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ABSTRACT

Wood filler- flexible foam composite (FC) has been studied and proved to have ability

to absorb sound. In this study, untreated and treated Meranti Merah wood dust and Palm

Trunk namely as MM and PT respectively was use as the filler. Therefore, this study

was developed to compare the behavior and the ability of FC towards sound absorption

coefficient based on conditions of the fillers and wood fiber sizes. With the size of <355

and <500 µm, three different percentages has been selected which is 10 wt%, 15 wt%

and 20 wt% for both type of woods. Subsequently, these samples have been tested by

using Impedance Tube test for determination of sound absorption coefficient (SAC). The

morphological structure has been test using Scanning Electron Microscopy (SEM) to

observe the pores structure of wood-FC. While, Fourier Transform Infrared (FTIR) was

used to determine the functional group of FC and UV-Weatherometer was used to

determine the resistance of FC towards UV light up to 1000 hours. As a result, the SAC

shows value at achievable frequency range of 2500 to 6000 Hz. The highest SAC is

0.995 while the lowest SAC is 0.600. Nevertheless, a result of FC after UV exposures

shows only small decreases in SAC values and frequency absorption for some samples

were slightly shifted toward higher range for example sample 15 wt.% untreated <355

µm Meranti-FC curve shift from 4500 to 5000 Hz after 1000 hrs UV exposures. The

pores structures after UV light exposures shows slightly increasing in sizes and the SAC

values decreased for all samples. As a conclusion, in this study, the SAC behavior of

<355µm Meranti Merah, <500µm Meranti Merah, <355µm Palm Trunk and <500µm

Palm Trunk-FC samples show the ability to influence the absorption coefficient of

polymeric foam at different frequency levels. Lastly, the MM and PT-FC is highly

resistance to UV light and suitable for sound-proofing blanket and curtain systems for

outdoor sound applications.



ABSTRAK

Kayu isian- busa berkomposit (FC) telah dikaji dan terbukti mempunyai keupayaan

untuk menyerap bunyi. Di dalam kajian ini, kayu meranti merah dan batang kelapa sawit

yang tidak dirawat dan dirawat dengan asid masing-masing dinamakan sebagai MM dan

PT digunakan sebagai kayu isian. Oleh itu, kajian ini telah dijalankan untuk

membandingkan kelakuan dan keupayaan FC terhadap pekali penyerapan bunyi

berdasarkan keadaan kayu isian dan saiz serat kayu. Dengan tiga peratusan yang berbeza

iaitu 10 wt%, 15 wt% dan 20 wt%, saiz <355 dan <500 μm telah dipilih bagi kedua-dua

jenis kayu. Selepas itu, sampel-sampel ini telah diuji dengan menggunakan ujian Tiub

Bergalang untuk menentukan pekali penyerapan bunyi (SAC). Bagi ujian struktur

morfologi Mikroskopi Pengimbas Elektron (SEM) telah digunakan untuk memerhati

struktur liang untuk kedua-dua saiz dan jenis kayu-FC. Manakala, FTIR telah digunakan

untuk menentukan kumpulan berfungsi yang wujud di dalam FC dan UV-

Weatherometer telah digunakan untuk menentukan ketahanan FC terhadap cahaya ultra-

ungu(UV) selepas 1000 jam. Kesan terhadap penyerapan bunyi, SAC menunjukkan nilai

pada frekuensi 2500-6000 Hz. Nilai SAC tertinggi 0.995 manakala nilai SAC yang

paling rendah ialah 0.6. Walau bagaimanapun, hasil selepas pendedahan FC terhadap

UV menunjukkan perubahan kecil pada nilai SAC dan frekuensi penyerapan bergerak ke

julat yang lebih tinggi sebagai contoh sampel 15 wt.% tidak dirawat <355 µm MM-FC

beralih dari 4500 ke 5000 Hz selepas 1000 jam terdedah pada cahaya UV. Terdapat

perubahan pada struktur liang selepas pendedahan cahaya UV dan saiz turut meningkat

dan nilai SAC juga menurun bagi kesemua sampel. Kesimpulannya, dalam kajian ini,

kelakuan SAC bagi sampel M3, M5, P3 dan P5-FC menunjukkan keupayaan untuk

mempengaruhi pekali penyerapan busa polimer pada frekuensi yang berbeza. Akhir

sekali, MM dan PT- FC memberi kesan rintangan terhadap cahaya UV dan sesuai untuk

langsir luaran penyerap bunyi atau langsir di dinding penghalang bunyi.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and research background

As the problem of undesirable and potentially hazardous noise has become serious,

the demand of better environment and residential safety is increased and becomes a

major requirement. Various studies focusing acoustic properties have been

performed. Acoustical material plays important roles in acoustic engineering such as

the control of room acoustics, industrial noise control, studio acoustics and

automotive acoustics. They are used as interior lining for apartments, automotives,

aircrafts, ducts, and enclosures for noise equipments and insulations for appliances

(Knapen et al., 2003; Youn & Chang, 2004).

