edges induce a cycle in GF . This cycle will be referred to
as C∗ = v1v2 . . . vk, where the vertices are indexed according to the cyclic order.
It contains exactly those vertices vi for which |I(vi)| ≥ 2 and the two edges of
C∗ incident to vi are exactly the doubly covered edges with smallest and largest
indices from I(vi) (where ‘smallest’ and ‘largest’ are meant along a fixed cyclic
order of 1, 2, . . . , n).

If a vertex vi from C∗ is incident to an edge fℓ = viu which does not belong
to C∗, then u cannot be incident to any other edge of GF , since both fℓ−1 and
fℓ+1 are also incident to vi, and vertex u, too, must be incident to edges with
consecutive indices without a gap. Thus, all vertices and edges not contained in
the cycle C∗ are pendant vertices and edges in GF . Consequently, GF is a hairy
cycle. ♦
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From now on, when the inverse operation of edge splitting is applied in G
to a vertex w which is pendant in GF , we say that w is eliminated. Let us
emphasize that we excluded this situation by assumption at the very beginning;
hence, several proofs below will apply the fact that it is impossible to identify a
vertex which can be eliminated.

Claim 3. In GF each vertex is incident with at most one pendant edge.

Proof. Assume for a contradiction that a vertex vi has at least two pendant
neighbors. Then, there exist two pendant neighbors u and w such that fj = viu
and fj+1 = viw for some j. Also, fj−1 = viv

′ and fj+2 = viv
′′ have to be

incident to vi (otherwise u or w would be a vertex from the cycle). Under these
assumptions vertex w could be eliminated, since v′′w and uw are private edges,
moreover the only possible common neighbor, x 6= vi, of v

′′ and u in G might be
v′, but since G 6∼= W4, it cannot be. This contradiction proves the claim. ♦

Claim 4. If there exists a vertex vi incident to a pendant edge fj = viu in GF

then the length k of cycle C∗ of GF is at most 6.

Proof. The graph GF contains no triangle, hence vi−1vi+1 6∈ F . Moreover, since
fj−1 = vi−1vi and fj+1 = vivi+1 are not consecutive doubly covered edges, vi−1vi+1

cannot be a private edge of G and so, vi−1vi+1 6∈ E. If the only common neighbor
of vi−1 and vi+1 were vi, then u could be eliminated and replaced by the edge
vi−1vi+1. As u cannot be eliminated, vertices vi−1 and vi+1 have some common
neighbor x 6= vi in G. Now, assume that the cycle of doubly covered edges is
of length k > 6. Then, every vertex of C∗ is at distance greater than two apart
from at least one of vi−1 and vi+1 in GF , and the same is true for the possible
pendant vertices of GF . Thus, no doubly covered edges and no private edges form
a second triangle with vi−1vi+1 in G, and u can be eliminated if k > 6, which
contradicts the present conditions. Thus, k ≤ 6 follows. ♦

If there exist no pendant edges in GF and k ≥ 7, then G belongs to the
elementary type (b). Assume that this is not the case and k ≤ 6. Since GF

contains no triangle, the length k of C∗ is either 4 or 5 or 6.

Claim 5. If k = 4 then G ∼= SA.

Proof. No chord of the four-cycle belongs to the graph G, since it would be a
doubly covered edge and GF cannot contain triangles. Avoiding such a case, GF

has to contain precisely one pendant edge on each vertex of C4. Supplementing
GF with the private edges between the non-common ends of consecutive double
edges, the graph G ∼= SA is obtained. ♦

10



Claim 6. If k = 5 then G ∼= SB.

Proof. Let the five-cycle be v1v2v3v4v5. If one of these vertices, say vi has no
pendant edge in GF , then vi−1vi+1 ∈ H . This edge cannot belong to any other
triangle in G; hence, neither vi−2vi+1 nor vi−1vi+2 can be an edge in G. This
means that both vi+2 and vi−2 must have pendant edges in GF . Similarly, if
there is no pendant edge on vi+1, then there is one on vertex vi−1. This proves
that if G is complying with our assumption, there exist three consecutive vertices
on the five-cycle of GF such that each of them has a pendant edge.

On the other hand, if four consecutive vertices, say vi, vi+1, vi+2 and vi+3

have pendant edges, the pendant vertex adjacent to vi can be eliminated. Con-
sequently, if GF has a cycle of length 5, then exactly three of its consecutive
vertices have pendant edges, and G ∼= SB holds. ♦

Claim 7. If k = 6 then G ∼= SC or G ∼= SD.

