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It is simply this: do not tire, never lose interest, never grow indifferent –
lose your invaluable curiosity and you let yourself die.

It’s as simple as that.

– Tove Jansson

To Marina





Abstract

The dissertation presents five problem-driven research articles,
representing three research domains related to micro-organisms
causing infectious disease. Articles I and II are devoted to the
A(H1N1)pdm09 influenza (‘swine flu’) epidemic in Finland 2009-
2011. Articles III and IV present software tools for analysing
experimental data produced by Biolog phenotype microarrays.
Article V studies a mismatch distribution as a summary statistic
for the inference about evolutionary dynamics and demographic
processes in bacterial populations.

All addressed problems share the following two features:
(1) they concern a dynamical process developing in time and
space; (2) the observations of the process are partial and impre-
cise.

The problems are generally approached using Bayesian Statis-
tics as a formal methodology for learning by confronting hy-
pothesis to evidence. Bayesian Statistics relies on modelling:
constructing a generative algorithm mimicking the object, pro-
cess or phenomenon of interest.
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Preface

Let p(x|y) be a probability that a statement x is true given that a statement

y is true. If y is always true we can write p(x); if x consists of two statements

a and b we can write p(a, b|y) or p(b, a|y). Probabilities satisfy the following

conditions:

p(x|y) ≥ 0,

∫
x

p(x|y)dx = 1,

∫
x

p(x, y)dx = p(y),

p(x, y) = p(x|y)p(y).

In the continuous case p(x|y) is called a probability density function. In a

discrete case integration is substituted with summation and p(x|y) is called

a probability mass function. Using the last expression we can easily show

that p(x|y)p(y) = p(y|x)p(x), therefore:

p(y|x) = p(x|y)p(y)
p(x)

.

This is known as the Bayes’ theorem or Bayes’ rule. It was first proven by

Thomas Bayes, published by Richard Price in 1763 and reinvented in its mod-
ern form by Pierre-Simon Laplace in 1774 [1].
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The simple expression known as the Bayes’ theorem is the
essence of the Bayesian Statistics. Everything done in 242 years
after its discovery addresses particularities: how to apply, com-
pute and understand it. Why Bayes’ theorem is so important? It
formalizes the learning process: obtaining a new knowledge by
confronting hypothesis to evidence.

The present dissertation consists of five problem-driven re-
search articles, each demonstrating how the Bayesian inference
can be applied in microbiology. Articles I and II are devoted
to the A(H1N1)pdm09 influenza (‘swine flu’) epidemic in Fin-
land 2009-2011. Articles III and IV present software tools for
analysing experimental data produced by Biolog phenotype
microarrays. Article V studies a mismatch distribution as a
summary statistics for the inference of structure in bacterial
populations. All addressed problems share the following two
features:

• They concern a dynamical process developing in time and
space: spread of a virus; growth of bacteria on the experimen-
tal plate; neutral evolution of a population.

• The observations of the process are partial and imprecise:
there is an under-reporting of infected influenza cases; mea-
surement errors caused by a laboratory equipment; sampling
bias.

These problems are handled by constructing a spatio-temporal
model of the latent process and estimating the parameters of
such model in a Bayesian framework. The next chapter describes
briefly the methodological platform. The subsequent chapters
are devoted to models and computational methods. The last
chapter of this introduction summarizes articles, presenting their
context, research goals and results.

Through the text, boxes like this are used to link the
introduction to the research articles.



Bayesian Thinking

There is a long tradition [2, 3, 4] of establishing the Bayesian
Statistics as a theory for a decision-making in the presence of
uncertainty2. To make the best possible decision we need three 2 i.e. everywhere, as the cer-

tain knowledge is doubtfully
possible outside of the for-
mal domains of Mathematics
and Logic.

ingredients:

• Knowledge about the problem’s domain;

• Observations which can support or refute this knowledge;

• Utility function, quantifying the gain different decisions will
bring us in the different states of nature.

First, the existing knowledge is formalized as model and
prior. The model presents certain knowledge3 while the prior 3 certain knowledge: knowl-

edge which is reliable and
precise enough to safely
ignore its uncertainty.

codifies uncertainty. The model, prior and observations are
combined in Bayes’ theorem to produce the updated uncertainty
represented by the posterior. The posterior is combined with the
utility function in the process of Bayesian decision making to
choose the decision maximizing the expected utility. The scheme
is shown in the following picture:

Figure 1: The idealized
version of the Bayesian
thinking. −→ and 99K
show the flow of the formal
and informal knowledge,
respectively.

The absence of feedback is an essential feature of this scheme,
guaranteeing its objectivity and fairness. The model formulation
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should not be affected by the observations. In the ideal world,
the model is constructed before the observations are obtained.
The posterior should not be affected by the decision-making
process. Statistics serves as a blind witness, not knowing what it
is testifying for. Model formulation, Bayesian inference and deci-
sion making are separate processes. They may even be done by
separate people. For example, a model of an epidemic spreading
across a country is formulated by a field expert (e.g. virologist)
while the utility function evaluating different control policies is
set by a decision maker (e.g. health official). Statistician plays a
role of the medium, conducting the Bayesian inference.