From previous study, polyurethane foams composites made from palm oil

were synthesized, crosslink and doped with eco natural filler of rubber waste or

sawdust powder (Rus, 2010 & Rus, 2009b). As natural resources become scarce,

many researchers and industries are beginning to investigate and utilize various

renewable resources such as the abundant and cheap vegetable oils, which represent

a major potential source of chemicals (Rus, 2008 & Rus, 2009a).

In the recent years, a number of studies have been carried to develop new

materials and technologies improving the sound absorption properties, the sound

absorption coefficient of the system improved with the increase of open porosity

over the entire frequency range of 125- 4000 Hz. (Zhang, et al., 1997) & (Yu, 1999).

The sound absorption panel developed by using processed bamboo and oil palm

frond has been tested for its sound absorption properties (Koizumi, et al., 2002 &
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Sihabut, 1999). Numerous studies had been done on the sound absorption of porous

material like wood based material (Wassilieff, 1996), tea-leaf-waste material (Ersoy

& Kucuk, 2009), melamine foam (Kino et al., 2009) and fabric (Dias et al., 2007).

At the present time, green technology is proposed used to be manufacture

materials from agricultural as substitute to synthetic fiber and wood based material

for noise absorption purposes. Natural fibers (rice husk) have many advantages

compare to synthetic fibers, for example low weight, low density, low cost,

acceptable specific properties and recyclable or biodegradable. These materials have

demonstrated good distinctive features from the both of aspect of sound qualities and

mechanical. Zaidi et al., (2009) has studied, at low frequency, 0 – 500Hz, sound

absorption of rice husk was higher than virgin PU with the value of 0.899 at 250Hz.

whereas, the virgin PU recorded higher absorption at a higher frequency, 2000Hz

with a value of 0.679. This shows that mineral fibers have the potential as filler

material of sound absorbent material (Zaidi et al., 2009).

Sound absorbing materials absorb most of the sound energy striking them

and reflect very little. Therefore, sound-absorbing materials have been found to be

very useful for the control of noise (Arenas, et al. 2010); Materials that have high

value of sound absorption coefficient which is above 0.900 are usually porous

(Crocker, et al., 2007). The absorption coefficient is a useful concept when using

geometrical acoustic theory to evaluate the growth and decay of sound energy in a

room (Rus, et al., 2012).

Nowadays, in agro-industrial and plantation of timber industry, high value of

hardwood saw mill residue, which is currently treated as solid waste were produced.

In practice this residue is burned in incinerators which may be causes of

environmental pollution problems in nearly localities and offers limited value to the

industry (Rahman et al., 2006). Furthermore, saw mill residue uses is still limited.

Basically, it is used as animal feed or simply as landfills (Musatto et al., 2003).

By considering this scenario, an alternative practice should be considered by

the sawmill industry to commercialize the residue from hardwood species to recycle

back without causing environmental pollution and produce valuable product. This

practice will requires less energy, and diminishes pollutants in industrial effluents, as

well as being more economically advantageous due to its reduced costs.

According to the several research groups on the hydrolysis of saw mill

residue, it is only focus on the softwood species such as corn, rice husk, sugarcane
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baggase and so on (Lavarack et al., 2002, Mussatto & Roberto, 2005 and Téllez-Luis

et al., 2002).

In this study Meranti Merah wood (MM) and Palm Trunk (PT) was used

because its abundant sources of the furniture manufacturing. The acoustical

properties (sound absorption coefficient) of the composite were determined to

investigate the possibility of untreated and treated MM and PT as filler of polymer

foam composites. Both woods were chosen as raw material because of its

availability. Wood sawdust is a lignocellulosic byproduct of sawmill that is available

at low cost throughout the year. It is produced in enormous quantities by sawmills

and the economical disposal of them is a serious problem to the wood based

industries.

Roberto et al., (2003), have studied that the hydrolysis of wood to produce

xylose solution could be a good alternative use for this abundant resource. Xylose is

a hemicellulosic sugar which can be used as a raw material for the manufacture of a

wide variety of compounds or fuels by chemical and biotechnological processes The

hemicellulosic fraction of wood can be easily and selectively extracted with dilute

sulfuric acid under mild treatment conditions to obtain xylose-rich hemicellulosic

hydrolysates which can be an economical substrate to produce xylitol. Under

optimized treatment conditions, the dilute acid hydrolysis of lignocellulosic mainly

produces xylose from hemicellulose, leaving a solid residue containing the cellulose

and lignin fractions almost unaltered (Islam & Mimi Sakinah 2011). The remaining

wood after hydrolysis treatment containing acidic cellulose-lignin and before acid

hydrolysis treatment was tested as filler.