Proof. Consider a six-cycle v1v2v3v4v5v6. If none of the vertices v1, v3 and v5
(or v2, v4 and v6) has a pendant edge, then a forbidden triangle v2v4v6 (v1v3v5)
would arise in H . Hence, two consecutive or two opposite vertices of the six-cycle
surely have pendant edges. On the other hand, if two of the vertices v1, v3 and
v5 (or two of v2, v4 and v6) have pendant edges, then one of the corresponding
pendant vertices can be eliminated. Hence, under the given conditions, either two
consecutive or two opposite vertices have pendant edges and G ∼= SC or G ∼= SD

is obtained, respectively. ♦

The above cases cover all possibilities, therefore the theorem follows. �

Note that T (G) is an odd hole if and only if

• G can be obtained from W4, or from one of the four supplementary types,
or from C2

n where n ≥ 8 is even, by a sequence of an odd number of edge
splittings and an arbitrarily number of vertex stickings; or

• G can be obtained from C2
n where n ≥ 7 is odd, by a sequence of an even

number of edge splittings and an arbitrarily number of vertex stickings.

As a vertex sticking clearly creates a graph which is not path-neighborhood,
and then applying any further vertex stickings or edge splittings this property
does not change, we infer the following characterization of path-neighborhood
graphs whose triangle graph is a cycle. This gives a solution for Problem 3(a)
posed by Laskar, Mulder and Novick in [11].
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Corollary 5 Let G be a graph and assume that for every vertex v ∈ V (G) the
open neighborhood N(v) induces a path on at least two vertices. Then, T (G) ∼= Cn

for some n ≥ 3 if and only if

(i) G ∼= C2
k for a k ≥ 7; or

(ii) G ∼= SA or SB or SC or SD; or

(iii) G can be obtained by a sequence of edge splittings from a graph which sat-
isfies (i) or (ii).

Remark 6 It is worth investigating the status of graphs C2
n for n ≤ 6.

(i) The square C2
4 of the four-cycle is K4, and also its triangle graph is K4. But

if we double the two diagonals added to C4 for C2
4 , and apply four edge splittings

on these two pairs of parallel edges, we obtain SA from the supplementary type
(A). In fact, this does not correspond precisely to the definition of edge splitting,
but we can view the case as if one of the edges v1v3 belonged to triangle v1v2v3,
and its ‘twin’ edge to v1v4v3. The two edges v2v4 can be treated similarly.

(ii) For the five-cycle C5 = v1 . . . v5, the square graph C2
5 is a complete K5,

and its triangle graph is the complement of the Petersen graph, hence not at all
a cycle. But if we consider only the five triangles of the form vivi+1vi+2 (where
1 ≤ i ≤ 5), and the remaining triangles of the form vivi+1vi+3 are “damaged”
by properly chosen edge splittings, we obtain a graph G whose triangle graph is
a cycle. If such a G cannot be reduced by the inverse of edge splitting, then it is
isomorphic to SB.

(iii) A similar observation can be made for n = 6, where at least two edge
splittings have to be taken in C2

6 to achieve that the triangle graph becomes a
cycle. In the minimal (non-reducible) configurations exactly two edge splittings
are needed, either neighboring or opposite. This yields a graph isomorphic either
to SC or to SD.

3 Forbidden subgraph characterizations

In Subsection 3.1 we prove the main result of this section, which is a forbidden
subgraph characterization of graphs whose triangle graph does not contain an
induced cycle of a given length n ≥ 3. This problem is in close connection with
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the problem we solved in Theorem 4. Clearly, if the triangle graph T (G) is Cn-
free, then G contains no subgraph H with T (H) ∼= Cn. On the other hand,
avoiding these subgraphs is not sufficient for T (G) to be Cn-free. For instance,
none of the subgraphs of C2

6 has a triangle graph isomorphic to the 6-cycle, but
T (C2

6 ) contains an induced C6; moreover, no subgraph of K4 has a triangle graph
isomorphic to a cycle, but T (K4) ∼= K4 contains 3-cycles.

In Subsection 3.2 we establish some immediate consequences of the main re-
sult. This contains a forbidden subgraph characterization of graphs whose trian-
gle graph is a tree, a chordal graph, or a perfect graph. Further, in Subsection 3.3
we determine a graph class on which Conjecture 1 holds.

Let us recall that Cn-free triangle graph means that no induced subgraph of
T (G) is isomorphic to Cn; whilst forbidden subgraphs given for G are meant that
they must not occur as non-induced subgraphs either.