This scheme is inapplicable directly to scientific research
distanced from decision making. The end product of the scien-
tific inquiry is not an action but new knowledge. The different
scheme is thus:

Figure 2: The idealized
version of the Bayesian
thinking in science. −→
and 99K show the flow of
the formal and informal
knowledge, respectively.

The formally defined mathematical objects: ‘utility function’
and ‘decision’ are replaced by informal vague terms: ‘research
question’ and ‘new knowledge’. Posterior distribution is now
the last formal result of the research. Discussion plays a role of
reverse-modelling, it deformalizes the posterior translating it
from the language of mathematical abstraction into a natural
language. Discussion is able to link back the knowledge which
was not used in constructing the model. It is supposedly done
by the same researcher who constructed the model. Discussion is
not limited to the posterior but may address the model as well.

Not every statistical problem can be solved analytically. If
the Bayesian rule can not be applied directly, computational4

4 Here by analytical solution
I mean an exact answer, as
achieved by pure math, pen
and paper. By computational
solution I mean an approxi-
mate answer achieved with a
computer.

methods are used instead. The scheme would look differently:
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Figure 3: The practical
version of the Bayesian
thinking in science. −→
and 99K show the flow of
the formal and informal
knowledge, respectively.
Components of thinking are
constructed to fit each other.

Instead of the exact posterior distribution a computational
method provides an approximate answer such as an approxima-
tion of the posterior, point estimates, interval estimate or a model
selection criterion. This scheme still has no feedback loop. How-
ever, components should be selected minding each other. The
appropriate choice of inference method depends on the research
question, model and available data. The priors could be chosen
to facilitate computational methods. The discussion should take
into account the assumptions, simplifications and approxima-
tions made during the model formulation and computational
inference.

Pre-selecting these components to perfectly fit each other
could be impossible in a real project. Bayesian thinking needs to
be a holistic process:

Figure 4: The practical
version of the Bayesian
inference in science. −→
and 99K show the flow of
the formal and informal
knowledge, respectively.

The model, prior and computational method are iteratively
tuned to fit each other in processes called model criticism and
method criticism. Thus, feedback loops are created. Knowledge
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is generated during the whole process of Bayesian thinking
including the criticisms, e.g. learning that certain models are
unable to describe certain data could bring valuable insight.

The use of feedback loops expels us from the safe haven of
idealized Bayesian thinking. It may lead to scientific malprac-
tices, both voluntary and unconscious. Firstly, the model is now
constructed taking the observables into account. This may give
data too much weight or lead to overfitting. In the worst case
the whole procedure of Bayesian inference turns into a useless
tautology, as the model would be able to explain nothing but
observations.

Secondly, iterative nature of Bayesian thinking may tempt us
to continue tuning the model and the inference method until
the result would satisfy our personal reasons, e.g. until they
will agree with our personal beliefs. I don’t know any perfect
solution to prevent these malpractices. Personally, I tried to
document all the rationales for choosing the model and inference
methods.

How these principles are related to the presented articles? Did I
see the data before formulating the models and inference methods?

Articles I and II are not just devoted to the same problem
(influenza epidemic in Finland in 2009-2011) but use the
same dataset. Paper II expands on the ideas of paper I, using
a more complex dynamical transmission model simulated
on a cluster computer. The model used in Article II was
formulated after working with the dataset for several years.

Articles III and IV are suggesting new methods to handle
Biolog phenotype microarray data. These methods were
built on models formulated while working with the dataset.

On the contrary, Article V uses ideas developed on a
purely theoretical basis, without observing any data.



Modelling

Modelling is one of the basic tools of the scientific method. It
substitutes the studied object, process or phenomenon with its
simplified version – model, keeping the relevant features and
excluding or simplifying irrelevant ones [5]. In this introduction
I would use a narrow definition:

A model is a computer program capturing a real-life object, process
or phenomenon, taking the input values x (parameter) and returning
output values y (observations, data) using reasonable computational
resources. Sampling (generating) the values of y with the parameters x
is denoted with y ∼ p(y|x).

Figure 5: Model is repre-
sented as a direct acyclic
graph.

This definition is very practical: every model satisfying it
can be analysed by the Bayesian thinking using the framework
described in this introduction. This definition is synonymous to
the concept of simulator, generating algorithm and a program
in a probabilistic programming [6]. In the model-program com-
putations are used as a universal tool for capturing reality. In
particular, randomly generated values are used to represent un-
known quantities or known mechanisms in a simplified fashion.

The observations y represent all quantities that can be directly
compared to reality. The parameters x capture the quantities
of interest what we are trying to estimate. Models can be split
into several chained programs so one model’s output is another
model’s input. These intermediate values will be referred as the
hidden states and denoted5 with h. 5 There are no single nota-

tion convention. For exam-
ple, Cressie and Wikle [7]
use θ for parameters, Y for
hidden states and Z for
observables. Parameters
used to define other param-
eters are sometimes called
metaparameters or hyperpa-
rameters and denoted with
γ or φ.

A simple example of a model is a program emulating a fair
coin toss: it takes no input parameters and returns either ‘head’
or ‘tail’ with equal chance. On the other side of complexity
scale we can find astrophysical simulators, taking cosmological
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constants as input and emulating galaxy collisions or black
holes.

