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1 Introduction

The numerical solution of parabolic partial differential equations or systems of equations
is a widespread task in numerical analysis, see, e.g., [11, 12, 13]. The discrete solution is
naturally required to reproduce the basic qualitative properties of the exact solution, e.g.
the maximum principle.

In our recent paper [8], we proved the discrete analogue (discrete maximum principle,
or DMP, in short) of the maximum principle for the case of finite element space discretiza-
tions for some nonlinear parabolic PDE systems. Besides standard general smoothness
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and growth conditions, we assumed cooperativity and diagonal dominance for the nonlin-
ear coupling of the equations. Whereas cooperativity seems to be an inherent property
behind the DMP, the diagonal dominance (which implies monotonicity of the coupling
vector function) is a strong assumption which was only technical. In the present paper
diagonal dominance is not assumed, we only require instead that the lower bound of the
sums of Jacobians does not deteriorate as t or |ξ| tends to infinity.

We prove the discrete nonnegativity of the solution, which is a special case of the
discrete maximum principle. In fact, we consider a more special situation in some other
respects as compared to the problem in [8]. First, we only include mixed boundary
conditions but no interface conditions inside the domain. Second, we only use implicit
time discretization instead of a more general θ-method. We note, however, that the results
of [8] using θ-methods were more restrictive for θ < 1 than for the implicit case θ = 1:
for the latter it sufficed to assume the lower estimate ∆t ≥ ch2, whereas for the former
one needed the two-sided estimate ∆t = O(h2). Moreover, in the present paper we do
not even require ∆t ≥ ch2, instead, we assume ∆t ≤ 1/µ0, where −µ0 is the lower bound
of the sums of Jacobians. This also shows that if especially µ0 = 0 (i.e. the coupling
is diagonally dominant as in [8]) then no restriction remains on ∆t, i.e. the new result
improves the previous one in this respect, too.

The paper is organized as follows. We first summarize the problem and then its
discretization, the latter built on [8]. Then we give some background on elliptic DMPs,
and based on it, we derive the desired result for our parabolic system.

2 The class of problems

In this paper we consider the following type of nonlinear parabolic systems, involving
cooperative and weakly diagonally dominant coupling, nonsymmetric terms and mixed
boundary conditions. Find a vector function u = u(x, t) = (u1(x, t), . . . , us(x, t)) such
that for all k = 1, . . . , s,

∂uk
∂t
−div

(
ak(x, t,∇u)∇uk

)
+wk(x, t)·∇uk+qk(x, t, u) = fk(x, t) for (x, t) ∈ QT := Ω×(0, T ),

(1)
where Ω is a bounded domain in Rd and T > 0, further, the boundary and initial condi-
tions are as follows (k = 1, . . . , s):

uk(x, t) = gk(x, t) for (x, t) ∈ ΓD × [0, T ], (2)

ak(x, t,∇u)∂uk
∂ν

= γk(x, t) for (x, t) ∈ ΓN × [0, T ], (3)

uk(x, 0) = u
(0)
k (x) for x ∈ Ω, (4)

respectively, where ν stands for the outer normal vector. We impose the following

Assumptions 2.1.

(A1) (Domain.) Ω is a bounded polytopic domain in Rd; ΓN ,ΓD ⊂ ∂Ω are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .
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(A2) (Smoothness.) For all k = 1, . . . , s, we have scalar functions ak ∈ (C1 ∩ L∞)(QT ×
Rd×s) and qk ∈ C1(QT × Rs). Further, wk ∈ PC1(QT ), fk ∈ PC(QT ), γk ∈
PC(ΓN × [0, T ]), gk ∈ PC(ΓD × [0, T ]) and u

(0)
k ∈ PC(Ω).

(A3) (Coercivity.) There exists a constant µ0 such that ak(x, t, η) ≥ µ0 > 0 for all
k = 1, . . . , s and all (x, t, η) ∈ Ω × (0, T ) × Rd×s, further, the Jacobian matri-

ces ∂
∂η

(
ak(x, t, η)η

)
are uniformly spectrally bounded from both below and above.

Finally, for all k = 1, . . . , s, we have div wk ≤ 0 on Ω, wk · ν ≥ 0 on ΓN .

(A4) (Growth.) Let 2 ≤ p if d = 2 and 2 ≤ p < 2d
d−2

if d > 2. There exist constants
α, β ≥ 0 such that for any x ∈ Ω, t ∈ (0, T ), ξ ∈ Rs, and any k, l = 1, . . . , s,∣∣∣∣∂qk∂ξl

(x, t, ξ)

∣∣∣∣ ≤ α + β|ξ|p−2. (5)

(A5) (Cooperativity.) For all k, l = 1, . . . , s, x ∈ Ω, t ∈ (0, T ), ξ ∈ Rs,

∂qk
∂ξl

(x, t, ξ) ≤ 0 whenever k 6= l. (6)

(A6) (Boundedness below for the Jacobians w.r.t. rows and columns.) There exists a
number µ0 ≥ 0 such that for all k = 1, . . . , s, x ∈ Ω, t ∈ (0, T ), ξ ∈ Rs,

s∑
l=1

∂qk
∂ξl

(x, t, ξ) ≥ −µ0,
s∑
l=1

∂ql
∂ξk

(x, t, ξ) ≥ −µ0. (7)

Remark 2.1 (i) In the previous paper [8] we assumed (7) with µ0 := 0, i.e. the diagonal
dominance. Now that strong assumption is relaxed, and we only require that the lower
bound of the sums of Jacobians does not deteriorate as t or |ξ| tends to infinity.

(ii) Assumptions (A5)-(A6) imply for all k = 1, . . . , s, x ∈ Ω, t ∈ (0, T ), ξ ∈ Rs,

∂qk
∂ξk

(x, t, ξ) ≥ −µ0. (8)

We will define weak solutions in a usual way as follows. Let

H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0}.