3.1 Graphs with Cn-free triangle graphs

In this subsection “minimal forbidden graph for Cn” is meant as a graph G
whose triangle graph contains an induced cycle Cn but this does not hold for any
proper subgraph of G. If G is a minimal forbidden graph for Cn, the triangles
T1, . . . , Tn in G, which correspond to the vertices t1, . . . , tn inducing a specified
cycle in T (G), are called cycle-triangles, while the other triangles of G are called
additional triangles. By definition, in a minimal forbidden graph, every edge is
contained in at least one cycle-triangle. The edge e ∈ E(G) will be called private
edge if it belongs to exactly one cycle-triangle, and those contained in exactly two
cycle-triangles will be called doubly covered. That is, when an edge is declared to
be private or doubly covered, additional triangles are disregarded.

Proposition 7 Let n ≥ 3 be an integer. Assume that G is a minimal forbidden
graph for Cn. Then, either G is isomorphic to K5 −K3, or else no edge of G is
covered by more than two cycle-triangles and furthermore G contains exactly 2n
edges, from which n edges are private and n edges are doubly covered.

Proof. Three cycle-triangles sharing a common edge correspond to a 3-cycle
in the triangle graph. Hence, if an edge of G is covered by three cycle-triangles,
then n = 3. Moreover, by the minimality assumption, G ∼= K5 −K3 must hold
and G has no additional triangles.

Now, assume that G 6∼= K5 −K3 and G is minimal for Cn. Fixing an induced
n-cycle in T (G), each cycle-triangle in G has exactly two neighboring cycle-
triangles, and hence exactly two doubly covered edges. By minimality, each edge
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of G belongs to at least one cycle-triangle. Therefore, E(G) consists of exactly n
private and n doubly covered edges. �

Corollary 8 Let G be a graph which is not isomorphic to K5 − K3. Then, G
is a minimal forbidden graph for Cn (for a specified n ≥ 3) if and only if T (G)
contains an induced n-cycle and G has exactly 2n edges.

Proof. If T (G) contains an induced n-cycle, then either G or some proper
subgraph of it must be minimal forbidden for Cn. Since each proper subgraph
has fewer than 2n edges, Proposition 7 implies that G itself is a minimal forbidden
graph. The other direction follows immediately from Proposition 7. �

Corollary 9 There exists no graph which is minimal forbidden for both Cn and
Cm if n 6= m.

The operations edge splitting and vertex sticking will be meant in the same
way as introduced in the previous section, but the conditions of their applicability
are relaxed — and indicated with the adjective ‘weak’ — as described next. Recall
that throughout this section the position of an n-cycle in T (G) is assumed to be
specified, in order to distinguish between cycle-triangles and additional triangles.
We also emphasize that these operations cannot be applied for a graph where the
fixed n-cycle in T (G) corresponds to three triangles incident to a common edge.
Particularly, we assume G ≇ K5 −K3.

• Weak edge splitting can be applied for any private edge e. If this edge
e = uv belongs to the cycle-triangle uvx, we introduce a new vertex w and
change the edge set from E to E \ {uv} ∪ {uw,wv, wx}. This transforms
each additional triangle (if exits) incident with e to a cycle of length 4. The
new vertex w is of degree 3, and the two edges uw and wv originated from
e are two incident private edges in the graph obtained. Particularly, if no
additional triangles are incident with e, a weak edge splitting applied to e
is also called strong edge splitting.

• Weak vertex sticking can be applied for any two vertices at distance at least
3 apart. If this distance is at least 4, the triangle graph remains unchanged
and the operation is also a strong vertex sticking, and corresponds to ‘vertex
sticking’ introduced in Section 1.2. A weak vertex sticking, when applied
for vertices at distance 3, creates some new additional triangle(s), but a
strong vertex sticking cannot cause change in the triangle graph.
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For instance, strong edge splitting cannot be applied for K4, but a weak edge
splitting can be applied for any of its edges and results in a wheel W4. In C2

10,
no two vertices are at distance 4 or more, so strong vertex sticking cannot be
applied, but two opposite vertices of the cycle can be stuck in the weak sense. In
this case, six additional triangles arise.

These operations have their inverses in a natural way. Before investigating the
conditions of their applicability, let us describe their effect on minimal forbidden
graphs.

Proposition 10

(i) If G′ is obtained from G by a weak edge splitting (or, equivalently, if G is
obtained from G′ by an inverse weak edge splitting), then G′ is a minimal
forbidden graph for Cn+1 if and only if G is minimal forbidden for Cn.