What models are used in the research articles?
Articles I and II use epidemiological models, capturing

the spread of influenza virus across Finland. Articles III
and IV use model of metabolic signals produced by bacteria
during a Biolog phenotype microarray experiment. Arti-
cle V uses a model of neutral evolution in the structured
population.

Models as Probability Distributions

Every model generating data y using parameters x defines a
probability distribution p(y|x) known as the likelihood. Philo-
sophically speaking, the program and the corresponding prob-
ability distribution p(y|x) are the same entity. In practice, how-
ever, having the program does not guarantee knowing the dis-
tribution. Sometimes one could sample x ∼ p(y|x) but can’t
compute p(y|x) and vice versa.

Types of Models

The following list presents few basic classes of models relevant
to research articles. The classification is based on the ways how
we can split the model and its output into submodels.
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Spatio-Temporal Models is a class of models describing
dynamical processes happening in space. The hidden states and
observation are split into subsets hs,t and ys,t indexed by space s
and time t.

Bayesian inference can target different parts of the model. The
common examples are:

x Parameter estimation
h Inference about states
hs,t>T or ys,t>T Prediction
hs/∈S,t or y/∈S,t Extrapolation

Models with independent and identically distributed
(IID) variables. If a model can be split into n identical sub-
programs sharing the same input to generate n subsets of data
y = (yi)u∈1...N , the model is referred as having IID assumptions.
The model could be represented by the following graph and
expression:

y1 ∼ p(y|x)
y2 ∼ p(y|x)

. . .
yN ∼ p(y|x)

Inference on such models could utilize multiple independent
evidence. However, the IID assumption is often unrealistic
outside the experimental setting in controllable environment.
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Nested Models is a class of models which can be split into
two levels of hierarchy. The top level model generates a vector of
hidden states h = (hi)i∈1...N . The bottom level models generate
subsets of data y = (yi)u∈1...N independently, each using its own
subsets of hidden states [8]. Nested model could be represented
by the following graph and expression:

h1, h2 . . . hN ∼p(h1, h2 . . . hN |x)
y1 ∼p(y1|h1)

y2 ∼p(y2|h2)

. . .

yN ∼p(yN |hN)

In a spatio-temporal nested model, hidden states are usually
generated assuming smoothness: states what are close in time
and space are more likely to be similar than the distant ones.
Smoothness assumption plays an important role in the Bayesian
Statistics. It is realistic in many cases and it allows sharing
evidence among non-IID data subsets.
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Hierarchical Models is a class of models which can be split
into three separate programs [7]: the parameter model generates
two sets of parameters denoted with xy and xh. The process
model generates hidden states h using process parameters xh.
The data model uses hidden states and observation parameters
xy to generate the observations y.

parameter model xy, xh ∼ p(xy, xh|x)
process model h ∼ p(h|xh)

data model y ∼ p(y|h, xy)
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Hidden Markov models is a class of spatio-temporal nested
hierarchical models with two additional restrictions: hidden
state ht should depend only on the parameters and the previous
hidden state ht−1; observation yt should depend only on the
parameters and the hidden state ht.

parameter model xy, xh ∼ p(xy, xh|x)
process model h1 ∼ p(h1|xh)

ht ∼ p(ht|ht−1, xh)

data model yt ∼ p(yt|ht, xy)

What model types are used in the research articles?
Articles I, II and V use Hidden Markov models.
Articles III and IV use general spatio-temporal models.

Identical experimental replicates are treated as IID samples.
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Prior Selection

Model requires input parameters x. Prior distribution p(x) cap-
tures the belief about the input parameters before observing the
data. While the model codifies certain knowledge (it simulates
one’s ideas of how the reality works) priors may express uncer-
tainty. Here I suggest a classification of priors according to the
amount of information they bring:

Non-informative priors reflect the absence of any information
regarding the parameters. Constructing an uninformative
prior is a complex mathematical and philosophical task. It is
sometimes solved by an improper prior – a function which
does not satisfy the probability axioms but may be used as
an approximation. Improper priors require extra attention to
avoid problems in inference.

Regularizing priors slightly restrict the parameters space to pre-
vent the model from exhibiting unwanted singular behaviour.

Informative priors represent actual knowledge. They typically
strongly restrict the parameter space. Informative prior may
represent subjective knowledge.

Fixed values are not technically prior any more, but a part of a
model. They are used to represent certain knowledge or to
simplify the model by locking less important parameters.

In practice, priors are mostly constructed with standard
probability distributions, so we can both sample x ∼ p(x) and
compute p(x). Formulating a prior probability distribution for
the parameters p(x) defines the existence of a prior distribution
for the hidden states h and observables p(y).

What priors are used in the research articles?
Articles I and II use mostly informative priors, obtained

through expert opinions and literature review.
Articles III and IV present computational tools, where

users have to define the priors themselves.



24 bayesian inference for spatio-temporal models

Model Complexity

Everything should be made as simple as possible, but not simpler.
– attributed to Albert Einstein

A model should be as big as an elephant.
– Leonard Jimmie Savage

All models are wrong but some are useful.
– George E. P. Box

All models are useful but some are wrong.
– Jani Anttila

How exactly should models be constructed? As the epigraphs
imply, there exist multiple schools of thought about this issue.
This section brings some general discussion on model complex-
ity.