A function u : QT → Rs is called the weak solution of the problem (1)–(4) if for all
k = 1, . . . , s, uk are continuously differentiable with respect to t and uk(., t) ∈ H1

D(Ω) for
all t ∈ (0, T ), and satisfy the relation∫

Ω

s∑
k=1

∂uk
∂t

vk dx+

∫
Ω

s∑
k=1

(
ak(x, t,∇u)∇uk ·∇vk+(wk(x, t) ·∇uk)vk+qk(x, t, u)vk

)
dx (9)

=

∫
Ω

s∑
k=1

fkvk dx+

∫
Γ

s∑
k=1

γkvk dσ (∀v ∈ H1
D(Ω)s, t ∈ (0, T )),
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further,
uk = gk on [0, T ]× ΓD, uk|t=0 = u

(0)
k in Ω. (10)

Here and in the sequel, equality of functions in Lebesgue or Sobolev spaces is understood
almost everywhere.

3 Discretization scheme

The full discretization of problem (1)–(4) is built up in the same way as in [8]. It includes
two standard steps in space and time; in addition, suitable vector basis functions are
involved. In this section we summarize this process.

3.1 Semidiscretization in space

Let Th be a finite element mesh over the solution domain Ω ⊂ Rd, where h stands for
the discretization parameter. We choose basis functions in the following way. First, let
n̄0 ≤ n̄ be positive integers and let us choose basis functions

ϕ1, . . . , ϕn̄0 ∈ H1
D(Ω), ϕn̄0+1, . . . , ϕn̄ ∈ H1(Ω) \H1

D(Ω), (11)

which correspond to homogeneous and inhomogeneous boundary conditions on ΓD, re-
spectively. These basis functions are assumed to be continuous and to satisfy

ϕp ≥ 0 (p = 1, . . . , n̄),
n̄∑
p=1

ϕp ≡ 1, (12)

further, that there exist node points Bp ∈ Ω ∪ ΓN (p = 1, . . . , n̄0) and Bp ∈ ΓD (p =
n̄0 + 1, . . . , n̄) such that

ϕp(Bq) = δpq (13)

where δpq is the Kronecker symbol; and finally, there exists a constant cgrad > 0 (indepen-
dent of the basis functions) such that

max |∇ϕp| ≤
cgrad

diam(suppϕp)
(p = 1, . . . , n̄), (14)

where supp denotes the support, i.e. the closure of the set where the function does not
vanish, and diam stands for the diameter. These conditions hold e.g. for standard linear,
bilinear, or prismatic finite elements.

We in fact need a basis in the corresponding product spaces, which we define by
repeating the above functions in each of the s coordinates and setting zero in the other
coordinates. That is, let N0 := sn̄0 and N := sn̄. First, for any 1 ≤ i ≤ N0,

if i = (k0 − 1)n̄0 + p for some 1 ≤ k0 ≤ s and 1 ≤ p ≤ n̄0, then

φi := (0, . . . , 0, ϕp, 0, . . . , 0) where ϕp stands at the k0th entry, (15)
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that is, the mth coordinate of φi satisfies (φi)m = ϕp if m = k0 and (φi)m = 0 if
m 6= k0. From these, we let

V 0
h := span{φ1, ..., φN0} ⊂ H1

D(Ω)s. (16)

Similarly, for any N0 + 1 ≤ i ≤ N ,

if i = N0 + (k0 − 1)(n̄− n̄0) + p− n̄0 for some 1 ≤ k0 ≤ s and n̄0 + 1 ≤ p ≤ n̄, then

φi := (0, . . . , 0, ϕp, 0, . . . , 0)T where ϕp stands at the k0th entry, (17)

that is, the mth coordinate of φi satisfies (φi)m = ϕp if m = k0 and (φi)m = 0 if
m 6= k0. From (16) and these, we let

Vh := span{φ1, ..., φN} ⊂ H1(Ω)s. (18)

Using the above FEM subspaces, one can define the semidiscrete problem for (9) with
initial-boundary conditions (10). We look for a vector function uh = uh(x, t) that satisfies
(9) for all vector functions vh = (v1, . . . , vs) ∈ V 0

h , and the conditions

uh(x, 0) = u(0),h(x) (x ∈ Ω), uh(., t)− gh(., t) ∈ V 0
h (t ∈ (0, T ))

must hold. In the above formulae, the functions u
(0),h
k and ghk (., t) (for any fixed t) are

suitable approximations of the given functions u0 and g(., t), respectively. In particular,
we will use the following form to describe the kth coordinate ghk :

ghk (x, t) =

n̄∂∑
p=1

g(k)
p (t)ϕn̄0+p(x), (19)

where g
(k)
p (t) = gk(Bn̄0+p, t) and

n̄∂ := n̄− n̄0.

We seek the kth coordinate function uk of the numerical solution in the form

uhk(x, t) =
n̄∑
p=1

u(k)
p (t)ϕp(x) + gk(x, t) =

n̄0∑
p=1

u(k)
p (t)ϕp(x) +

n̄∂∑
p=1

g(k)
p (t)ϕn̄0+p(x), (20)

where the coefficients u
(k)
p (t) (p = 1, . . . , n̄0) are unknown. The set of all coefficient

functions will be ordered in the following vector:

uh(t) =
(
u

(1)
1 (t), . . . , u

(1)
n̄0

(t); u
(2)
1 (t), . . . , u

(2)
n̄0

(t); . . . ; u
(s)
1 (t), . . . , u

(s)
n̄0

(t);

g
(1)
1 (t), . . . , g

(1)
n̄∂

(t); g
(2)
1 (t), . . . , g

(2)
n̄∂

(t); . . . ; g
(s)
1 (t), . . . , g

(s)
n̄∂

(t)
)T

(21)
(where T denotes the transposed of a vector), that is, uh(t) has N0 = sn̄0 coordi-

nates from u
(1)
1 (t) to u

(s)
n̄0

(t) belonging to the points in the interior or on ΓN , and then
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N −N0 = s(n̄− n̄0) coordinates from g
(1)
1 (t) to g

(s)
n̄∂

(t) belonging to the boundary points
on ΓD, such that the upper index from 1 to s gives the number of coordinate in the
parabolic system. For the second subvector of (21), we use the obvious notation gh(t) =(
g

(1)
1 (t), . . . , g

(1)
n̄∂

(t); g
(2)
1 (t), . . . , g

(2)
n̄∂

(t); . . . ; g
(s)
1 (t), . . . , g

(s)
n̄∂

(t)
)T

. We will also use the no-
tations

u(k0)(t) :=
(
u

(k0)
1 (t), . . . , u

(k0)
n̄0

(t)
)
, g(k0)(t) :=

(
g

(k0)
1 (t), . . . , g

(k0)
n̄∂

(t)
)

for any fixed k0 = 1, . . . , s, to denote the corresponding sub-n̄0-tuples of uh(t) and sub-
n̄∂-tuples of gh(t), respectively.