(ii) If G′′ is obtained from G by a weak vertex sticking (or, equivalently, if G is
obtained from G′′ by an inverse weak vertex sticking), then G′′ is a minimal
forbidden graph for Cn if and only if G is minimal forbidden for Cn.

Proof. (i) It is clear from the definition of weak edge splitting that the fixed
n-cycle of T (G) is transformed into an induced (n + 1)-cycle of T (G′) and vice
versa. Moreover, |E(G)| = 2n if and only if |E(G′)| = 2n + 2. Hence, the
statement follows by Corollary 8.

(ii) If G′′ is obtained from G by a weak vertex sticking, then T (G) contains an
induced n-cycle if and only if T (G′′) contains an induced n-cycle. Additionally,
|E(G)| = 2n holds if and only if |E(G′′)| = 2n. Similarly to the previous case,
Corollary 8 implies the statement. �

Next we prove necessary and sufficient conditions under which the inverse
operations can be applied. Let us introduce the following notion. For a graph G
and for a fixed cycle in the triangle graph T (G), the cycle-triangle neighborhood
N∗(v) of a vertex v ∈ V (G) is obtained by taking the vertices and edges of the
cycle-triangles incident to v and then removing vertex v and the incident edges.

Proposition 11 Given a graph G, with a fixed n-cycle in its triangle graph
such that each edge of G is contained in at least one cycle-triangle, the following
statements hold:

(i) An inverse weak edge splitting which eliminates vertex w exists if and only
if w has degree 3 and there are two neighbors u and v of w such that
uv /∈ E(G).
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(ii) An inverse strong edge splitting which eliminates vertex w exists if and only
if w has degree 3, moreover for the three neighbors u, v, and x of w, we
have uv /∈ E(G), and w is the only common neighbor of u and v besides
x.

(iii) An inverse weak vertex sticking can be applied for a vertex v if and only if
its cycle-triangle neighborhood N∗(v) is disconnected.

(iv) An inverse strong vertex sticking can be applied for a vertex v if and only
if its neighborhood N(v) is disconnected.

Proof. By definition, an edge splitting always creates a vertex of degree 3.
If this operation was applied for the private edge e = uv of the cycle triangle
xuv, then in the obtained graph G, uv is not an edge. Moreover, if a strong
edge splitting was applied, uv is not contained in any triangles different from
xuv. This proves that the conditions given in (i) and (ii) are necessary for the
applicability of inverse weak and strong edge splittings.

To prove sufficiency, first observe that a vertex w which satisfies the conditions
in (i) and (ii) does not belong to a K4. It is also assumed that each edge is
involved in a cycle-triangle. Then, since w has three neighbors, it is incident to
exactly two cycle-triangles, which share an edge. This doubly covered edge must
be xw, while the remaining two edges uw and vw are private edges in xuw and
xvw, respectively. Then, by removing w and inserting the edge uv, the triangles
xuw and xvw are replaced with xuv. Since the new edge uv is the private edge
of xuv, a weak edge splitting can be applied to it and G is reconstructed. Under
the conditions of (ii) no additional triangle is incident to uv and so G can be
reconstructed by a strong edge splitting. These prove that the inverse operations
can be applied to G under the conditions of (i) and (ii).

To prove necessity in (iii) and (iv), consider two vertices v1 and v2 to which
a weak vertex sticking is applied. By definition, v1 and v2 have distance at least
3. Hence, there are no common vertices in N∗(v1) and N∗(v2). Recall that this
transformation does not create new cycle-triangles. Therefore, sticking v1 and v2,
the new vertex v will have a disconnected cycle-triangle neighborhood. If it is a
strong vertex sticking, the distance of v1 and v2 is at least 4 and we cannot have
edges between the vertices of N(v1) and N(v2). This implies that N(v) will be
disconnected.

For the other direction, assume that the condition given in (iii) holds. Let
v be deleted, and let the vertices from one component of N∗(v) be joined to a
new vertex v1 while the further vertices from N∗(v) be joined to another new
vertex v2. Then, the cycle triangles do not change (apart from the fact that v
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is replaced with v1 or v2). We observe that v1 and v2 do not have a common
neighbor, hence their distance is at least 3. This proves that the original graph
G can be reconstructed by applying a weak vertex sticking to v1 and v2. If the
stronger condition from (iv) also holds for G, we will not have any edges between
N(v1) and N(v2). Hence, the distance of v1 and v2 is at least 4, and G can be
reconstructed by a strong vertex sticking. �

Remark that an inverse weak edge splitting may create new additional trian-
gles, an inverse weak vertex sticking may damage some of the additional triangles,
while the inverse strong vertex sticking keeps the triangle graph the same.