In this present study, a comparison between before and after acid hydrolysis

treatment of MM and PT contributed as filler to composite foam to measure the

sound absorption ability and understanding the quality of fibrous material in

composite foam.

During outdoor exposure, polymers degrade chemically due to the action of

short wavelength Ultraviolet rays present in the solar spectrum. The service-life of

polymers in outdoor applications becomes limited due to weathering (Davis, 1977).

Polymer degradation has been investigated for many years. Ultraviolet accelerated

weathering or exposure testing evaluates the test for FC reaction to photo-induced

degradation. Photolysis is a chemical reaction that can affect color fastness,



4

brittleness, fading, cracking and other forms of deterioration as a result of exposure

to ultraviolet radiation.

In this study, an ultraviolet weathering chamber was used to conduct polymer

foam degradation in ultraviolet exposures. Ultraviolet radiation and water

condensation were cycled periodically in the chamber, simulating sunlight and rain

or dew.

1.2 Problems statement

Wood-based production industries has expended and yielding a huge amount of

wood. Sawdust or wood fiber is a by-product of cutting, grinding, drilling, sanding,

or otherwise pulverizing wood with a saw or other tool; it is composed of fine

particles of wood. Han, et al., (1998) has reported that the properties of particleboard

produced from fine particle were better than board that made from coarse particles.

From previous study Wassilieff, 1996, has reported that most practical sound

absorbing products used in the building industry consist of glass- or mineral-fibre

materials. However, the growing concern about the potential health risks as being

associated with fibre shedding from glass- or mineral-fibre materials provides an

opportunity for wood-based sound absorbers to be developed for use in many

applications. Natural fiber reinforced polymer composites materials are almost

replacing materials such as ceramics, metals, glasses, etc. From the previous

research, rubber waste or sawdust powder was used as eco natural filler. The

acoustical behavior of FC may vary due to the different particle sizes, foam

composition and type of woods.

This treated wood is by-product from acid hydrolysis treatment of wood

mainly produces xylose from hemicelluloses, leaving a solid residue containing the

cellulose and lignin fractions almost unaltered in controlled condition. Cellulose is

one of the most important natural polymers produced in the biosphere, and it is

considered the most abundant renewable polymer on earth. Production of cellulose-

lignin is estimated to be over 7.5 x 1010 tons per year (Habibi et al., 2010).

Cellulose is structural materials in plants and the most abundant biomass in

earth However; there are lacks of studies regarding the utilization of wood in

polymer foam composite. Most of the prior studies are only focusing on the
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alternative polyol from renewable natural source from rice husk, castor oil and

soybean oil. Other than that, there are few studies regarding the by-product (cellulose

and lignin) with the different particle sizes and wood species reinforce in polymer

foam composite. Hence, this research is come out to focusing on the studies of the

effect of foam composition, particle sizes and type of wood in acoustical behavior of

FC. Thus, the urgency of this study is to produce an economical and high quality of

alternative natural filler for polymer composite from biomass (mainly plant-wood).

Although polymer properties can be slightly affected during their processing,

storage, and transportation, the most significant degradation occurs during exposure

to the environment. The ultimate objective of testing is to predict the component

lifetime under service conditions. The appropriate exposure conditions are therefore

those that match exactly the service environment. The main motivation for artificial

aging is to accelerate the weathering processes so that a reliable prediction of the

service lifetime can be obtained in an acceptably short test period. Acoustical

Blankets is great for use in outdoor environments where an extended lifespan is

needed for the blankets. Typical uses include curtain material in acoustical

enclosures where weather resistance and excellent durability is required as well as

maximum longevity and noise reduction is required.

1.3 Hypothesis of research

The hypotheses of this research are:

i. To prove that by-products of xylose production from Meranti Merah

wood and Palm Trunk can be used as an alternative filler for FCs.

ii. To prove that untreated and treated of wood filler affect the sound

absorption behavior of FCs.

iii. To prove that the wood filler FC have high resistant against

weathering for prolonged ultraviolet irradiation exposures.
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1.4 Objectives of research

The objectives of this study are:-

i. To characterize the use of palm trunk and Meranti Merah wood as

alternative filler in sound absorption.

ii. To study the acoustical behaviour of FC filled with untreated and

treated MM and PT woods.

1.5 Scope of research

In this study, polymer foam composites (FC) were developed based on crosslinking

between polyol, flexible isocyanates with MM and PT wood as filler. MM wood was

obtained from Tukang Kayu A.Hamid Sdn Bhd, furniture industry from Peserai, Batu

Pahat. Meanwhile, PT was taken from Sime Darby Berhad from Kuala Lumpur.