To find the function uh(t), first note that it is sufficient that uh satisfies (9) for v = φi
only (i = 1, 2, . . . , N0). Writing the index i in the following form as before:

i = (k0 − 1)n̄0 + p for some 1 ≤ k0 ≤ s and 1 ≤ p ≤ n̄0, (22)

the function v = φi has kth coordinates vk = δk,k0ϕp (where δk,k0 is the Kronecker symbol)
for k = 1, . . . , s, hence (9) yields∫

Ω

∂uk0
∂t

ϕp dx+

∫
Ω

(
ak0(x, t,∇u)∇uk0 ·∇ϕp+(wk0(x, t) ·∇uk0)ϕp+qk0(x, t, u)ϕp

)
dx (23)

=

∫
Ω

fk0ϕp dx+

∫
Γ

γk0ϕp dσ (1 ≤ k0 ≤ s, 1 ≤ p ≤ n̄0).

For fixed k0, using (20), the first integral in (23) becomes M̄ [du(k0)

dt
, dg(k0)

dt
], where

M̄ = [Mpq]n̄0×n̄, Mpq =

∫
Ω

ϕp ϕq dx.

We shall use the corresponding partition

M̄ = [M̄0|M̄∂], where M̄0 ∈ Rn̄0×n̄0 , M̄∂ ∈ Rn̄0×n̄∂

and here M̄0 is the mass matrix corresponding to the interior of Ω. Let k0 = 1, . . . , s and
let us define the partitioned block matrix

M :=


M̄0 0 . . . 0
0 M̄0 . . . 0
...

...
. . .

...
0 0 . . . M̄0

∣∣∣∣∣∣∣∣∣
M̄∂ 0 . . . 0
0 M̄∂ . . . 0
...

...
. . .

...
0 0 . . . M̄∂

 ∈ RN0×N , (24)

or briefly

M :=
[
blockdiags(M̄0, M̄0, . . . , M̄0)

∣∣ blockdiags(M̄∂, M̄∂, . . . , M̄∂)
]
∈ RN0×N . (25)

Then we are led to the following Cauchy problem for the system of ordinary differential
equations:

M
duh

dt
+ G(uh(t)) = f(t), (26)
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uh(0) = uh0 , (27)

where using the form of i as in (22),

G(uh(t)) = [G(uh(t))i]i=1,...,N0
,

G(uh(t))i =

∫
Ω

(
ak0(x, t,∇u)∇uk0 · ∇ϕp + (wk0(x, t) · ∇uk0)ϕp + qk0(x, t, u)ϕp

)
dx,

f(t) = [fi(t)]i=1,...,N0
, fi(t) =

∫
Ω

fk0(x, t)ϕp(x) dx+

∫
Γ

γk0(x, t)ϕp(x) dσ(x),

and finally, uh0 is defined by setting t = 0 in (21) and using that u
(k)
p (0) = u

(0)
k (Bp) for

k = 1, . . . , s and p = 1, . . . , n̄0.

The solution uh = uh(t) of problem (26)–(27) is called the semidiscrete solution.

Here the coefficients g
(k)
p (t) are given, hence (26) can be reduced to a system where M

is replaced by the nonsingular square matrix M0 := blockdiags(M̄0, M̄0, . . . , M̄0) only.
Then existence and uniqueness for (26)–(27) is ensured by Assumptions 2.1, since then
G is locally Lipschitz continuous.

3.2 Full discretization

In order to get a fully discrete numerical scheme, we choose a time-step ∆t and denote
the approximation to uh(n∆t) and f(n∆t) by un and fn (for n = 0, 1, 2, . . . , nT , where
nT∆t = T ), respectively.

To discretize (26) in time, we apply the implicit method. We then obtain a system of
nonlinear algebraic equations of the form

M
un+1 − un

∆t
+ G(un+1) = fn+1, (28)

n = 0, 1, . . . , nT − 1, which can be rewritten as a recursion

Mun+1 + ∆tG(un+1) = Mun + ∆t fn+1 (29)

with u0 = uh(0). Furthermore, we will use notation

P(un+1) := Mun+1 + ∆tG(un+1). (30)

Then, the iteration procedure (29) can be also written as

P(un+1) = Mun + ∆t fn+1. (31)

Finding un+1 in (31) requires the solution of a nonlinear algebraic system. Similarly as
mentioned before, (31) can be reduced to a system with the first N0 coefficients, i.e. M is
replaced by the nonsingular square matrix M0 := blockdiags(M̄0, M̄0, . . . , M̄0) only, since

the other coefficients of un+1 are given from the g
(k)
p (t). Analogously, P is replaced by

P0. The block mass matrix M0 is positive definite, and it follows from Assumptions 2.1
that u 7→ G(u) has positive semidefinite derivatives. hence by the definition in (30), the
function u 7→ P0(u) has regular derivatives. This ensures the unique solvability of (31)
and, under standard local Lipschitz conditions on the coefficients, also the convergence of
the damped Newton iteration, see e.g. [6].
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4 Discrete nonnegativity for the nonlinear system

4.1 Reformulation of the problem

First we rewrite problem (9) to a problem with nonlinear coefficients. Let us define, for
any k, l = 1, . . . , s, x ∈ Ω resp. Γ, t > 0, ξ ∈ R,

rkl(x, t, ξ) :=

∫ 1

0

∂qk
∂ξl

(x, t, αξ) dα, f̂k(x, t) := fk(x, t)− qk(x, t, 0). (32)

Then the Newton-Leibniz formula yields for all x, t, ξ that

qk(x, t, ξ)− qk(x, t, 0) =
s∑
l=1

rkl(x, t, ξ) ξl. (33)

Subtracting qk(x, t, 0) from (1), we thus obtain that problem (9) is equivalent to∫
Ω

s∑
k=1

∂uk
∂t

vk dx+B(u;u, v) = 〈ψ, v〉 (∀v ∈ H1
D(Ω)s, t ∈ (0, T )), (34)

where

B(y;u, v) :=

∫
Ω

s∑
k=1

(
ak(x, t,∇y)∇uk · ∇vk + (wk(x, t) · ∇uk)vk (35)

+
s∑

k,l=1

rkl(x, t, y)ulvk

)
dx

and

〈ψ, v〉 :=

∫
Ω

s∑
k=1

f̂kvk dx+

∫
Γ

s∑
k=1

γkvk dσ.