Concerning the order in which these transformations can be applied, we prove
the following property. (Although the third part could also be made more de-
tailed, by performing strong vertex stickings before non-strong ones, we do not
need this fact in the current context.)

Proposition 12 Assume that graph F can be obtained from G by a sequence
of weak edge splittings and weak vertex stickings. Then, F can also be obtained
from G by performing the operations in the following order:

1. some (maybe zero) weak but not strong edge splittings,

2. some (maybe zero) strong edge splittings,

3. some (maybe zero) weak vertex stickings.

Consequently, G can be obtained from F in the reverse order of the corresponding
inverse operations.

Proof. First, observe that if the ith transformation Oi is a weak sticking of x and
y, moreover the (i+ 1)st transformation Oi+1 is the weak splitting of the edge e,
then they can also be applied in the order Oi+1, Oi. Indeed, a vertex sticking does
not create a new private edge, hence Oi+1 can be performed before Oi. On the
other hand, an edge splitting cannot decrease the distance of x and y and cannot
create a new edge between two vertices which were present previously. Hence,
the order Oi+1, Oi is feasible and gives the same result as Oi, Oi+1. Therefore, we
can re-order the transformations in such a way that all edge splittings precede
all vertex stickings.

A sequence of edge splittings can be unambiguously described by assigning a
nonnegative integer s(e) to each edge e ∈ E(G), where s(e) is the number of edge
splittings applied to e and to the edges originated from e. Equivalently, this is
the number of subdivision vertices we have on e at the end. This also shows that
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edge splittings can be performed in any order. If we want to start with weak but
not strong edge splittings, we just take an edge with s(e) ≥ 1 which is incident
with an additional triangle and apply an edge splitting as long as such an edge
exists. �

Theorem 13 Let n ≥ 3 be a given integer. The triangle graph T (G) of a graph
G does not contain an induced cycle of length n if and only if G has no subgraph
which is isomorphic to any of the following forbidden ones.

(a) If n = 3, the forbidden subgraphs are K4 and K5 −K3.

(b) If n = 4, the only forbidden subgraph is W4.

(c) If n = 5, the forbidden subgraphs are W5 and C2
5
∼= K5.

(d) If n = 6, the forbidden subgraphs are W6, C
2
6 , K6 −K3, K6 − P4, and the

graph obtained from C2
5
∼= K5 by a weak edge splitting.

(e) If n ≥ 7, the forbidden subgraphs are

(i) Wn;

(ii) graphs obtained from C2
m by n−m weak edge splittings ( 5 ≤ m ≤ n);

(iii) graphs obtained from K6 −K3 by n− 6 weak edge splittings;

(iv) graphs obtained from K6 − P4 by n− 6 weak edge splittings;

(v) graphs obtained from any graphs described in (ii)−(iv) by any number
of weak vertex stickings.

Proof. First, observe that three triangles, any two of which share an edge, are
either three triangles having a fixed common edge, or they belong to a common
K4 subgraph. Hence, any 3-cycle in T (G) origins either from a K5 −K3 or from
a K4. Consequently, by minimality, if n = 3 then either G ∼= K5−K3 or G ∼= K4

holds. From now on, we consider a graph G which is not isomorphic to K5 −K3

and is minimal forbidden for a specified n ≥ 3. By Proposition 7, there are
exactly n private edges and n doubly covered edges in G.

By Proposition 10, weak edge splittings, vertex stickings and their inverse
operations do not change the status of a graph being minimal forbidden for at
least one cycle Cn. Hence, we may assume further that inverse weak vertex
sticking and inverse weak edge splitting cannot be applied to G.

We have the following two cases concerning the additional triangles of G.
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Case 1. Each additional triangle contains at least one private edge (or there is
no additional triangle).

In this case, we apply a minimum number of weak edge splittings such that all
the additional triangles of G are damaged. This yields a graph G′ with T (G′) ∼=
Cn. We shall prove that neither inverse strong edge splitting nor inverse strong
vertex sticking can be applied for G′.