I separate two approaches: analytical modelling and synthetic
modelling. The first approach (also known as the Aristotelian
idealization [9]) suggests that a model should be as simple as
possible. Analytical model consists of a minimal set of rules
needed to replicate the studied object, process or phenomenon.
For example, in infectious disease epidemiology this could be
an SIR model, suggested in 1927 [10, 11]. It consists of only
three differential equations and is able to describe a process
resembling an epidemic outbreak.

Figure 6: The set of all possi-
ble models. Should we use
the simplest model possible
or the most complex model
which we can handle using
the available computational
resources?

The synthetic modelling suggests that a model should fol-
low our conception of reality as closely as possible. The limit to
model’s complexity is set by our knowledge and our ability to
analyse it (e.g. access to computational resources). In infectious
disease epidemiology a FluTE model [12] can serve as an exam-
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ple. This model simulates the spread of influenza by recreating
the low-level behaviour of individual people. FluTE requires not
only extensive computational resources to run a virtual epidemic,
but detailed census data (distribution of the household sizes,
contact frequencies, etc) and information on influenza virology
(latent periods, transmission probabilities, etc).

Bayesian methodology generally prefers synthetic mod-
elling [3]. Naturally, to get the best answer one should use all
the available information. However, more complex models gener-
ally require more complex computational methods, resulting in
more layers of approximation. This makes the Bayesian inference
less transparent and may nullify or even revert the gain from
inclusion of additional knowledge.

The complexity of analytical modelling depends on a set of
features we consider to be essential for object, phenomenon or
process of interest. Usually we can define such a large set of
essential features that the difference between analytical and
synthetic modelling disappears. Therefore the problem of model
complexity can be interpreted as a problem of essential features.

How the models used in the research articles are constructed?
Articles I and II use synthetic models, the most complex

models possible for available computational resources. This
allows integrating multiple sources of information in the
inference and addressing more complex questions.

Articles III – V use analytical models, the simplest mod-
els which are able to replicate the phenomenon of interest:
metabolic signals from active and not-active bacteria (III),
several metabolic cycles reflected in signals from active bac-
teria (IV), neutral evolution affected by population structure
(V). Articles III – V are not linked to any particular prob-
lem. Constructing more complex models would be rather
impossible due to lack of specific knowledge.





Computational methods

Construction of a model implies a likelihood p(y|x). Construc-
tion of the prior p(x) and the model imply the prior distribution
for the observables p(y). This three distributions can be plugged
together into the Bayes’ rule

p(y|x) = p(x|y)p(y)
p(x)

.

to estimate the posterior p(y|x).
We would like to study the posterior: visualize it, estimate

its mean, median and mode, its shape (e.g. how many modes it
has), its correlation structure etc. If p(x|y) is too complex to be
studied analytically, computational methods are used.

This chapter attempts to classify the computation methods
used in Bayesian statistics. It does not aim at providing neither
comprehensive nor exclusive overview, but rather giving a
context for the methods used in the research articles.
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Computational methods can be separated into three groups:
point estimation, proxy distribution and sampling. The following
picture shows the methods relation within the groups:

Figure 7: Classification of
computational methods.
Arrows represent method
extensions.
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Point Estimation

A single summary of the target posterior (such as mean or mode)
is estimated. This can be done by any suitable optimization
method.

Figure 8: The median and
the mean: two point esti-
mates of a target distribution
(gray line).

Proxy Distribution

The target posterior is approximated with another probability
distributions, which is close to the target but is easier to analyse.

Laplace approximation (also known as the Laplace’s Method
or saddle-point approximation) is a simple example of proxy
methods. It uses a normal distribution with mean at a mode
of the target posterior and covariance defined using a second
order derivatives at the posterior mode. The mode could be
found with optimization and derivatives could be estimated
numerically [13].

Figure 9: The target distribu-
tion (gray) is approximated a
Normal distribution (cyan).
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Variational Bayes methods are based on minimizing the
Kullback-Leibler divergence between the target and a proxy
distribution. It is not limited to a particular form of a proxy
distribution [13].

Figure 10: The target dis-
tribution (gray line) is
approximated with a mix-
ture of normal distributions
(cyan)

Bayesian quadrature approximates the target with a non-
parametric (e.g. Gaussian) process fitted to the target using the
principles of Bayesian inference [14].

Figure 11: The target dis-
tribution (gray line) is
approximated with a Gaus-
sian process (cyan), build
upon n=3, 5 and 7 points.
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Sampling

Sampling methods approximate the target posterior with a set of
particles {xi}i∈1...n or weighted particles {xi, wi}i∈1...n, here x is a
vector of parameters and w is a positive number.

Sampling approximation is good when taking a random
particle from a set imitates sampling from the target distribution.
In the unweighted case the particle is selected uniformly, in
the weighted case - with the corresponding probability weight
wi/ ∑ w. For most of the sampling methods the precision grows
with the number of used particles n and becomes perfect with
n→ ∞.

The set of generated particles provides a very practical way
to do visualization and estimate various statistics. For example,
mean and quantiles of the target distribution are approximated
by mean and quantiles of the set. Any change of variables in
the target distribution can be mirrored by a corresponding
transformation on the set.