With a size of <355µm and <500µm for both woods, the FC were fabricate based on

three percentages of filler loading which is 10, 15, and 20 wt % of polyol. These

samples were then exposed using ultraviolet Weatherometer for 250, 500, 750, 1000

hours. The resistance of FC after ultraviolet exposures was detailed in sound

absorption coefficient band. The color changing of FC was observed after ultraviolet

exposures. Meanwhile, Fourier Transform Infrared (FTIR) was used to provide

valuable information of functional groups present in FC. In addition, density and

porosity was tested to measure the pore sizes and its effect on the sound absorption

of FC samples. All instruments for testing an measurement have been done in

laboratory at Universiti Tun Hussein Onn Malaysia (UTHM).

1.6 Significant of research

The significances of the research study included:

i. This research was done to improve FC with alternative filler for sound

absorption especially for indoor and outdoor applications. This research
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will determine whether this alternative is able to increase the physico-

mechanical properties of FC that serves as sound absorber.

ii. The FC was developed using filler from biomass which is found

abundantly on earth. This alternative was selected to replace the existing

filler which mostly sources from chemicals which may effect on user’s

health.

iii. These UV irradiation exposures were conducted to determine the

durability of FC after exposing in UV simulator for 1000 hrs in order to

enhance the FC lifetime.

1.7 Thesis organization

CHAPTER 1 has highlighted the general introduction on this research, background

of study, problem statement, hypothesis, objective, scope and its significance of

research. It discussed the reason of research aimed in developing of FC using wood

filler which can provide better sound absorption.

In CHAPTER 2, reviews of literature were focusing on wood filler, polymer,

foam production and its parameter and sound absorption coefficient.

CHAPTER 3 shows the methodology that used to conduct the whole study.

The technique of FC preparation, the physical and mechanical test is described in

details.

CHAPTER 4 and CHAPTER 5 cover the results and discussion of the

experimental carried out from this research. The particles of FC are discussed in

CHAPTER 4. It also shows the physical properties of the FC characterized using

FTIR, SEM and density measurement. In CHAPTER 5, the results of sound

absorption before and after fabricated of FC were discussed in details.
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Table 1.1: Thesis organization description

CHAPTER Description

CHAPTER 1 Introduction

CHAPTER 2 Literature Review

CHAPTER 3 Research Methodology

CHAPTER 4 Foam Production, Filler Characteristics and
Physical properties

CHAPTER 5 Sound Absorption Behavior

CHAPTER 6 Conclusions and Recommendations

Lastly, CHAPTER 6 summarized the results and discussion of all the

experimental testing. At the end of this chapter, the recommendations are list out for

future study. The entire chapter is illustrated as tabulated in Table 1.1.



 

 

 

 

CHAPTER 2 
 

 

 

 

LITERATURE REVIEW 

 
 

 
2.1 Introduction 

 
 
The literature review is relevant to formation of polymer foam composites, wood 

filler, as well as acoustical properties of polymer foam composite were reviewed in 

this chapter. It helps to point out some useful information regarding the research 

topic such as the development of foam with wood filler, the characteristics of 

polymer foam composite and the testing methods used for evaluated the potential of 

the FC for soundproof of indoor and outdoor applications. 

 
 
2.2  Chemical structure of biomass 
 
 
In general, utilization of biomass in lignocellulosic composites has been attributed to 

several advantages such as biodegradability and low cost. Biomass is composed of 

three major polymers- Cellulose, Hemicelluloses and lignin- and their ratio, 

composition and structure determine biomass properties (Kato,1981).  

Cellulose is the most abundant renewable polymer resource available today, 

and it is considered an almost inexhaustible source of raw material for the increasing 

demand for environmental friendly and biocompatible products (Brinchi,et al., 

2013). Cellulose-based fibers are the most widely used, as biodegradable filler. Other 

researcher (Yang et al., 2003) studied theabsorption coefficient of four fiber 

assemblies,cashmere, goose down and kapok, which are bothnatural and acrylic 
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fibers. The natural fibers haddistinctive internal structures that would influence 

thesound absorption coefficient. Woodsis one type of renewable biomass that widely 

use in furniture manufacturing and so on. Type of woods that been used is referring 

to Palm Trunks wood and Meranti Merah wood that generate during the maintenance 

and pruning of trees and plants. It is the most common type of woody waste available 

in Malaysia sawmills industry.  

Biomass one of the renewable sources and attracts research interest in 

development of various process technologies. Wood is a biomass containing 

lignocelluloses will become one of the renewable resources for needs of mankind 

(Sun, et al., 2002). From previous study, the Meranti wood biomass contains 

cellulose, hemicelluloses and lignin as the major biopolymer (Roberta et al., 1995). 