By our assumption, inverse weak vertex sticking cannot be applied for G.
Hence, by Proposition 11(iii), for every v ∈ V (G), N∗(v) is connected. Assume
first that an edge splitting is applied for an edge e = vu of G. Then, u is omitted
from the neighborhood of v, but the new vertex w appears in N∗(v) and has
exactly the same neighbor there as u had. Therefore, N∗(v) remains connected.
Now, consider an edge splitting applied for a private edge xy from the cycle-
triangle vxy. In N∗(v), this means only the subdivision of the edge xy. This also
keeps connectivity. As the third case, for any new vertex w which was introduced
by an edge splitting, N∗(w) is a path of order 3. Therefore, every vertex of G′

has a connected cycle-triangle neighborhood, and by Proposition 11(iii), inverse
weak (and also, strong) vertex sticking cannot be applied for G′.

Concerning the other operation, we supposed that inverse weak edge splitting
cannot be applied for G. Then we applied minimum number of weak but not
strong edge splittings to damage all the additional triangles. The minimality
condition implies that each new vertex belongs to at least one induced 4-cycle
originated from an additional triangle. Thus, every new vertex x has two neigh-
bors x1 and x2 which share a neighbor y such that y is not adjacent to x. By
Proposition 11(ii), inverse strong edge splitting cannot be applied for x. The
second case is when a vertex w was present already in G and had degree 3. By
Proposition 11(i), as inverse weak edge splitting cannot be applied for G, the
neighbors of w are pairwise adjacent. Let u and v be the neighbors of w such
that uw and vw are the private edges of triangles xuw and xvw, respectively.
While minimum number of edge splittings were performed, no edge could be
split twice. Hence, if weak edge splitting was applied for neither uw nor vw, then
u and v either remain adjacent or have a common neighbor in G that is different
from x and w (the latter case occurs when the edge uv was split). Then, Proposi-
tion 11(ii) implies that vertex w cannot be eliminated by an inverse strong edge
splitting. Now, assume that at least one of the edges uw and vw, say uw was
split by inserting a new edge xu′. By our minimality condition, the new vertex
u′ is contained in an induced 4-cycle. Since u′ has only three neighbors u, x, and
w, furthermore xu, xw ∈ E(G′), the induced 4-cycle contains u, u′ and w plus
one vertex which is different from x. This fourth vertex must be v, because w is
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also of degree 3. Again, the two neighbors of w, namely u′ and v, have the com-
mon neighbor which is u. Thus, by Proposition 11(ii), w cannot be eliminated
by an inverse strong edge splitting. Finally, we observe that the edge splittings
performed in G do not decrease the degrees of the vertices. Hence, if a vertex
has degree greater than 3 in G, it cannot be eliminated by an inverse strong edge
splitting in G′.

Therefore, inverse strong edge splitting and inverse strong vertex sticking
cannot be applied for G′. By Theorem 4, graph G′ is isomorphic either to W4,
or to C2

n with n ≥ 7, or to one of the supplementary types SA, SB, SC , SD.
According to the way G′ is derived, we see that either G = G′ or G can be
reconstructed from G′ by applying some number of inverse weak edge splittings,
to be performed as long as at least one is possible, because it has been assumed
that inverse weak edge splitting cannot be applied to G.

Checking all items from our list for G′, we can observe the following.

• In W4, we can apply inverse weak edge splitting exactly once. This yields
K4

∼= W3.

• In C2
n (with n ≥ 7) there are no vertices of degree 3. Thus, inverse weak

edge splitting cannot be applied.

• In SA we have four vertices of degree 3, and we can choose from four possible
inverse weak edge splittings at the first step (all the four are isomorphic).
After one is performed, only two further (isomorphic) possibilities remain.
At the end, after two inverse edge splittings we obtain K6 − P4.

• In SB three vertices have degree 3, and inverse weak edge splittings can be
applied to all of them. These can be performed in any order, the result will
be C2

5
∼= K5.

• For SC and SD we can apply inverse weak edge splitting twice. After
performing them we have a C2

6 .

We conclude that in this case G must be isomorphic either to K4, or to C2
n with

n ≥ 5, or to K6 − P4.

Case 2. There is at least one additional triangle uvw in G such that each of
the edges uv, vw, uw is doubly covered.

By our assumption, no inverse weak vertex sticking can be applied for G.
Hence, every vertex x has a connected cycle-triangle neighborhood. Since every
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triangle Ti has exactly one private edge and the two doubly covered edges cor-
respond to Ti−1 ∩ Ti and Ti ∩ Ti+1, the triangles incident with x are consecutive
triangles along the triangle cycle. Let us refer to this property as ‘continuity’.