Figure 12: The heatmap of
the true target distribution,
used for the few next
examples.

Grid method is a deterministic method. The target distribu-
tion p(x|y) is measured on a grid of n points from the domain of
x. These points are pre-allocated to uniform cover the domain.
For example, in one dimensional interval [a, b] the optimal allo-
cation would be x ∈ {a, a + b−a

n−1 , . . . , b}. The target distribution
is then represented by a set of weighted samples {xi, p(xi|y)}.
Grid methods work well only for low dimension as the complex-
ity of allocation grows exponentially with dimensionality of a
parameters’ domain.

Figure 13: Three sets of
particles obtained with a
Grid Method with n=100,
225 and 500 particles. All
particles are marked by +
signs and by orange dots
with areas corresponding to
the particles’ weight.
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Monte Carlo method also represents the target distribution
with {xi, p(xi|y)}. The difference is that points xi are randomly
and uniformly sampled from the domain of x. Monte Carlo
scales much better than the grid method [15] as its convergence
is guaranteed by the law of the large numbers independently of
the number of dimensions.

Figure 14: Three sets of
particles obtained with
a Monte Carlo method
with n = 100, 225 and
500 particles. All particles
are marked by + signs
and by orange dots with
areas corresponding to the
particles’ weight.

Importance Sampler (IS) is an extension of the Monte Carlo
method [15], enabling to utilize knowledge about p(x|y) to study
it. The values of x are sampled not uniformly, but from an impor-
tance distribution g(x|y). To compensate for the uneven spread
of samples, the weights are divided by the sampling probability:
the target distribution is represented by {xi, p(x|y)/g(x|y)}.

Figure 15: Three sets of
particles obtained with an
Importance sampler.

Importance sampler is more efficient when g(x|y) is similar
to p(x|y). The importance distribution is constructed either to
reflect the prior knowledge about p(x|y), or in such a way that
p(x|y)/g(x|y) could be simplified.
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If the importance function is well selected, the weights
p(x|y)/g(x) would be near 1. It is natural to measure the good-
ness of importance function an expected log weight of a sample.
This is, in fact, a Kullback-Leibler divergence, therefore optimiz-
ing the importance function is an example of a variational Bayes
method.

Particle Filtering (PF) (also known as the Particle Monte Carlo
and Population Monte Carlo) is an extension of the Importance
sampling [16]. Assume the hidden states and observation are
indexed by time, h = (h1, h2, . . . , hT), y = (y1, y2, . . . , yT) and
a partial posterior p(x, h1...t|y1...t) can be defined for each t. To
generate x and h from an importance distribution h ∼ g(h, x|y)
hidden states are sampled sequentially: first we sample

x ∼ g(x), then
h1 ∼ g(h1|x, y1), then
h2 ∼ g(h2|x, h1, y1,2), then
h2 ∼ g(h3|x, h1,2, y1,2,3) and so on until
hT ∼ g(hT |x, h1...T−1, y).
Sometimes one can early predict if a particle’s weight w =

p(h, x|y)/g(h, x|y) is going to be big or small seeing its partial
weights wt = p(h1...t, x|y1...t)/g(h1...t, x|y1...t). In this case one
could immediately stop generating the useless low-weight
particle and start a new one.

This is exactly what PF is trying to achieve. To be able to
compare samples, they are not generated sequentially but all at
once. First, the set of particles {x, h1, w1}i∈1...n is generated. Then
each individual particle is propagated to {x, h1,2, w2}i, then to
{x, h1,2,3, w3}i and so on. Note that each such cloud of weighted
particles describes the partial posterior p(x, h1...t|y1...t).

The filtering occurs on so called resampling steps, when a set
of particles {h1...t, wt}i∈1...n is reorganized so that all particles
would have the same weight: particles with a small weight
are removed while particles with a large weight are split. The
simplest way to do it is a multinomial distribution, but there are
other approaches [17].
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Markov chain Monte Carlo (MCMC) is a family of methods
where unweighed particles are generated sequentially [15].

Assume a Markov chain with an initial state x0 and the transi-
tion rule:

x∗ ∼ g(x∗|xt)

xt+1 =

 x∗ with probability min 1,
p(x∗|y)g(xt|x∗)
p(xt|y)g(x∗|xt)

xt otherwise
;

here x∗ is a proposed new value for x, g() is a proposal distri-
butions and the superscript denotes iteration index. It can be
shown that if p() and g() are fulfilling several obvious criteria
the Markov chain would have a unique stationary distribution
which is exactly p(x|y). Knowing that every Markov chain even-
tually converges to its stationary distribution we can generate
samples from p(x|y) given sufficient time.

Figure 16: The set of parti-
cles obtained with MCMC
at t=100, 255 and 400

th it-
erations. The size of each
point corresponds to the
number of particles with this
coordinates (each particle
has the same weight). The
gray line traces the order of
sampling. The chain was
initiated form far from the
distribution mode, but was
able to converge to the true
posterior.

In the generalized scheme the vector of parameter x is divided
into subsets x1, x2 . . . xm. During each iteration only a single
component xi, i = i(t) is updated.



computational methods 35

x∗i ∼ gi(x∗i |xt)

x∗ =
(

xt
1 . . . xt

i−1, x∗i , xt
i+1 . . . xt

m
)

xt+1 =

 x∗ with probability min 1,
p(x∗|y)gi(xt

i |x∗)
p(xt|y)gi(x∗i |xt)

xt otherwise
;

here gi() is the proposal function for ith component, x∗ is a
parameter vectors containing the proposed value of xi.