Then the semidiscretization of the problem reads as follows: find a vector function
uh = uh(x, t) such that

uh(x, 0) = u(0),h(x) (x ∈ Ω), uh(., t)− gh(., t) ∈ V 0
h (t ∈ (0, T ))

and ∫
Ω

s∑
k=1

∂uhk
∂t

vhk dx+B(uh;uh, v
h) = 〈ψ, vh〉 (∀vh ∈ V 0

h , t ∈ (0, T )).

Proceeding as in (20)–(26), the Cauchy problem for the system of ordinary differential
equations (26) takes the following form:

M
duh

dt
+ K(uh)uh = f̂ , (36)

uh(0) = uh0 , (37)
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where M is given in (24),

K(uh) = [K(uh)ij]N0×N , K(uh)ij := B(uh;φj, φi), (38)

f̂(t) = [f̂i(t)]i=1,...,N0
, f̂i(t) =

∫
Ω

f̂k0(x, t)ϕp(x) dx+

∫
Γ

γk0(x, t)ϕp(x) dσ(x). (39)

The full discretization reads as

Mun+1 + ∆tK(un+1)un+1 = Mun + ∆t f̂n+1. (40)

Since we have set G(uh) = K(uh)uh in (26), the expression (30) becomes

P(un+1) =
(
M + ∆tK(un+1)

)
un+1.

Then, letting
A(uh) := M + ∆tK(uh), (41)

the iteration procedure (40) takes the form

A(un+1)un+1 = Mun + ∆t f̂n+1, (42)

which is similar to (31), but now the nonlinear term arises through a coefficient matrix
depending on un+1.

4.2 The DMP: algebraic background

Some classical algebraic results, required in the sequel, are summarized first. We recall a
basic definition in the study of DMP (cf. [15]):

Definition 4.1 A square k × k matrix A = (aij)
k
i,j=1 is called irreducible if for any i 6= j

there exists a sequence of nonzero entries {ai,i1 , ai1,i2 , . . . , ais,j} of A, where i, i1, i2, . . . , is, j
are distinct indices.

Definition 4.2 Let A be an arbitrary k × k matrix. The irreducible blocks of A are the
matrices A(l) (l = 1, . . . , q) defined as follows.

Let us call the indices i, j ∈ {1, . . . , k} connectible if there exists a sequence of nonzero
entries {ai,i1 , ai1,i2 , . . . , ais,j} of A, where i, i1, i2, . . . , is, j ∈ {1, . . . , k} are distinct in-
dices. Further, let us call the indices i, j mutually connectible if both i, j and j, i are
connectible in the above sense. (Clearly, mutual connectibility is an equivalence relation.)
Let N1, . . . , Nq be the equivalence classes, i.e. the maximal sets of mutually connectible

indices. (Clearly, A is irreducible iff q = 1.) Letting Nl = {s(l)
1 , . . . , s

(l)
kl
} for l = 1, . . . , q,

we have k1 + · · ·+ kq = k. Then we define for all l = 1, . . . , q the kl × kl matrix A(l) by

A
(l)
p q := a

s
(l)
p ,s

(l)
q

(p, q = 1, . . . , kl).

Let us now consider a system of equations of order (k+m)×(k+m) with the following
structure:

Āc̄ ≡
[
A Ã
0 I

] [
c
c̃

]
=

[
b

b̃

]
≡ b̄, (43)

where I is the m ×m identity matrix and 0 is the m × k zero matrix. Following [2], we
may introduce
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Definition 4.3 A (k + m) × (k + m) matrix Ā with the structure (43) is said to be of
generalized nonnegative type if the following properties hold:

(i) aii > 0, i = 1, ..., k,

(ii) aij ≤ 0, i = 1, ..., k, j = 1, ..., k +m (i 6= j),

(iii)
k+m∑
j=1

aij ≥ 0, i = 1, ..., k,

(iv) There exists an index i0 ∈ {1, . . . , k} for which
k∑
j=1

ai0,j > 0.

(v) A is irreducible.

Many known results on various discrete maximum principles are based on the following
theorem, considered as ‘matrix maximum principle’ [2, Th. 3]).

Theorem 4.1 Let Ā be a (k + m) × (k + m) matrix with the structure as in (43), and
assume that Ā is of generalized nonnegative type in the sense of Definition 4.3.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m (where ( . )T denotes the transposed) is such
that (Āc̄)i ≤ 0, i = 1, ..., k, then

max
i=1,...,k+m

ci ≤ max{0, max
i=k+1,...,k+m

ci}. (44)

However, the irreducibility of A is a technical condition which is sometimes difficult
to check in applications, see e.g. [3]. We have shown in [9] that it can be omitted from the
assumptions if (iv) is suitably strengthened. For convenient formulations, we will hence
use the following

Definition 4.4 A (k+m)× (k+m) matrix Ā with the structure as in (43) is said to be
of generalized nonnegative type with irreducible blocks if properties (i)–(iii) of Definition
4.3 hold, further, property (iv) therein is replaced by the following stronger one:

(iv’) For each irreducible component of A there exists an index i0 = i0(l) ∈ Nl =

{s(l)
1 , . . . , s

(l)
kl
} for which

k∑
j=1

ai0,j > 0.

Theorem 4.2 [9]. Let Ā be a (k + m) × (k + m) matrix with the structure as in (43),
and assume that Ā is of generalized nonnegative type with irreducible blocks in the sense
of Definition 4.4.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m is such that (Āc̄)i ≤ 0, i = 1, ..., k, then (44)
holds.