Figure 2.1 show the three major polymer structures.  

 

 

 

 

 

 

 

 

 

Figure 2.1: Structures of cellulose, hemicellulose and lignin in biomass. 

(Roberta et al., 1995) 

The proportions of the constituent vary between different species. Hardwood 

has a content of cellulose and hemicelluloses around 80% of total feedstock dry 

matter while softwood contains around 70% of total dry matter (Balat, 2010).  

An important field of cellulose application is in composites materials as 

reinforcement of engineering polymer systems (Biagiotti,et al., 2004).Moreover, 
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properties of cellulosic fibers are strongly influenced by many factors, which differ 

from different part of a plant as well as from different plants (Siquera, et al., 2010). 

The chemical formula of cellulose is (C6H10O5)n; n, calledthe degree of 

polymerization (DP), represents the number of glucose groups,ranging from 

hundreds to thousands or even tens of thousands. In the twentiethcentury, it was 

proved that cellulose consists of pure dehydrated repeating units ofD-glucoses (as 

shown in Fig. 2.2), and the repeating unit of the cellulose is called Cellobiose (Habibi 

et al., 2010).  

 

 

Figure 2.2: Chemical structure of cellulose nanocrystals. (Habibi et al., 2010) 

 

Previous study by Rozman et al., (2003), has reported that rice husk (RH) 

with different particle size shows filler tightly embedded in the PU matrix. It is 

clearly seen that the filler possesses a higher surfacearea in contact with the matrix. 

This indicates the existence of interaction between the RH surfaces with the PU 

matrix. This might be the result of the reaction between OH groups of RH with the 

NCO groups from MDI. 

Miléo, et al.,(2011) reported that after the stage of alkaline delignification it 

is possible to observe a great number of free cellulose fibers, showing that the stage 

of pretreatment followed by delignification can provide a better availability of 

cellulosic fibers for subsequent processes, such as the use of the fiber as 

reinforcement in bio-composites.  

Figure 2.3 shows the SEM for fracture surfaces of composites; fibers were 

welldistributed and aggregated to the matrix.Better performance of composites is 

attained due to homogeneous distribution of fibers in the matrix; as aresult the stress 

transference between fibre and matrix is more effective, affecting positively 

theperformance. 

 

Cellobiose 
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Figure 2.3: SEM of fractured surfaces of composites: (A) pure matrix; (B) 5% 
cellulose/ PU composite; (C) 10% cellulose/PU composite; (D) 15% cellulose/ PU 

composite; (E) 20% cellulose/ PU composite. (Miléo,et al., 2011) 
 

 
2.2.1 Palm Tree 

According to researchers, Malaysia is currently the world’s largest producer and 

exporter of palm oil (Wahid et al., 2004).Malaysian palm oil industry generates an 

enormous quantity of palm tree biomass, including palm frond, palm trunk, empty 

fruit bunch and excessive of fibers from palm oil production (Rasat et al., 2011). 

Palm tree is currently Malaysia largest agricultural plantation with the total of 

4.69 million hectares with the life cycle of 25-30 years for productive oil palm. It is 

estimated that in dry weight there would be more than seven million tonnes of oil 

palm trunk wastage available per year (Chin,et al., 2011).  

As referring Figure 2.4, Rahmanet al.,(2014) has study the utilization of palm 

fibers for acoustic characteristics and proves that both fibers arepromising for use as 

sound absorber materials to protect against environmental noise pollution. 
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Figure 2.4: (a) Crude oil palm fibre, (b) chopping fiber. (Rahman et al., 2014) 

 

The comparison between acoustic properties of coir and oil palm fiber has 

proved the potential use of coir fibre in a sound absorption panel (Zulkifli et al., 

2009). In addition, the organic fibre is used in applications to decrease noise 

transmission in the space interior and external transmission (Zulkifli et al., 2009; 

Ayub et al., 2009).The advantages of these fibers are their renewability, abundance 

and low cost. These fibers are also more effective than industrial materials in terms 

of their reduced health hazards and protection during processing. Furthermore, this 

crude fibre can be used to reduce the noise emitted from power plants (Rahman et 

al., 2014). 

 

2.2.2 Meranti Wood 

 

The studies on the use of Meranti wood as adsorbent are limited. Wood from Red 

Meranti species was chosen as raw material in this study because it is one of the 

most common and popular hard- wood species present in all tropical countries such 

as Malaysia and Indonesia (Rafatullah et al., 2009 and Rafiqul et al., 2012).  To be 

name a few, Rafatullah et al., (2009) and Ahmad et al., (2009) has study the 

utilization of Meranti Wood as adsorbent for metal ions. Figure 2.5 shows the 

morphology structure of Meranti wood.  