Since uv, vw and uw are doubly covered, the incident triangles can be given
with their vertex sets in the form T1 = {uva1}, T2 = {uva2}, Ti = {vwb1},
Ti+1 = {vwb2}, Tj = {wuc1} and Tj+1 = {wuc2}, where these six triangles are
not assumed to be consecutive, but they are given in a cyclic order.

If a2 = b1, b2 = c1 and c2 = a1, we get the desired result G ∼= K6 −K3. Now,
suppose that a2 6= b1, which is equivalent to i 6= 3. Since T2 and Ti are incident
with vertex v (but Tj is not), the continuity of triangles at v implies that T3 has
vertices va2x, moreover a2x must be the private edge. Now, ua2 and a2x are two
incident private edges of consecutive triangles. The inverse weak edge splitting
could not be applied for them only if ux is an edge in G. Then, the triangle Tℓ

having this edge ux belongs to triangles incident with u. Since T1, T2 are incident
with u but T3, Ti, Ti+1 are not, i + 2 ≤ ℓ follows. But in this case, the triangles
incident with x cannot satisfy the continuity (since x belongs to T3, might belong
to Ti, but it is surely not contained in Ti+1 and T1). This contradiction proves
that a2 = b1 and similarly, b2 = c1 and c2 = a1 must be valid, as well. Thus,
G ∼= K6 −K3 holds.

These cases together cover all possibilities, therefore the theorem is proved.
�

3.2 Trees, chordal graphs and perfect graphs

Lemma 14 T (G) is connected if and only if there does not exist a partition of
E(G) into two sets A and B such that each of A and B contains at least three
edges which induce a triangle and each triangle in G is either in A or in B.

Proof. Let A ∪ B = E(G) be an edge partition such that each triangle of G
is contained in either A or B. Then in T (G) there cannot be any edges from
the vertices representing the triangles inside A to those representing the triangles
inside B. Thus, if there exist two triangles TA ⊂ A and TB ⊂ B in G, then T (G)
has at least two components.

Conversely, assume that T (G) is disconnected. Let A be the collection of all
edges of G corresponding to the triangles in one of the components of T (G), and
let B = E(G) − A. This B also contains at least one triangle, since T (G) is
disconnected. Now, {A,B} is a partition of E(G) such that each of A and B
contains at least one triangle and each triangle is either in A or in B. �

Let us say that graph G is triangle-connected if T (G) is connected.
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Now, the characterization of graphs whose triangle graph is a tree or a chordal
graph follows immediately from Theorem 13.

Corollary 15 For a graph G, its triangle graph T (G) is a tree if and only if
G is triangle-connected and does not contain a subgraph which is isomorphic to
one of the following graphs.

(a) Wn, for n ≥ 3;

(b) K5 −K3;

(c) C2
n, for n ≥ 5;

(d) K6 −K3;

(e) K6 − P4;

(f) graphs obtained from any of the graphs described in (c)− (e) by any number
of weak edge splittings and weak vertex stickings.

Corollary 16 For a graph G, its triangle graph T (G) is chordal if and only if
G does not contain a subgraph which is isomorphic to any of the following graphs:

(a) Wn, for n ≥ 4;

(b) C2
n, for n ≥ 5;

(c) K6 −K3;

(d) K6 − P4;

(e) graphs obtained from any graphs described in (b) − (d) by any number of
weak edge splittings and weak vertex stickings.

Imposing parity conditions, we also obtain a characterization of graphs whose
triangle graph is perfect.

Theorem 17 For a graph G, its triangle graph T (G) is perfect if and only if G
does not contain any subgraph which is isomorphic to one of the following graphs:

(a) Wn, for an odd integer n ≥ 5;

(b) graphs obtained from C2
n by an even number of weak edge splittings for an

odd n ≥ 5;
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(c) graphs obtained from C2
n by an odd number of weak edge splittings for an

even n ≥ 6;

(d) graphs obtained from K6 −K3 by an odd number of weak edge splittings;

(e) graphs obtained from K6 − P4 by an odd number of weak edge splittings;

(f) graphs obtained from the graphs described in (b) − (e) by any number of
weak vertex stickings.