By reversing signs, we obtain
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Corollary 4.1 Let Ā be a (k + m) × (k + m) matrix with the structure as in (43), and
assume that Ā is of generalized nonnegative type with irreducible blocks in the sense of
Definition 4.4.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m is such that (Āc̄)i ≥ 0, i = 1, ..., k, then

min
i=1,...,k+m

ci ≥ min{0, min
i=k+1,...,k+m

ci}.

In particular, if (Āc̄)i ≥ 0, i = 1, ..., k, and ci ≥ 0, i = k + 1, ..., k +m, then

ci ≥ 0, i = 1, ..., k +m. (45)

4.3 The DMP: preliminaries on elliptic problems

We briefly summarize our result on a special elliptic PDE system, presented in [10]. Con-
sider the following elliptic system, which is similar to a steady-state problem corresponding
to (1)–(4):

−div
(
bk(x,∇u)∇uk

)
+ bk(x) · ∇uk + σk(x, u1, ..., us) = ωk(x) a.e. in Ω,

bk(x,∇u)∂uk
∂ν

= βk(x) a.e. on ΓN ,

uk = αk(x) a.e. on ΓD

 (46)

(k = 1, . . . , s).

Assumptions 4.3.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable
subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN and ΓD 6= ∅.

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩ L∞)(Ω×Rd),
bk ∈ W 1,∞(Ω) and σk ∈ C1(Ω×Rs). Further, let

2 ≤ p < p∗, where p∗ := 2d
d−2

if d ≥ 3 and p∗ := +∞ if d = 2; (47)

then there exist constants β1, β2 ≥ 0 such that∣∣∣∣∂σk∂ξl
(x, ξ)

∣∣∣∣ ≤ β1 + β2|ξ|p−2 (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (48)

(iii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds pointwise for all k =

1, . . . , s. Further, the Jacobian matrices ∂
∂η

(
bk(x, η)η

)
are uniformly spectrally

bounded from both below and above.

(iv) (Coercivity.) We have div bk ≤ 0 on Ω and bk · ν ≥ 0 on ΓN (k = 1, . . . , s).

(v) (Cooperativity.) We have

∂σk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (49)
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(vi) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.) We have

s∑
l=1

∂σk
∂ξl

(x, ξ) ≥ 0,
s∑
l=1

∂σl
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (50)

(vii) For all k = 1, . . . , s we have ωk ∈ L2(Ω), βk ∈ L2(ΓN), αk = α∗k |ΓD
with α∗k ∈ H1(Ω).

We use the following notion of the quasi-regularity of the mesh.

Definition 4.5 Let Ω ⊂ Rd and let us consider a family of FEM subspaces V = {Vh}h→0

constructed as in subsection 3.1. The corresponding mesh will be called quasi-regular
w.r.t. problem (46) if

c1h
γ ≤ meas(suppϕp) ≤ c2h

d , (51)

where the positive real number γ satisfies

d ≤ γ < min
{

2d− (d− 2)p

2
,
d(d+ 2)

d+ 1
.
}

(52)

The FEM discretization of system (46), constructed similarly as in subsection 3.1,
leads to a system in the form

Ā(c̄)c̄ ≡
[
A(c̄) Ã(c̄)

0 I

] [
c
c̃

]
=

[
d
g̃

]
. (53)

Here the entries of Ā(c̄) are

aij(c̄) =

∫
Ω

( s∑
k=1

bk(x,∇uh) (∇φj)k · (∇φi)k +
s∑

k,l=1

Vkl(x, u
h) (φj)l (φi)k

)
, (54)

where

Vkl(x, u
h(x)) =

∫ 1

0

∂σk
∂ξl

(x, tuh(x)) dt (k, l = 1, . . . , s; x ∈ Ω). (55)

Now we can formulate the desired nonnegativity result for the stiffness matrix.

Theorem 4.3 [10]. Let system (46) satisfy Assumptions 4.3. Let us consider a family
of finite element subspaces V = {Vh}h→0 as constructed in section 3, such that the cor-
responding family of meshes is quasi-regular according to Definition 4.5, further, for any
p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and

∫
Ω

∇ϕt · ∇ϕp ≤ −K0 h
γ−2,

where γ is from (52) and K0 > 0 is a constant independent of p, t and h.

Then for sufficiently small h, the matrix Ā(c̄) defined in (53)–(54) is of generalized
nonnegative type with irreducible blocks in the sense of Definition 4.4.
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Then Corollary 4.1 can be used, in particular, (45) yields that the coefficients of c̄
in (53) are nonnegative whenever the coordinates of d and g̃ are nonnegative. Then the
assumptions (12)–(13) on the basis functions imply (in a similar vein as [9, Th. 4.5]) that
this nonnegativity also holds for the discrete solutions corresponding to these coefficients.
Thus we can derive the corresponding discrete nonnegativity principle:

Corollary 4.2 Let problem (46) satisfy Assumptions 4.3, and let its FEM discretization
satisfy the corresponding conditions of Theorem 4.3. If ωk(x) ≥ σk(x, 0), βk(x) ≥ 0 and
αk(x) ≥ 0 (k = 1, . . . , s, x ∈ Ω resp. x ∈ ΓD), then for sufficiently small h,

uhk ≥ 0 on Ω (k = 1, . . . , s). (56)

4.4 The main result on the parabolic system

Now we are in the position to derive the discrete nonnegativity principle for the parabolic
system (1).

Theorem 4.4 (Discrete nonegativity principle.) Let system (1) satisfy Assumptions 2.1,
further,

fk(x, t) ≥ qk(x, t, 0), γk(x) ≥ 0, gk(x) ≥ 0 and u
(0)
k (x) ≥ 0

(for all k = 1, . . . , s, x ∈ Ω resp. x ∈ ΓD and t ∈ [0, T ]). Let us consider the full
discretization as constructed in section 3, such that the corresponding family of space FE
meshes is quasi-regular according to Definition 4.5, further, for any p = 1, ..., n̄0, t =
1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and

∫
Ω

∇ϕt · ∇ϕp ≤ −K0 h
γ−2, (57)

where γ is from (52) and K0 > 0 is a constant independent of p, t and h.