In a random walk MCMC
the acceptance probability is
simplified to posterior ratio:

min 1,
p(x∗|y)
p(x′|y)

In a Gibbs Sampler the
acceptance probability is
always equal to 1, i.e. all
proposals are automatically
accepted.

MCMC has different names depending on what proposal
distribution is used. The general formula is referred to as
Metropolis-Hastings method. The MCMC with symmetric
proposal distribution gi(x∗|x) = gi(x|x∗) is called random walk
MCMC. The MCMC where the proposal distribution is equal
to the marginal posterior gi(x∗|x) = p(x∗|y) is called Gibbs
sampler.

Accept-Reject. In this method, we first sample a parameter x∗

from its prior x∗ ∼ p(x), then sample a pseudodata y∗ using the
model y∗ ∼ p(y|x∗). If the generated pseudodata is identical to
the real data y = y∗, the parameter x∗ is accepted. Otherwise,
it is rejected. The target distribution p(x|y) ∼ p(x)p(y|x) is
represented by a set of unweighed accepted samples x∗.

Figure 17: Accept-Reject
method. All generated pairs
of <parameters, pseudodata>
are shown in gray. Accepted
pairs are shown in orange.

On a bright side, Accept-Reject method does not ask to com-
pute any probability densities. We do not need to know any
mathematics behind the model, we just need to be able to sam-



36 bayesian inference for spatio-temporal models

ple from it. This makes Accept-Reject applicable for so-called
intractable models (i.e. models where likelihood cannot be com-
puted easily) such as very complex models and black boxes. On
a negative side, Accept-Reject does not work for any realistic
problem as a chance of hitting x with x∗ is practically zero.

Approximate Bayesian Inference (ABC). To bring Accept-
Reject to practical use, two layers of approximation are sug-
gested [18, 19]. First, instead of comparing the data and pseudo-
data we are comparing their summary statistics ss(x) and ss(x∗).
Second, instead of a perfect match ss(x) = ss(x∗) we require
similarity. The parameter x∗ is accepted if d(ss(x), ss(x∗)) < ε,
here d is a distance and ε is a pre-set threshold.

Figure 18: ABC method.
Three sets of particles
obtained for different ε.
All generated pairs of
<parameters, pseudodata>
are shown in gray. Accepted
pairs are shown in magenta
(big ε), cyan (mid ε) and
orange (small ε).

ABC opens a whole world of intractable models to be ex-
plored. It also raises a set of questions: how to choose a distance,
summary statistics, threshold ε.
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Nested Computational Methods

Sometimes we need to estimate a probability distribution p(x|y)
such that p(x|y) =

∫
p(x, h|y)dh where p(x, h|y) is still analyt-

ically intractable, but is easier to handle. In this situations one
could use a nested computational method. The inner algorithm
approximates p(x, h|y) while the outer algorithm studies the
distribution p(x|y) using the estimates from the inner algorithm.
This adds another layer of approximation errors, but enables ad-
dressing more complex problems. There are multiple examples
of nested methods:

Particle Gibbs uses MCMC as an outer method and Particle
filter as an inner method [20]. The proposal function takes one of
the particles left after the work of a particle filter, thus reducing a
computational burden.

Exact Approximate MCMC uses MCMC as an outer method [21,
22]. Any numerical approximation can be used inside. If the
inner approximation satisfies a certain condition, the whole
method still converges to the true distribution (thus the name).

Bayesian Optimization for Likelihood-Free Inference (BOLFI)
uses Bayesian quadrature as an outer method, ABC as an inner
method [23].

Integrated Nested Laplace Approximation (INLA). If the tar-
get distribution comes from the class of Latent Gaussian models,
INLA uses a set of certain complex methods to approximate
it [24].

Sequential ABC uses ABC, sequentially adopting the prior
distribution in a manner of a particle filter [25].
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What computational methods are used in the present articles?
Article I uses Gibbs Sampler. The method was imple-

mented in Python.
Article II uses several algorithms. MCMC was used as a

main tool. Exact-approximate MCMC was used to check the
convergence of the main method. Optimization was used to
set an initial position for MCMC and to perform a sensitivity
analysis. The method were implemented in Python with
bottleneck parts written in C.

Article III uses a Gibbs Sampler implemented in BUGS.
Article IV presents an optimization function written in R.
Article V discusses a summary statistics for ABC.

Method Criticism

It may not be immediately clear if a chosen computational
method fits the problem or if amount of generated samples is
high enough. Moreover, computational methods, like other com-
puter programs, may contain bugs. Tests should be performed.
There are multiple testing methods ranging from a visual in-
spection to formal criteria. In the following list I summarize
commonly used methods. Note that sometimes dysfunctional
computational methods could be a sign of inadequate model.
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Let
≈
p [a|b] denotes a

computational estimate of
a distribution p(a|b) and
p(a|b ∼ g(b)) denotes a
probability distribution of a
given that b is sampled from
g(b). Then we can formalize
a posterior predictive check
as estimating the probability

p(y|x ∼
≈
p [x|y]);

leave-data-out as estimating
the probability

p(y2|x ∼
≈
p [x|y1]);

and mock-up data analysis
as estimating the probability

≈
p [x′|y∗ ∼ p(y|x′)].