Proof. Since K2 ∨P3 is forbidden for triangle graphs [13] and Cn contains it as
an induced subgraph for all n ≥ 7, we have that T (G) is Cn-free for n ≥ 7. Also,
C5 = C5. Therefore, by the Strong Perfect Graph Theorem [6], T (G) is perfect
if and only if has no induced odd hole. Moreover, T (G) contains an induced odd
hole if and only if G has a subgraph from the types described in (a)− (f). This
completes the proof. �

3.3 Consequences for triangle packing and covering

Here we consider Conjecture 1 which was posed in [20]. To discuss it in a more
detailed way, we need some definitions. We say that a family F of triangles in
G = (V,E) is independent if the members of F are pairwise edge-disjoint. An
edge set E ′ ⊆ E is a T -transversal if every triangle of G contains at least one edge
from E ′. We denote by ν△(G) the maximum cardinality of an independent family
of triangles in G, and by τ△(G) the minimum cardinality of a T -transversal in G.
With this notation, Conjecture 1 is equivalent to the statement τ∆(G) ≤ 2ν∆(G).

This inequality has been proved only for few classes of graphs; namely, for
planar graphs, some subclasses of chordal graphs, graphs with n vertices and
at least 7

16
n2 edges [21], graphs without a subgraph homeomorphic to K3,3 [10],

graphs with chromatic number three [9], graphs in which every subgraph has
average degree smaller than seven [15], odd-wheel-free graphs, and graphs admit-
ting an edge 3-coloring in which each triangle receives three distinct colors on its
edges [1]. (The latter class contains all graphs with chromatic number at most
four, and also all graphs which have a homomorphism into the third power of an
even cycle, C3

2k with k ≥ 5.)
The case of equality τ∆ = ν∆ has also been studied to some extent ([23, 1]).

For instance, it was proved in [1] that τ∆(G) = ν∆(G) is valid forK4-free graphs G
whose triangle graph is odd-hole free. Now, by Theorem 17, this class of graphs is
determined in a more direct way by forbidden subgraph characterization. (Some
redundancies could be eliminated; e.g., K6 − P4 and K6 −K3 contain K4 which
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is forbidden, too. But after some appropriate edge splittings, the K4 subgraphs
disappear, hence the graphs listed in parts (d) and (e) of Theorem 17 cannot be
totally omitted.)

Here we prove Conjecture 1 for graphs G whose triangle graph is perfect, but
the K4 subgraphs are not excluded from G. The condition that T (G) is perfect,
can be replaced either by assuming that T (G) is odd-hole-free or by the forbidden
subgraph characterization of Theorem 17.

Theorem 18 If the triangle graph of a graph G is perfect, then τ∆(G) ≤ 2ν∆(G)
holds.

Proof. As discussed already in [1], the maximum number ν∆(G) of independent
triangles in G equals the independence number α(T (G)) of the triangle graph.
Since the triangle graph is supposed to be perfect, its complement is also perfect
and we have

ν∆(G) = α(T (G)) = ω(T (G)) = χ(T (G)) = θ(T (G)),

where θ(T (G)) is the minimum number of cliques in the triangle graph which
together cover all vertices.

In a triangle graph T (G) we may have two types of cliques: (A) its vertices
correspond to triangles of G all of which are incident with a fixed edge; (B) its
vertices correspond to four triangles of a K4 subgraph of G.

Having a minimum clique cover of T (G) at hand we can construct an edge
cover for triangles of G. For every clique CA of type A, we put the corresponding
edge of G into the covering set. This edge covers all triangles corresponding to the
vertices covered by CA in T (G). Then, for every clique CB of type B, we put two
independent edges from the corresponding K4 subgraph of G into the covering
set. These two edges together cover all the four triangles. Since every vertex
t ∈ V (T (G)) is covered by a clique in T (G), every triangle of G is covered by at
least one of the selected edges. Thus, the set of the selected edges (wchich covers
all triangles of G) contains at most 2θ(T (G)) = 2ν∆(G) edges. Consequently,
τ∆(G) ≤ 2ν∆(G) is valid. �

Note added on 4th November, 2014. After the first appearance of this
manuscript, Gregory Puleo kindly informed us that from his results in [15] the
inequality τ∆(G) ≤ 2ν∆(G) follows for a class of graphs which is larger than the
one in our Theorem 18. Namely, more generally than the graphs with perfect
T (G), it suffices to assume that G has no subgraph isomorphic to Wn for any odd
n ≥ 5. That is, from the forbidden subgraphs listed in our Theorem 17, already
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the case (a) is sufficient to derive τ∆ ≤ 2ν∆. As Puleo explains in his email, this
follows by the properties of the so-called ‘weak König–Egerváry graphs’, proved
in Section 4 of [15]. This extends Theorem 3 of [1] where the analogous result
was proved for graphs without any odd wheels (i.e., excluding W3

∼= K4, too).
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