Let

∆t ≤ 1

µ0

, (58)

where µ0 is from (7), and let us extend the solutions u(., tn) (on time levels tn := n∆t) to
the whole QT such that its values are between those on the neighbouring time levels, e.g.
with the method of lines. Then, for sufficiently small h, the coordinates of the discrete
solution satisfy

uhk ≥ 0 on QT (k = 1, . . . , s). (59)

Proof. As seen in (42), the full discretization leads to the iteration

A(un+1)un+1 = Mun + ∆t f̂n+1, (60)

where

A(uh) := M + ∆tK(uh), K(uh)ij := B(uh;φj, φi), f̂n+1 := [f̂i(tn+1)]i=1,...,N0
,
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M and f̂i are defined in (24) and (39), respectively, and tn+1 := (n+ 1)∆t. Let us rewrite
(60) as

1

∆t
A(un+1)un+1 =

1

∆t
Mun + f̂n+1. (61)

Here
1

∆t
A(un+1)ij =

1

∆t
Mij +B(un+1

h ;φj, φi),

where M is the system mass matrix from (24) and the form B was defined in (35).
Therefore, by definition, 1

∆t
A(un+1) is the stiffness matrix corresponding to the s-tuple

elliptic operator
1

∆t
I + L,

where I is the identity on s-dimensional vectors and if z = (z1, . . . , zs) then

Lz :=
{
−div

(
ak(x, tn+1,∇un+1)∇zk

)
+wk(x, tn+1)·∇zk+

s∑
l=1

rkl(x, tn+1, u
n+1) zl

}
k=1,...,s

.

Further, by definition, the vector f̄n+1 := 1
∆t

Mun + f̂n+1 comes from the discretization of
the vector function{ 1

∆t
unk + f̂n+1

}
k=1,...,s

with Neumann data
{
γn+1
k )

}
k=1,...,s

on ΓN .

Therefore the algebraic system (61) is the FE discretization of the following nonlinear
elliptic problem in Vh:

1
∆t
un+1
k − div

(
ak(x, tn+1,∇un+1)∇un+1

k

)
+ wk(x, tn+1) · ∇un+1

k +
s∑
l=1

rkl(x, tn+1, u
n+1)un+1

l

= 1
∆t
unk + f̂k(x, tn+1) a.e. in Ω,

ak(x, tn+1,∇un+1)
∂un+1

k

∂ν
= γk(x, tn+1) a.e. on ΓN ,

uk = gk(x, tn+1) a.e. on ΓD
(62)

(k = 1, . . . , s). Using formulae (32)–(33), system (62) is equivalent to

−div
(
ak(x, tn+1,∇un+1)∇un+1

k

)
+ wk(x, tn+1) · ∇un+1

k +
(
qk(x, tn+1, u

n+1) + 1
∆t
un+1
k

)
= 1

∆t
unk + fk(x, tn+1) a.e. in Ω,

ak(x, tn+1,∇un+1)
∂un+1

k

∂ν
= γk(x, tn+1) a.e. on ΓN ,

uk = gk(x, tn+1) a.e. on ΓD
(63)

(k = 1, . . . , s). This falls into the type (46) (for the unknown function un+1) if

bk(x, η) := ak(x, tn+1, η), bk(x) := wk(x, tn+1), σk(x, ξ) := qk(x, tn+1, ξ) +
1

∆t
ξk,
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ωk(x) :=
1

∆t
unk(x) + fk(x, tn+1), βk(x) := γk(x, tn+1), αk(x) := gk(x, tn+1).

Now we verify that the above functions satisfy Assumptions 4.3, using that the original
coefficients satisfy Assumptions 2.1. First, all domain and smoothness properties in As-
sumptions 4.3 follow from Assumptions 2.1. Then, assumption (ii) follows from (A4), and
assumptions (iii)-(iv) follow from (A3). Since for all k 6= l

∂σk
∂ξl

(x, ξ) =
∂qk
∂ξl

(x, tn+1, ξ),

assumption (v) follows from (A5). Finally, using (7) and the assumption ∆t ≤ 1
µ0

, the
row sums satisfy

s∑
l=1

∂σk
∂ξl

(x, ξ) =
s∑
l=1

∂qk
∂ξl

(x, tn+1, ξ) +
1

∆t
≥ −µ0 +

1

∆t
≥ 0,

and just similarly the column sums are also nonnegative, hence assumptions (vi) holds.
That is, Assumptions 4.3 hold for system (63).

Our goal is to apply Corollary 4.2 to system (63). We have just seen that Assumptions
4.3 hold, and we have assumed in the theorem that the FEM discretization satisfies the
corresponding conditions of Theorem 4.3. It remains to check that ωk(x) ≥ σk(x, 0),
βk ≥ 0 and αk ≥ 0 (k = 1, . . . , s). The last two are obvious from the assumptions γk ≥ 0
and gk ≥ 0. Finally, the assumption fk(x, t) ≥ qk(x, t, 0) implies

ωk(x) ≥ 1

∆t
unk(x) + qk(x, t, 0) ≥ 1

∆t
unk(x) + σk(x, 0),

which shows that if unk ≥ 0 then assumption ωk(x) ≥ σk(x, 0) also holds, i.e. all assump-
tions of Corollary 4.2 are satisfied for system (63) and thus un+1

k ≥ 0. Altogether, under
our assumptions, we have seen that the extra property unk ≥ 0 implies un+1

k ≥ 0. Now we
can carry out induction: since u0

k ≥ 0, we obtain that unk ≥ 0 on Ω for all n ∈ N. Since
we extend the solutions u(., tn) (on time levels tn := n∆t) to the whole QT such that its
values are between those on the neighbouring time levels, we obtain that uhk ≥ 0 on QT

(k = 1, . . . , s).

Remark 4.1 The validity of condition (57) can be guaranteed e.g. on acute simplicial
meshes if linear finite elements are used in the space discretization [8]. The issue of
generation of such meshes is considered in [1, 4, 14] and references therein.

5 Examples

We give some examples of problems where the above DNP theorem yields new results. Let
us recall here that the main conditions of the applied theorems are the relation ∆t ≤ 1

µ0

for the time step and the “acuteness” property (57) for the space mesh. We will then
derive nonnegativity for the discrete solution.

In all these examples, similarly as before, Ω stands for a bounded domain in Rd and
T > 0 is a given number, and we denote QT := (Ω \ ΓI).
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As a main point, we will point out for each example that the lack of demanding
diagonal dominance allows to cover much more general situations than before, without
imposing any artifical extra conditions in the model.