Posterior predictive check tests if the estimated posterior dis-
tribution actually corresponds to the observed data. It generates
pseudo-observations using the values of the parameters sampled
from the posterior and compares them to the real observations.

Leave-data-out class of approaches relies on separating the
dataset into subsets y = (y1, y2). The inference is made using
only the training part y1 by learning the distribution p(x|y1).
This posterior is then used to predict the known test dataset y2.

Mock-up data analysis does not require the actual data y.
The mock data y∗ are generated from the model with pre-set
parameter values x′. The computational method is then used
to infer back the x′. If the method fails this task, there is a fare
chance it would not succeed with a real problem too.

Several independent runs are important for sequential meth-
ods such as MCMC what are in danger of locking themselves
in a local maxima of the posterior. To control for this, sequen-
tial methods are usually repeated several times starting from
different initial points.

What tests are used in the research articles? In the articles
I, II and IV mock-up data test and independent runs were
applied. In addition, in Article II the same posterior distri-
bution was estimated by several different methods. Article V
used independent runs.





Research articles

This chapter summarizes the research articles presenting their
context, research goals and results.

Influenza Epidemiology

In Finland 2009-2011, A(H1N1)pdm09 influenza (also known as
‘swine flu’) caused two epidemic seasons. The first season was
part of the global A(H1N1)pdm09 pandemic and received lots
of attention from media and medical institutions. The second
season was classified as a normal influenza winter outbreak. A
national vaccination campaign was undertaken in 2009-2010.

Multiple control measures can be utilized against an epidemic:
vaccination, quarantine, school closures etc. To choose the best
countermeasure decision makers should understand how danger-
ous the infection is, how it spreads, which social groups are most
vulnerable and so on. To address these questions it is important
to know the true number of infections. However, for such large
scale disease as influenza estimating the true incidence may be
problematic.

Figure 19: The numbers
of confirmed A influenza
cases during two seasons in
Finland in 2009-2011



42 bayesian inference for spatio-temporal models

In Finland 2009, several registers were collecting the data on
the influenza spread. But the registers alone could not reveal
the whole picture due to the high underreporting rate: only a
fraction of infected individuals shows any symptoms and only
a fraction of these seek medical care; only a fraction of doctors
tests their patients for A(H1N1)pdm09 and submits results to
the registry. The probabilities of these events may depend on
the age of a sick person, severity of a sickness, geographical
region and time of infection, since the public concern about
the pandemic changed with time. Underreporting causes the
fundamental unidentifiability of the true attack rate. It is impossible
to tell a widespread hard-to-detect infection from a rare but
easy-to-detect one using only the number of registered cases.
Additional sources of information should be used.

Figure 20: The fundamental
unidentifiability of the
registries: it is impossible
to estimate the true number
of infections using only the
registered data.

Figure 21: The concept of
tilted iceberg: more severe
infections have a bigger
chance to be detected.

Bayesian approach solves the problem of fundamental uniden-
tifiability by amalgamating several sources of information. In
addition to registers one could use experts opinion, general
understanding of how the influenza spreads, estimates of the
influenza burden in other countries and during other pandemics.
This approach is sometimes referred as Bayesian evidence syn-
thesis [26]. The epidemiological models used to study influenza
pandemics can be classified as static or dynamic. In static models,
the infection pressure is captured as a probability of becoming
infected during the whole season [27, 28, 29]. In dynamic models,
the spread of the infection is modelled explicitly [30]. The static
approach requires less computational resources and less specific
knowledge, while the dynamic one enables to address more
complex questions.

Article I – Estimating the burden of A(H1N1)pdm09 in-
fluenza in Finland during two seasons.

This is a research paper aiming at estimating the true burden
of ‘swine flu’ epidemic, i.e. the true number of infected during
the influenza outbreaks.

The Article uses a static model. Two seasons are modelled,
vaccination placed between seasons. The true numbers of infec-
tions are estimated for each age group and geographical region.
Computations took about two days on a server computer.



research articles 43

The main methodological feature of this paper is a Bayesian
evidence synthesis. We have combined several data sources,
including registers of different reliability, experts opinion and
a literature review. This allowed us to bypass the fundamental
unidentifiability of register data and estimate the attack rate in
the population. We conclude that totally 5% of the population
are estimated to be infected during two seasons. This means that
only 1 infection per 25 was detected.

While the main text of the paper concentrates on epidemiolog-
ical details, supplementary material (included) covers the details
of modelling and computational methods.

Article II – Revealing the true incidence of pandemic A(H1N1)
pdm09 influenza in Finland during the first two seasons - an
analysis based on a dynamic transmission model.

This is a research paper aiming at:

• improving the results of Article I using more accurate model;

• estimating the effect of the vaccination campaign: how many
potential infections were prevented by conducting the vaccina-
tion;

• developing a general methodology what could be applied for
other epidemics.