Meranti tree is widely used for furniture making and the waste wood fiber 

produced is generally used for heating in the boiler. Meanwhile, Saiful et al., (2012) 

has stated that a small number of works has been carried out on Malaysian tropical 

Red Meranti wood and wood plastic composites(WPCs)fabrication.  
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A study of Meranti wood composition has been done by Shukla et al.,(2002). 

Lignocellulosic of Meranti wood consists of lignin, cellulose, hemicellulose and 

many hydroxyl groups such as tannins. All those components are active ion exchange 

compounds. Lignin, the third major component of the wood cell wall is built up from 

the phenylpropane nucleus; an aromatic ring with a three carbon side chain is 

promptly available to interact with cationic metal ions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: SEM of natural Meranti Wood. (Rafatullah,et al., 2009) 

 

 

2.3 Porous fibrous materials 

Most of the porous sound-absorbing materials commercially available are fibrous. 

Fibrous materials are composed of a set of continuous filaments that trap air between 

them. According to Crocker & Arenas(2007), Fibers can be classified as natural or 

synthetic (artificial). Natural fibers can be vegetable (cotton, kenaf, hemp, flax, 

wood, etc.), animal (wool, fur felt) or mineral (asbestos). Fibrous materials consist of 

a series of tunnel-like openings that are formed by interstices in material fibers. 

Natural fibers are essentially completely biodegradable and modern technical 

developments have made natural fiber processing more economical and 

environmentally friendly. 
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Figure 2.6: Scanning electron microscope images of samples of hemp, kenaf, 

cotton and polyester fibers. Courtesy of Dr. J. Alba (Polytechnic Univ. of Valencia, 

2007). 

 

Figure 2.6 shows SEM images of samples of hemp, kenaf, cotton and 

polyester fibers. It is evident that natural fibers have more irregular shapes and 

variable diameters compared to synthetic fibers.  

Fibrous materials include those made from natural or synthetic fibers such as 

glass and mineral fibers Kazragis et al.,(2002).Synthetic fibrous materials made from 

minerals and polymers are used mostly for sound absorption and thermal isolation. 

However, since they are made from high-temperature extrusion and industrial 

processes based on synthetic chemicals, often from petrochemical sources, their 

carbon footprints are quite significant.  

Zulkifli et al.,(2009) has studied the usage of natural fibers in manufacturing 

sound absorbing materials. Fiber materials have acoustical properties equivalent to 

those of glass wool where the SAC value obtained for both materials is above 0.980 

at frequency range of 1000 to 4000 Hz, which is a good sound absorber (Koizumi et 
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al., 2002). These new methods may result in increased use of high-quality fiber at 

competitive prices for industrial purposes.  

Studied by Yang & Li, (2012) and Allard, (2009) has proved that sound 

absorption mechanisms of the composite were the following three aspects: (1) when 

acoustic waves propagated into the fibrous material, the air in the fiber pores vibrated 

and rubbed against cell walls. The generated viscous resistance turned the acoustic 

energy into thermal energy attenuation. (2) The air in the pores was heated when 

compressed and it cooled when expanded. The thermal conduction in the materials 

made acoustic energy transform into thermal energy gradually and it was 

irreversible. (3) The vibration of fiber itself could also cause the dissipation of 

acoustic energy. These three aspects cooperated and worked together on the acoustic 

waves so that the acoustic energy was transferred. 
Meanwhile, Green et al., (1999) has study the wood materials lie in their 

microscopic structure i.e. fibre orientation, size, length and structure. On the other 

hand, Enamul et al., (2014) stated that fiber is used to significantly improve many 

mechanical properties of polymer, but it may cause processing difficulties due to the 

nature of the fiber. 

 
 
2.4 Chemistry in polyurethane (PU) foam 
 
 
2.4.1 Polyurethane 
 
 
Polyurethanes are all around us, playing a vital role in many industries because of 

their widely ranging mechanical properties and their ability to be relatively easily 

machined and formed as plastics, foams and elastomers. In particular, urethane 

materials, such as foams and elastomers, have been found to be well suited for many 

applications. Automobiles, for instance, contain a number of components, such as 

cabin interior parts, that comprise urethane foams and elastomers. Urethane foams 

are also used as carpet backing. Such urethane foams are typically categorized as 

flexible, semi-rigid, or rigid foams with flexible foams generally being softer, less 

dense, more pliable, and more subject to structural rebound subsequent to loading 

than rigid foams. 
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2.4.2 Flexible polyurethane 
 
 
Polyurethane (PU) today account for the largest percentage (by weight and volume) 

of any plastics material used in automotive industry and their growth rate also faster 

than that of other plastics. Polyurethane is a synthetic polymer which formed by a 

reaction between a monomer containing at least two isocyanate functional groups 

and another monomer containing at least two hydroxyl groups in the presence of 

catalyst. The basic raw materials in producing of polyurethane are polyol and 

polyisocyanate. According to Hatakayema et al.,(1993), natural polymer having 

more than two OH group per molecule could be used as a polyol for polyurethane 

preparation if the groups could be reacted with isocyanate. Flexible and rigid PU 

foams are two predominant application forms of PU with coatings, sealants, 

elastomers, and adhesives being other common forms of applications. 