5.1 A single equation: the Chaffee-Infante problem

Let us consider the so-called Chaffee-Infante equation (see e.g. [5]):

∂u

∂t
−∆u+ u3 − u = 0 in QT , (64)

with the following boundary and initial conditions:

u(x, t) = g(x, t) for (x, t) ∈ ΓD × [0, T ], (65)

∂u
∂ν

= γ(x, t) for (x, t) ∈ ΓN × [0, T ], (66)

u(x, 0) = u(0)(x) for x ∈ Ω, (67)

respectively. We impose the corresponding additional items from Assumptions 2.1, which
now reduce to the following simpler requirements:

Assumptions 5.1.

(A1) Ω is a bounded polytopic domain in Rd; ΓN ,ΓD ⊂ ∂Ω are are disjoint open mea-
surable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

(A2) γ ∈ PC(ΓN × [0, T ]), g ∈ PC(ΓD × [0, T ]) and u(0) ∈ PC(Ω).

The other items from Assumptions 2.1 are trivially satisfied for the case s = 1: (A3)
holds for a(x, t, η) ≡ 1 and w ≡ 0, (A4) holds with p = 4, (A5) is a void condition for a
single equation, and (A6) holds since limξ→±∞(ξ3 − ξ) = ±∞, in fact, we have µ = 1.

Then Theorem 4.4 implies that if

γ ≥ 0, g ≥ 0 and u(0) ≥ 0

on Ω resp. ΓD, and the full discretization satisfies the conditions of Theorem 4.4 (including
(57)–(58)), then

uh ≥ 0 on QT .

Note that the nonlinearity
q(x, ξ) := ξ3 − ξ (68)

is not monotone, hence this result is not covered by [7, 8].
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5.2 Cross-catalytic reactions in chemistry

Certain reaction-diffusion processes in chemistry in a domain Ω ⊂ Rd, d = 2 or 3, are
described by systems of the following form:

∂uk
∂t
− bk∆uk + Pk(x, u1, . . . , us) = fk(x, t) in QT , (69)

with boundary and initial conditions

uk(x, t) = gk(x, t) for (x, t) ∈ ΓD × [0, T ], (70)

bk
∂uk
∂ν

= 0 for (x, t) ∈ ΓN × [0, T ], (71)

uk(x, 0) = u
(0)
k (x) for x ∈ Ω, (72)

for all k = 1, . . . , s. Here, for all k, the quantity uk ≥ 0 describes the concentration of the
kth species, and Pk is a polynomial which characterizes the rate of the reactions involving
the k-th species, and satisfies Pk(x, 0) ≡ 0 on Ω. The function fk ≥ 0 describes a source
independent of concentrations.

We consider system (69)–(72) under the following conditions. The cooperativity means
that such chemical models describe processes with cross-catalysis.

Assumptions 5.2.A.

(i) Ω is a bounded polytopic domain in Rd, where d = 2 or 3, and ΓN ,ΓD ⊂ ∂Ω are
are disjoint open measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s, the functions Pk are polynomials
of arbitrary degree if d = 2 or of degree at most 4 if d = 3, and we have Pk(x, 0) ≡ 0

on Ω. Further, fk ∈ L∞(QT ), gk ∈ L∞(ΓD × [0, T ]) and u
(0)
k ∈ L∞(Ω).

(iii) (Ellipticity for the principal space term.) bk > 0 (k = 1, . . . , s) are given numbers.

(iv) (Cooperativity.) We have

∂Pk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (73)

By definition, the concentrations uk are nonnegative, therefore a proper numerical
model must produce such numerical solutions. Our topic is to give sufficient conditions
to ensure this.
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5.2.1 Monotone coupling

A DMP for such systems has been established in [8] for diagonally dominant nonlinearities.
That is, the following additional condition was imposed together with Assumptions 5.2.A:

Assumption 5.2.B. (Diagonal dominance for the Jacobians w.r.t. rows and columns.)

s∑
l=1

∂Pk
∂ξl

(x, ξ) ≥ 0,
s∑
l=1

∂Pl
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (74)

If both Assumptions 5.2.A and Assumption 5.2.B hold, then it was proved in [8] that
system (69) satisfies the DMP and, in particular, the discrete nonnegativity

uhk ≥ 0 on QT (k = 1, . . . , s)

under similar mesh conditions as in Theorem 4.4.

However, Assumption 5.2.B is a very severe restriction. It implies self-inhibition for
each chemical species:

∂Pk
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s)

and, moreover, the diagonal dominance (74) requires that this self-inhibition must be
so strong that it compensates the total rate of cross-catalysis, i.e. although each cross-
derivative is negative by (73), the sum of derivatives must be nonnegative as in (74). This
set of properties is quite rarely valid for given chemical reactions.

5.2.2 Non-monotone coupling

In order to apply our new result, let us replace the above Assumption 5.2.B by the
following:

Assumption 5.2.C. (Boundedness below for the Jacobians w.r.t. rows and columns.)

There exists a number µ0 ≥ 0 such that

s∑
l=1

∂Pk
∂ξl

(x, ξ) ≥ −µ0,
s∑
l=1

∂Pl
∂ξk

(x, ξ) ≥ −µ0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (75)

Together with Assumptions 5.2.A, our chemical system becomes a special case of system
(1)–(4).

Let us study what restriction is imposed by demanding condition (75). It means that
the directional derivatives ∂Pk

∂e
are bounded from below, where e := (1, . . . , 1). As a first

example, this is satisfied if, similarly to (68), the leading terms of the polynomials in each
variable are odd and have positive coefficients. The oddity can always be ensured: since
Pk are originally only defined for ξk ≥ 0, we can redefine any factor ξjk by the odd term
|ξk|j−1ξk in order to achieve the above property.
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An even more general statement is valid. Namely, for chemical reactions the rates
normally include the products of the different concentrations, i.e. the polynomial in (69)
is of the form

Pk(x, ξ1, . . . , ξs) =
s∑

j=1
j 6=k

ajkξjξk + rk(ξk) (76)

(where rk is a proper function describing the self-action of the kth species), and the
assumed cooperativity means that each ajk ≤ 0 (j 6= k). Now, firstly, since Pk are
originally only defined for ξk ≥ 0, we can redefine it as

Pk(x, ξ1, . . . , ξs) =
s∑

j=1
j 6=k

ajkξj|ξk|+ rk(ξk),

hence
∂Pk
∂ξl

(x, ξ) = alk|ξk| ≤ 0 (k 6= l)

as demanded in (73). Moreover, the possible concentrations u1, . . . , us are limited by
proper constants, depending on the capacities in the described reaction-diffusion process.
Therefore the sums arising in (75) are continuous functions defined on compact subsets
of Ω×Rs, which are always bounded (in particular from below). To define the operator
in (69) for all possible values, one simply has to define all Pk as zero outside a larger
compact subset, which does not influence the boundedness from below. Altogether, under
the assumed cooperativity ajk ≤ 0 (j 6= k), Assumption 5.2.C for (76) does not require
any further restriction on the model.