The Article uses a dynamic model. To simulate the spread of
infection we used contact rates estimated in Finland by Polymod
survey [31]. Stratification by geographical regions was aban-
doned due to computation burden. Computations took about
two months on a 16-core cluster computer.

The dynamical model in combination with several data
sources and informative priors allowed us to bypass the fun-
damental unidentifiability of register data and estimate the true
attack rate. This estimate was larger than in Article I: 500 000

individuals (9% of the population). Dynamical model was able
to simulate a scenario where vaccination campaign had never
started. In this case, the study predicts, the incidence could reach
as high as 50% of the population.
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The main methodological contribution of this Article is intro-
duction of time-dependent model parameters. The transmissi-
bility of the virus changes with time, representing the weather
variation, public holidays and population response to the epi-
demic. The detection probability for a mild infection changes
with time, representing shifts in public and governmental con-
cerns about the ‘swine flu’ epidemic.

Six appendixes for this Article cover estimating the contact
rates (Supplement 1), modelling (2), methods (3), present addi-
tional results (4), model and method criticism (5) and discuss
the difference between the continuous and discrete time SIR
models (6).

Phenotype Microarrays Data Analysis

Figure 22: Biolog PM plate.
The photo is taken from the
Biolog homepage [32]

Biolog Phenotype micriarrays (PM) is a laboratory equipment
capable of multiple parallel screening of bacterial responses to
different conditions such as nutrition and antibiotics [32]. The
PM acts as multiple parallel Petri dishes: bacteria are placed on a
plate containing small wells filled with different substrates. The
bacterial metabolic activity is then measured by a by-product of
metabolism and recorded in arbitrary units. Measurements are
taken automatically for the duration of the experiment (usually
several days) producing a time series referred to as a metabolic
signals. In a benevolent condition bacteria are active, high signal
is registered; in a poison or antibiotics bacteria die; only small
signal is visible.

Figure 23: Example of sig-
nals produced by metaboli-
cally active and non-active
bacteria

Profiling bacteria – learning their behaviour in different
substrates – can be used to identify them, study their reaction on
drugs and gene knockout. However, PM metabolic signals are
subjects to measurement noise, both well-specific non-normal
noise and plate-wide variation. The bacterial response to a
substrate is stochastic. Complexity of an experimental setup and
a variation in bacterial metabolism sometimes lead to different
metabolic signals in seemingly identical conditions.

A number of different software packages have been devel-
oped for analysing and comparing metabolic signals. The sim-
plest methods assign a single statistic (e.g. maximum intensity
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reached) to a signal [33, 34]. Model-based methods are fitting
growth models such as logistic [35], Gompertz [35, 36], and
Richards [35] into a signal.

Article III – Novel R pipeline for analyzing Biolog pheno-
typic microarray data.

This is a software paper presenting an R package for analysing
PM metabolic signals: clustering them into active and non-active
signals, removing the plate-wide variation, identifying effects
of experimental conditions. It possesses the following benefits
absent in analogous software, available at that time:

• The metabolic signals produced by active and non-active
bacteria are fundamentally different. Our package recognizes
this difference and uses two models: logistic for active and
linear for non-active signals.

• We provided a function for normalizing arrays, i.e. removing
plate-wide experimental noise. Active and non-active signals
are normalized separately.

• We provided a function for identifying effects of experimental
conditions on metabolic signals. The probabilistic model of
such effects is used. This part of the package is implemented
in WinBUGS.

Article IV – Identifying multiple potential metabolic cycles
from Biolog experiments.

Figure 24: Example of
signals with two periods of
growth, hinting that bacteria
may have undertaken two
metabolic cycles during the
experiment.

This is a software paper presenting an R package for identify-
ing multiple periods of activity in PM metabolic signals. This is
done by decomposing a target signal into a set of growth model,
each potentially representing a biologically meaningful event
such as a change in bacterial metabolic pathway.

This is the first package able to do so – all analogous software
are fitting only a single parametric model into a metabolic signal.
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Mismatch Distributions

A mismatch distribution (MMD) is a common summary statistic
used to describe genetic diversity of a population. MMD is a
probability distribution of the expected number of different
genes (i.e. Hamming distance) that two individuals randomly
picked from the population would have.

Figure 25: Toy example
of the population of four
haplotypes, five sites each.
The top panel shows the
pairwise mismatch distance
between haplotypes. The
bottom figure presents the
mismatch distribution.

MMD has been proposed for analysing genotype data and
conducting inference on population structure, as it could re-
flect the signs of past events such as bottlenecks or exponential
growth [37, 38]. However, learning the MMD of a real population
is nearly impossible, as in practice only a few non-independent
samples are taken. Simulation-based inference methods (such as
ABC) allow to account for a sampling biases.

Article V – Statistical properties of the allelic mismatch
distribution in neutrally evolving haploid populations.

This is a research paper. It is based on a neutral evolution
model similar to the one used by Numminen et al. [38]. The
neutral evolution is affected by the population structure, which
is modelled implicitly by introducing stochastic migration and
local epidemic outbreaks (microepidemics).

The paper rigorously and comprehensively analyses a depen-
dence of mismatch distribution on parameters of the model. It
discusses the possible use of MMD as a summary statistic in
ABC. It concludes that MMD is not a comprehensive statistic and
should be used only alongside other summaries or informative
priors.
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