The reaction is exothermic and then reaction heat can be used to form a 

cellular structure by evaporating the physical blowing agent. The foaming agent 

process can be explained by the nucleation and growth mechanism (Woods, 1990), 

Oertel, 1993), (Klempneret al., 1991). PU can be customized to its applications 

(Patrizia.et al., 2013). In the blow reaction (Figure 2.7), Water first reacts with 

isocyanate to produce a carbamic acid intermediate that quickly decomposes to give 

an amine and carbon dioxide. Carbon dioxide is the blowing gas which fills the cells. 

The amine reacts with a second isocyanate to form a urea linkage as a hard segment. 

Both the gel and blow reactions build molecular weight and therefore cause the 

polymer to gel, but the blowing gas is only produced from the water 

reaction(Triwulandari et al,. 2007). 
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Figure 2.7: a) Blow reaction - first stage; b) blow reaction - decomposition 
step; c) blow reaction - urea formation.(Triwulandari et al., 2007) 

 
Meanwhile, Ogunniyi & Fakayejo (1996) has proved that water, which is 

present in the formulations, reacts with diisocyanate to liberate carbon dioxide and 

gives the foam a cellular structure. It is also act as the activators are used to speed up 

the reaction.Water is added to these formulations to react with the isocyanate. This 

reaction ultimately produces polyurea, carbon dioxide and heat. This carbon dioxide 

diffuses to existing gas bubbles in the polyol and so expands the mixture into foam. 

Control of the amount of air contained in the polyol raw material is one way that 

manufacturers control the number of nucleation sites in the reacting mixture. These 

initially small bubbles quickly grow through either gaining gas from the diffusing 

carbon dioxide or by coalescing with other bubbles. 

Previous study by Juan et al.,(2013), has indicates that PU is synthetic 

polymer which has molecule structure consist of block copolymer from hard segment 
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and soft segment. Hard segment and soft segment is produce from blow and gelation 

reaction of isocyanate. Hard segment are rigid structures that physically cross-linked 

and give the polymer its elasticity. By adapting the composition and the ratio of the 

hard and the soft segment, Figure 2.8 show the segments exist in polyurethane foam. 

The soft phase segmentalrelaxation is strongly affected by changing hard 

segment content,akin to the role of increasing crystallinity in 

semicrystallinepolymers. Its strength is reduced and the relaxation 

broadensconsiderably with increasing hard segment fraction, demonstratingthat the 

relaxing segments in the soft phase exist in anincreasingly heterogeneous 

environment (Alicia et al., 2011). A studied by Holden et al., (1996) has proved that 

the hard domains serve as physicalcross-links in the soft matrix, leading to 

mechanical propertiescharacteristic of elastomers for materials with relatively low 

hardsegment contents. 

 

 

Figure 2.8: Schematic representation of PU foam. (Juan et al., 2013) 

PUs is the single most versatile family of polymers. Polyurethanes can be 

solid or microcellular elastomers (both cross-linked rubbers and thermoplastic 
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elastomers), foams, paints, fibers or adhesives. They can also be processed with most 

processing methods known at present. 

 PU foams account for the largest market among polymeric foams, estimated 

at nearly two billion kilograms in the US alone (Khemani, 1997).The versatility of 

polyurethane chemistry permits the production of a great variety of materials such 

depending on the initial ingredients used in the synthesis (Ligoure,et al., 2005).  
Furthermore, PU is one of the most important classes of polymeric materials 

due to its excellent mechanical properties, good abrasion resistance, high flexibility 

and damping property.  The property of PU can be tailored chemically during the 

synthesis. Flexible PU porous foams with the open cells are generally considered to 

be good sound absorbers and vibration isolators and are therefore often used to 

improve the noise vibration and harshness comfort, commonly in automotive 

applications (Zhiping. et al., 2012, Bakare et al., 2012, Casati. et al., 2008, Wang.et 

al., 2004, Verdejo.et al., 2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



21 
 

2.5 Raw materials of PU foam 
 
 
2.5.1 Polyol 
 
 
Polyol are either polyester, such as ethylene glycol, 1, 2-propanediol, 1,4- butanediol 

and diethylene glycol combined with glycerol or polyether, such as propylene glycol 

(PG) and trimethylolpropane (TMP) combined with sucrose. Polyether is used to 

produce flexible and rigid and polyester are used to produce elastomers, flexible 

foam and coatings. Structures of polyols made with either ethylene or propylene 

oxides are illustrated in Figure 2.9shows the common polyol used in polyurethane 

foam development(Oertel, 1985). 