We can now use Theorem 4.4 to obtain the required nonnegativity: if fk ≥ 0, ghk ≥ 0

and u
(0)
k ≥ 0 for all k = 1, . . . , s, and the full discretization satisfies the conditions of

Theorem 4.4 (including (57)–(58)), then the coordinates of the discrete solution satisfy

uhk ≥ 0 on QT (k = 1, . . . , s).

It is now clear from the above discussion that this result has a much wider scope that the
similar statement in [8] under diagonal dominance.

Other models arise as suitable modifications of the above system, also described in [8,
sec. 6]. Chemical reactions can be sometimes localized on an interface, or a convection
(advection) term can be present to describe a transport process. For both models the
corresponding system in [8, sec. 6] can be modified such that diagonal dominance is
replaced by (74). Thus, following the above line of discussion, we can weaken those
results for much more general reactions,

5.3 Symbiotic population systems in biology

In population dynamics one sometimes encounters systems in the form
∂u1

∂t
− b1∆u1 = u1M1(u1, u2)

∂u2

∂t
− b2∆u2 = u2M2(u1, u2),

(77)
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where u1, u2 denote the amounts of two species distributed continuously in a plane region
Ω, see e.g. [5]. The simple boundary and initial conditions

uk = gk on ∂Ω× [0, T ], uk(., 0) = u
(0)
k on Ω (k = 1, 2) (78)

are imposed. Such a system can also describe a chemical reaction as in subsection 5.2 if
the reaction rates are proportional to the quantity of the species. Here we will use the
population terminology. If the species live in symbiosis, then

∂2M1 ≥ 0 and ∂1M2 ≥ 0. (79)

System (77) falls into the type (1) where

q1(ξ1, ξ2) = −ξ1M1(ξ1, ξ2) and q2(ξ1, ξ2) = −ξ2M2(ξ1, ξ2) , (80)

and f1 ≡ f2 ≡ 0. Most of Assumptions 2.1 are trivially satisfied in a natural way, namely,
let us impose

Assumptions 5.3. Ω is a bounded polygonal domain in R2 and b1, b2 > 0 are given
numbers. Further, g1, g2 ∈ C(∂Ω× [0, T ]), u

(0)
1 , u

(0)
2 ∈ C(Ω), M1,M2 ∈ C1(R2) and they

can grow at most with polynomial rate with ξ1, ξ2.

These assumptions imply that (A1)-(A4) of Assumptions 2.1 are satisfied. Now let us
examine the remaining conditions. We briefly compare the previous result of [8] with the
new result of this paper, in a similar vein as in the previous subsection 5.2.

5.3.1 Monotone coupling

In [8] we had to impose diagonal dominance, which led to very strong restrictions on the
growth of M1,M2. It was shown that they must satisfy

∂i

(
ξi Mi(ξ1, ξ2)

)
≤ −ξj ∂kMj(ξ1, ξ2) (j 6= k).

A realistic example was studied, using functions in the form

qi(ξ1, ξ2) = Giξi − ξiξj hi(ξ1, ξ2), then Mi(ξ1, ξ2) = −Gi + ξj hi(ξ1, ξ2)

(i = 1, 2, i 6= j), where Gi > 0 is the birth-death rate and hi is a factor for the co-
existence of the species (for instance, some Lotka-Volterra type systems can fall into
this type). In this case one must assume that the rates hi are small for large popula-
tions, in particular, that |∂khi(ξ1, ξ2)| ≤ c1

1+ξ21+ξ22
. Moreover, c1 must be so small that

c1(1 + 2
√

2) ≤ min(G1, G2), in order to provide diagonal dominance. Clearly, these are
very strong restrictions and allow only a very small deviation from the trivial linear un-
coupled case.
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5.3.2 Non-monotone coupling

In order to apply our new result, we show that (A5)-(A6) of Assumptions 2.1 can be
satisfied in a very general case compared to the above, essentially with no extra restriction.
This can be done in a similar vein as in the previous subsection 5.2. First we observe
that by definition the model gives natural bounds on u1, u2: the amounts of the species
are positive, and cannot exceed a limit determined by the capacity of the area. Hence
M1,M2 are only considered on a compact set D ⊂ (R+)

2
. Thus, in order to define

M1,M2 ∈ C1(R2) in the differential operator, we can extend them fromD in an alternative

way such that they equal zero outside a larger compact set D̃ ⊂ (R+)
2
.

Then the cooperativity (A5) follows from (79), since the latter yields (6) for ξk ≥ 0,

and the derivative vanishes with Mk for ξk ≤ 0 (i.e. outside D̃). Further, condition (A6)

follows similarly: since M1,M2 ∈ C1(D̃), the l.h.s. of (7) has a minimum on D̃, and thus

it has the same lower bound on R2 since it vanishes outside D̃.

Altogether, all Assumptions 2.1 are satisfied. Now we can use Theorem 4.4 to obtain
the required nonnegativity for the numerically computed populations, using that (by the

definition of the model) ghk ≥ 0 and u
(0)
k ≥ 0 for k = 1, 2. If the full discretization satisfies

the conditions of Theorem 4.4 (including (57)–(58)), then

uh1 , u
h
2 ≥ 0 on QT .

To sum up, in the corresponding result of [8] we required very strong growths restrictions
to ensure diagonal dominance instead of (74), whereas now we did not impose any artifical
extra condition in the model.
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