 

Figure 2.9: Polyether polyols made from ethylene oxide (top) and propylene oxide 
(bottom). The initiator used, for illustration purposes, is glycerol and R and R* 

represent the same structures as shown. (Oertel G, 1985) 
 

Polyol from petrochemical derivative are commonly used until now. There 

are several polymer industry especially industry involve in production of 

polyurethane has gain interested to substitute this petroleum-based polyol with type 

of polyol based on renewable resources because of  decreasing petrochemical supply 

while the price is increasing (Triwulandari et al., 2007). (Petrovic,2008, Narine, et 

al.,2007, Das, et al.,2009 ) has reported  that since 1960s, a wide range of vegetables 

oils have been considered for the preparation of polyurethane; the most important 

oils are highly unsaturated oils, whereby using various chemical reactions, the double 

bonds are transformed into hydroxyl groups including, sunflower, palm, rapeseed, 

but  mainly castor. 
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Other vegetable oils such as soy bean oil (Garrett. et al.,) peanut oil, 

and canola oil - contain carbon-carbon double bonds, but no hydroxyl groups. There 

are several processes used to introduce hydroxyl groups onto the carbon chain of the 

fatty acids, and most of these involve oxidation of the C-C double bond. Treatment 

of the vegetal oils with ozone cleaves the double bond, and esters or alcohols can be 

made, depending on the conditions used to process the ozonolysis product (Figure 

2.10) (Narayan. et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Reaction of triolein with ozone and ethylene glycol.(Narayan. et 

al., 2005). 
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2.5.2 Flexible isocyanate 
 
 

Isocyanate is the functional group with a formula R –N= C=O. Two isocyanates that 

attached in a group are known as a diisocyanate. An isocyanate may exist one or 

more in groups. Isocyanate is commonly used in the manufacture of foams, electrical 

insulation and paints. Isocyanate is a basic ingredient for polyurethane foam 

production with the addition of water as a blowing agent. Common diisocyanate in 

foam formation is shown as Figure 2.11.  

At present, for foam applications, only the production of polyol from 

renewable resources has been reported. Petrovic, (2008), claim that, although 

aliphatic di-isocyanate from dimerized fatty acids is commercial, they do not have 

sufficient reactivity for applications in foams, but they could be used for coating and 

other applications. Thus, isocyanate for PU foams must be aromatic. 

 
Figure 2.11: Diisocyanates commonly used in foaming: a) 2,4-toluene diisocyanate, 

b) 2,6-toluene diisocyanate, c) 4,4-methylene diphenyl diisocyanate, d) 2,4-
methylene diphenyl diisocyanate, e) 2,2-methylene diphenyl diisocyanate, and f) 

polymeric MDICommon used diisocyanate.(Oertel G, 1985) 
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2.6 Covalent crosslink 
 
 
Polyurethane foams, and most castable elastomers and reactive systems, are 

crosslinked systems. The chemical crosslinking in polyurethane is one of the 

following three types (Wirpsza, 1993): 

(i) Crosslinking using mainly tri-functional compounds (polyols with more 

than two hydroxyl groups, low molecular weight triols) with di- or tri-isocyanate 

compounds. The isocyanate index is then closed to unity. The branching points are 

present in the carbon chain of the flexible segments, if this is a polyol chain or of the 

rigid segments, if this is a low molecular weight triol. The branching point may also 

occur at the nitrogen atom. 

(ii) Crosslinking due to reaction of excess isocyanate groups (isocyanate 

index >100) with the urethane and urea groups of the polyurethane to form some 

branching allophanate and biuret groups in the rigid segments (Figure 2.12). 

(iii) Crosslinking resulting from trimerization of excess isocyanate groups to 

give branching isocyanate rings. 

 

 
 

Figure 2.12: The secondary reactions of isocyanate. (Juan et al., 2013) 
 

Both reactions are potential crosslinking reactions, but the biuret linkage is of 

greater practical importance because urethanes are less reactive to isocyanate than 

are ureas due to hydrogen on the urea nitrogen is slightly more reactive than 

thehydrogen in urethane resulting in the biuret linkage having slightly more thermal 

stability than the allophanate linkage. Regardless, the biuret linkage is thermo-

reversible and has temperature-dependent effects on the overall polymer properties 

(Juan et al., 2013). 
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